


   OPEN ACCESS Asian Journal of Mathematics and Statistics

ISSN 1994-5418
DOI: 10.3923/ajms.2025.8.28

Research Article
Multiclass Detection of e-Wallet Fraud Transactions Using Deep
Learning Techniques
1BROU Pacôme, 1KOUASSI Adlès Francis, 1,2KOUASSI Thomas and 1,2ASSEU Olivier

1Laboratoire des Sciences, des Technologies de l’Information et de la Communication (LASTIC), 
Ecole Supérieure Africaine des Technologies de l’Information et de la Communication (ESATIC), Abidjan, Côte d’Ivoire
2UMRI des Sciences Techniques de l’Ingénieur (STI), Ecole Doctorale Polytechnique (EDP), 
Institut National Polytechnique Houphouët BOIGNY, Yamoussoukro, côte d’Ivoire

Abstract
The widespread adoption of digital payments through Electronic Wallets (e-Wallets) has significantly increased the exposure of financial
systems to sophisticated fraud schemes and abnormal transactional behaviors. This situation raises a critical question: How can abnormal,
potentially fraudulent, transactional behaviors be detected in real time and with high reliability within massive, sequential streams of
heterogeneous data? To address this challenge, this study proposes a hybrid approach combining a Long Short-Term Memory (LSTM)
recurrent neural network capable of capturing the temporal dimension of user behaviors with a multinomial logistic regression (MLR)
classification layer to discriminate between behavioral classes. Using a simulated dataset of 1,000 transactions from 100 users, where each
transaction was enriched with contextual variables (device_score, frequency_score, timestamp, amount, location, transaction_type), the
model classified behaviors into three categories: Normal, Suspicious and Fraudulent. The hybrid model demonstrated strong overall
performance, achieving an average accuracy of 77.3%. It exhibited excellent recall for the Normal class (91%), acceptable performance
on Suspicious transactions (73% recall) and a robust ability to detect fraud (76% recall), while reducing false positives by 35% compared
to a standalone static classification. The temporal integration enabled by the LSTM significantly improved the detection of gradual
behavioral drifts, particularly in cases where fraud leveraged historically trustworthy devices. This work highlights the value of a sequential
and adaptive approach to enhancing transactional cybersecurity in environments characterized by high behavioral variability.
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INTRODUCTION

The digital revolution, coupled with the rapid rise of
mobile technologies, has profoundly reshaped global
payment practices, with Electronic Wallets (e-Wallets)
emerging as a preferred medium for everyday transactions.
While this transformation fosters financial inclusion and
enhances the fluidity of exchanges, it also introduces
significant challenges related to security and trust. The
dematerialization of payments has dramatically increased
potential attack surfaces, making financial fraud increasingly
difficult to detect in real time. Among the most pressing
challenges today is the ability to identify Suspicious
transactions, those that may not constitute confirmed fraud
but exhibit atypical patterns that deviate from the user’s
normal behavior. This “gray area” between legitimate and
fraudulent activity represents a substantial challenge for
traditional monitoring systems based on static rules or
empirical thresholds. The very notion of a “Suspicious
transaction” is inherently difficult to formalize, as it depends
on a combination of temporal context, the user’s behavioral
profile and specific transaction attributes (such as amount,
geolocation, frequency, device type and among others). In the
face of such complexity, artificial intelligence and machine
learning in particular offers promising avenues for adaptive
and predictive behavior analysis. This article introduces a
hybrid  approach  for  the  predictive  detection  of  Suspicious
e-Wallet transactions, combining a multinomial logistic
regression (MLR) model for static classification based on
explicit transaction attributes, with a Long Short-Term
Memory (LSTM) recurrent neural network capable of modeling
the temporal dynamics and behavioral sequences specific to
each user. Using a simulated, realistic dataset comprising
1,000 labeled transactions across 100 users, the proposed
model was trained and validated to automatically classify each
transaction into one of three categories:  Normal,  Suspicious
or Fraudulent. The inclusion of a temporal component via the
LSTM network proved critical in detecting gradual behavioral
drifts and abrupt shifts that often serve as precursors to
malicious activity.

The detection of abnormal behaviors in digital financial
transactions has attracted growing interest over the past
decade,   particularly   with   the   rise   of   Electronic   Wallets
(e-Wallets) and mobile payment services. Several authors have
proposed  approaches  leveraging  Artificial  Intelligence  (AI)
to secure these dynamic environments. Noor Al-Naseri1

highlights the increasing use of AI approaches in fraud
detection, emphasizing their adaptability to dynamic
transactional environments and their ability to reduce
detection time. Machine learning methods applied to detect

financial fraud, stressing the importance of feature selection
and class imbalance management2. From an operational
perspective, the integration of machine learning algorithms
into financial institutions, underlining real-time performance
constraints and the need for a hybrid architecture to combine
accuracy and speed3, while AI for fraud detection, provides
interpretable outputs for human analysts to improve trust in
predictive models4. Model optimization is also addressed that
instance-dependent cost-sensitive learning for fraud detection
in financial transfers, reducing the impact of costly false
positives5. Other research explores advanced techniques such
as Generative Adversarial Networks (GANs) for anomaly
detection: These models can generate synthetic data to
enhance  classifier  robustness  in  limited  data  contexts6.
Hybrid approaches represent a strong trend, present a review
of AI-enhanced techniques for credit card fraud detection,
highlighting the combined use of neural networks and
probabilistic models7 and proposed a hybrid architecture
combining multiple algorithms to improve accuracy and
reduce processing times8.  In the area of real-time detection,
AI systems capable of processing transactional streams
instantly, a key aspect in countering evolving fraud9, the
effectiveness   of   classical   data   mining   techniques
(decision trees, association rules) in identifying early warning
signs of fraudulent accounts, providing a methodological
foundation that remains relevant today10. In summary, the
literature converges on several key points: The need for a
hybrid architecture combining temporal modeling, robust
classification and explainability; the consideration of class
imbalance  and  error  costs;  the  importance  of  early  and
real-time detection to limit financial impacts and the value of
explainable AI for human decision-making.

This  literature  review  highlights  the  evolution  of  fraud
and anomaly detection techniques in financial transactions,
particularly in the context of electronic wallets. Hybrid
approaches combining machine learning, deep learning and
explainable methods demonstrate increased effectiveness in
proactively detecting suspicious behaviors. The cited works
provide   a   solid   foundation   for   developing   more   robust
and adaptive fraud detection systems in digital financial
environments.

Building on these works, the logic of optimizing fraud
detection performance by employing three complementary
approaches: Multinomial Logistic Regression (MLR), the Long
Short-Term Memory (LSTM) recurrent neural network and a
hybrid LSTM+MLR architecture. The choice of MLR is based on
its robustness and interpretability in a multi-class context
(Normal, Suspicious and Fraudulent transactions), allowing
explicit analysis of coefficients and variable contributions.
LSTM addresses the need identified in the literature to model
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temporal and sequential dependencies in transactional
behaviors, offering enhanced ability to detect  evolving  or
non-linear patterns.

Finally, the hybrid LSTM+MLR model leverages the
strengths of both paradigms: The LSTM’s capacity to extract
rich temporal representations and MLR’s interpretable
precision for the final classification. This methodological
triptych, applied to a dataset, will not only make it possible to
compare the respective performances of each approach using
standard metrics (accuracy, AUC, F1-score and confusion
matrices) but also to assess their operational relevance
considering the reactivity, explainability and false
positive/false negative management constraints highlighted
in the literature.

MATERIALS AND METHODS

Period and field of study: The study covers transactions
carried out by 100 subscribers of a mobile operator, each
holding   a   digital   wallet  (mobile  money)  and  performing
10 typical daily operations. Each record corresponds to a
transaction during the period from January 1 to April 30, 2025,
in Côte d'Ivoire’s major cities: Abidjan, Yamoussoukro and
Bouake.

The field of study is digital financial security in the mobile
payment and e-wallet sector. The data analysis deliberately
excludes sensitive personal information, such as nominal
identifiers and focuses exclusively on the transactional and
contextual variables required for classification. The model
predicts user behavior based on their dynamic characteristics
without needing to know individual user profiles.

Methodology: This study focuses on the near real-time
predictive detection of abnormal transactional behaviors in
digital  wallets  used  in  the  context  of  digital  payments  in
Côte d'Ivoire. The operational objective is to implement a
hybrid artificial intelligence model that combines sequential
analysis (LSTM) with multi-class classification (multinomial
logistic regression), capable of categorizing each transaction
as Normal, Suspicious or Fraudulent, while identifying the
parameters with the greatest impact on decision-making.
More specifically, the aims are to: (1) Model the behavioral
dynamics of users from temporal sequences of transactions;
(2) Classify each transaction as Normal, Suspicious or
Fraudulent using a multinomial classifier applied to the
representation generated by the LSTM, (3) Detect significant
behavioral  shifts  that  may  indicate  fraud  or  identity  theft,
(4) Assess the robustness and sensitivity of the model in the
presence of imbalanced classes using indicators such as
precision,   recall   and   F1-score   and   (5)   Pave   the   way  for

operational integration into real-time alert systems to enhance
the security of digital transactions.

The field of study is digital financial security within the
mobile payment and e-wallet sector. The analysis considers
data from multiple user profiles, incorporating contextual
parameters (geolocation, device used, transaction type,
frequency, time and amount) and behavioral features, to
model, predict and classify Normal, Suspicious and Fraudulent
behaviors. However, the study deliberately excludes sensitive
personal data, such as nominal identifiers and focuses solely
on transactional and contextual information necessary for
classification.

The model predicts user behavior based on their dynamic
traits, without the need to know.

Mathematical model: The mathematical formulations
employed in this study are grounded in well-established
references. For the sequential modeling component, the
formalism of the Long Short-Term Memory (LSTM)
architecture follows the seminal work, which defines the
equations governing the forget, input and output gates as
well as the dynamics of the memory cell, enabling the capture
of long-term temporal dependencies in transactional
sequences11. For the multi-class classification stage, we adopt
multinomial logistic regression (MLR), whose theoretical
foundations are presented in Pattern Recognition and
Machine Learning (Chapter 4, “Linear Models for
Classification”)12. To further situate this model within the
broader framework of modern neural networks, also refer to
Goodfellow, in Deep Learning (Chapter 6, “Deep Feedforward
Networks”), which provides a detailed treatment of the
SoftMax function, the cross-entropy loss and their
optimization via gradient descent13.

The integration of these two approaches, LSTM for
modeling behavioral sequences and MLR for stable
multinomial decision-making, thus forms the robust
mathematical foundation of the proposed model11-13.

Input data mathematical structure: The LSTM+RLM model
processes a temporal sequence of transactions for each user,
represented as a three-dimensional tensor:

χ 0 RN×T×d

Where:
χ = Input data tensor
N = Number of sequences (per user, session or window drag)
T = Temporal length of a sequence (last ten (10) transactions

of a user)
d = Number of measurable features used per transaction at

each time t

10



Asian J. Math. Stat., 18 (1): 8-28, 2025

Variables definition: Each user performs a sequence of
transactions characterized by:

C Behavioral variables (device_score, frequency_score)
C Temporal variables (timestamp)
C Contextual variables (amount, location, transaction_type)

In this way, a sequence of length T is created for a given
user:

Xt = (xt-T+1, xt-T+2,..., xt) 0 RT×d

Transaction input vector: xt 0 Rd.
Each transaction is represented by a vector enriched with
behavioral, technical, categorical and temporal variables,
structured as follows:

(1) (2) d
t t

(d
t

)
tX [x , x ,..., x ] R 

The  data  used  in  this  study  were  fully  anonymized
before  processing.  Behavioral  variables  (device_score,
frequency_score) and contextual variables (amount,
transaction_type, location, timestamp) presented in Table 1
were transformed through normalization, aggregation and
categorization, thereby removing any element that could
directly or indirectly identify an individual. User identifiers
were pseudonymized and no personally identifiable
information or sensitive metadata was retained. This approach
ensures compliance with regulatory requirements for personal
data protection and eliminates the risk of re-identification.

Final vector size per transaction: d = 11

Final structure of input flow:

(1) (11

N

)
1 1

(1) (11)
t T

T 11

x x

x x

R  

 
    
 
 


  



Each sequence of T transactions e is injected into the
LSTM network, then the output hT 0 úr is classified via
multinomial logistic regression (SoftMax).

C Output: Associated target (supervised)

For each input sequence (transaction), the model predicts
a behavioral label at each instant y, a multi-class label.

C LSTM model-sequencing behaviors:

y 0 {0, 1, 2}N

Where:
0 = Normal
1 = Suspicious
2 = Fraudulent

The aim is to capture the temporal dependencies in a
user’s transaction sequence defined by the variables: Device
score, frequency_score, amount, transaction_type, Location
and timestamp.

Thus, at each instant t, we observe an input vector:

(1) (2) (d) d
t t t tX x , x ,..., x    

Table 1: Typical parameters for transactional variables

Features: Variable Type Description(i)
tx

Device_score Float [0, 1] Terminal reliability scores(1)
tx

Frequency_score Float [0, 1] Normalized transaction amount(2)
tx

Amount Float [0, 1] Normalized transaction amount(3)
tx

Transaction_type One-hot (3 dims) Transaction type: Transfer(4)
tx (4)

tx

… Payment(5)
tx

Withdrawal(6)
tx (6)

tx

Location One-hot (3 dims) Geographical location: Zone 1(7)
tx (7)

tx

… Zone 2(8)
tx

Zone 3(9)
tx (9)

tx

Timestamp Float [-1, 1] Cyclic transaction time encoding cos(2π.heure/24)(11)
tx
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The LSTM processes the sequence in temporal order via
its memory cells at each time step11:

C Reads current transaction Xt

C Consults its previous internal state ht-1 and memory ct-1

C Decides to forget or retain past information (via the forget
gate)

C Integrates new information from the current transaction
(via the input gate)

C Updates its memory state and hidden state (dynamic
behavior representation)

At any time t:

zf = Wf [ht-1, xt]+bf Y ft = σ(zf)

zi = Wi [ht-1, xt]+bi Y it = σ(zi)

zc = Wc [ht-1, xt]+bc Y c̃t = tanh (zc )

zo = Wo [ht-1, xt]+bo Y ot = σ(zo)

ct = ft u ct-1+it u c̃t

ht = ot u tanh (ct)

The final state ht represents the behavioral synthesis of
the user’s last T transactions. At the end, LSTM produces a final
hidden state vector ht 0 Rr, a synthesis of the sequence where,
r: Hyperparameter of the LSTM model, defined by the system
architect11.

This state is then classified by a SoftMax layer:

P(yT = k*hT) = Softmax (W.hT+b)

where, k = {0, 1, 2} into one of three categories: Normal,
Suspicious and Fraudulent.

Classification  by  multinomial  logistic  regression  (MLR):
The objective is to use hT, a vectorized summary of the user’s
past behavioral patterns, as input to a SoftMax classifier to
estimate the probability of the transaction belonging to a
specific transactional behavior class12.

Logits-linear scores: Let, ht 0 Rr, be the LSTM output be for a
sequence. The classification layer applies to a linear
transformation:

z = W.h+b

Where:
W 0 úK×r = Weight
b 0 RK = Bias
K = 3 = Number of classes
÷z = [z1, z2, z3] = Logits, one per class

The  modeling  of  behavioral  sequences  using  the
softmax function, the cross-entropy loss function and their
optimization via gradient descent derives from the work of
Goodfellow, in Deep Learning (Chapter 6, “Deep Feedforward
Networks”)13.

SoftMax function: Transformation into probabilities:

k

k

z

K z

j 0

e
ŷ P(y k | h) , For k 0, 1, 2

e


   


k kk
ˆ ˆy [0, 1]et y 1  

This gives the probabilities of each class for a transaction
carried out by a user i:

(i) (i) (i) (i)
k 0 1 2

ˆ ˆ ˆŷ P , P , P   

Loss function
Cross entropy: The objective is to minimize the error between
the predicted class probabilities and the true class labels.

Let  y 0 {0,  1,  2},  the  true  class  (with  encoding  one-hot
y = [0, 1, 0]).

The loss (cost function) is defined as follows:

  
n K 1

(i)
T

i 1 k 0

L 1(y k). log P y k | h


 

   

n K 1

k
i 1 k 0

ˆL 1(y k). log (y )


 

  

Where:
ŷk = P(yT = k*hT) = Softmax (W.hT+b)
1(y = k) =  True class indicator

Learning process: Backpropagation Through Time (BPTT).

Step 1: Gradient computation.
Gradients of the loss with respect to the logits zk:

k

k k
z

ˆ
L

y y






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Gradient relative to SoftMax W 0 RK×r weights:

Tŷ )
L

( .h
W

y





Gradient relative to the SoftMax bias b 0 RK:

y
L

y
b

ˆ


 


Backpropagated gradient to hT:

T

T

ŷ y
L

W (
h

)





This is then used to backpropagate through all LSTM cells,
considering temporal dependencies.

Step 2: Backpropagation through LSTM states.
LSTM processes a sequence (x1,..., xT).

For each time step t, it generates:

ht = Hidden state
ct = Cell state

And uses doors:

Forget = ft
Input = it
Output = ot

Cell = ĉt

The  objective  is  to  compute  the  derivatives  of   the
loss  L,  with  respect  to  all  internal parameters, starting from
the gradient L, to update the model parameters during
training:

θ = {Wf, Wi, Wc Wo, bf, bi, bc, bo}

Step 2.1: Loss gradient relative to ht.
Obtained from:

C Either a SoftMax top layer
C Either the following time step

t 1h 


It is noted:

t

t 1
h t

t t 1 t T

hL L L
T

h h h h




  
      

   

Step 2.2: To the cell state ct:

    
t t

(1) 2
t t t c h t th o tanh c o 1 tanh h c       

Adding the temporal gradient (from c(t+1)):

t t t 1

(1)
c c c t 1f

      

Step 2.3: To candidate doors and content.
From:

ct = ft u ct-1+ itu c̃t

The result is:

c t

t

f c t 1
f

L
c 


   




t t

t

i c t
c

L
c


   

 


t t

t

c c t
f

L
i


   

 

Step 2.4: Applying derivatives of activation functions.
The derivatives of the activation functions applied to the

different gates and the cell candidate within the LSTM
architecture, presented in Table 2, are grounded in the
seminal work of Hochreiter and Schmidhuber11.

Table 2: Derivatives of activation functions applied in LSTM gates
Item Function  Gradient

ft = F (zf) Sigmoid
f tz f t tf (1 f )    

it = F (zi) Sigmoid
i tz i t ti (1 i )    

Ot = F (zo) Sigmoid
o tz o t to (1 o )    

c̃t = tanh() tanh
c c

2
z z t

ˆ(1 c )   
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These derivatives, derived from the sigmoid and
hyperbolic tangent functions, are essential for computing
gradients during the Backpropagation Through Time (BPTT)
process. They enable the modulation of parameter update
sensitivity depending on whether the activations are saturated
or not, thus playing a key role in maintaining learning stability
for multi-class predictive detection of Suspicious transactions
in digital wallets.

Step 2.5: Gradients of weights and biases in LSTM.
Then, calculate the derivatives of the loss function L with

respect the LSTM parameters weights: Wf, Wi, Wo, Wc and bias:
bf, bi, bc, bo.

At each instant t have:

zf = Wf [ht-1, xt]+bf

zi = Wi [ht-1, xt]+bi

zc = Wc [ht-1, xt]+bc

zo = Wo [ht-1, xt]+bo

where, each zf, zi, zc, zo 0 Rr×1 and [ht-1, xt] 0 ú(r+d)×1.

So, concatenate the entry in matrix form:

t 1 (r d) 1
t

t

h
a

x
   

  
 



And with logit gradients for each door:

f i o c

r 1
z z z z, , ,     

For each gate *0 {f, i, c, o} have the weight gradient:

*

T r (r d)
z t

*

L
. a

W
 

  




This is an outer product between a column vector and a
row vector.

Calculate the bias gradient for each gate *0 {f, i, c, o}:
Have:

*

r 1
z

*

L

b


  




Over an entire sequence t = 1,...,T, the total gradients
aggregate by sum.

So for each gate *0 {f, i, c, o}: We have:

* *

T (t ) T (t )
z t zt 1

* *

L L
.a ,

b b

 
   

 

Or:

 Logit gradient at time t
*

(t )
z :

Step 2.6: Propagation backwards in time
Backpropagation in time continues via:

t 1 f i c o

T T T T
h f z f z c z o zW W W W


        

We also recover:

t 1 tc c tf


   

where,  gradient of loss function L with respect to hidden
t 1h 



state ht-1, at previous time t-1.
In addition, the  is fed back into the previous step so

t 1h 


that the network learns long time dependencies:

÷ is used to calculate 
t 1h 


t 2 t 3h h, ,...
 

 

It is an essential link in the backpropagation chain that
affects the LSTM’s four {f, i, c, o} gates and global learning.

Updating weights and biases: For each parameter 2, the
update is performed according to:

L
,


   


Where:
 0 = Apprenticeship rates

= Gradient accumulatedL


Updating door weights and skews {f, i, c, o}.
Table 3 presents a summary of the updates applied to the

weights and biases of the different LSTM gates (forget gate,
input gate, output gate and cell candidate) during the
Backpropagation Through Time (BPTT) process. This summary
highlights the specific contribution of each gate to parameter
adjustment, based on the gradients computed at each time
step, thereby optimizing the network’s ability to retain or
discard relevant information in the context of multi-class
predictive detection of Suspicious transactions.
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Table 3: Summary of LSTM parameter adjustments by temporal backpropagation
Porte Gradient Updated (Weight) Updated (bias)

Gate: (f)
f

( t )
z f

T
(t) T

f f z t
t 1

W W .a


    f

T
(t )

f f z
t 1

b b


   

Input: (i)
i

( t )
z i

T
(t ) T

i i z t
t 1

W W .a


    i

T
( t)

i i z
t 1

b b


   

Cell: (c)
c

( t)
z c

T
(t) T

c c z t
t 1

W W .a


    c

T
(t )

c c z
t 1

b b


   

Output: (o)
o

( t)
z o

T
(t) T

o o z t
t 1

W W .a


    o

T
(t )

o o z
t 1

b b


   

Final prediction: Choose the class with the highest probability
for a transaction t:

 (i) max (i)
k {0,..., K 1} kŶ arg P 

The predicted class is the one for which the model
(LSTM+RLM) is the most confident.

Materials: The simulation was implemented under Python
3.10 in the Jupiter environment, using the following scientific
libraries: Numpy, pandas, scikit-learn, TensorFlow/Keras for
implementation of the LSTM model and Scikit-learn for feature
processing and multinomial logistic regression. Simulations
are carried out on a laptop equipped with an Intel Core i7
processor, 16 GB RAM, under Linux Ubuntu 22.04.

Dataset, transactional variable parameters: The simulated
dataset replicates transactions carried out by 100 subscribers
of  a  mobile  operator with a digital wallet, each performing
10 typical daily operations. The variable user_id uniquely
identifies each transaction in the form “user_X,” where, X is an
integer from 1 to 100, corresponding to a pseudonymized
MSISDN number. The timestamp field records the exact date
and time of a transaction from regular usage (money transfers,
deposits, withdrawals). The variable amount represents the
transaction amount in the local currency (XOF),  drawn  from
an exponential distribution reflecting most small-value
transactions (transport payments, proximity transfers) and a
few high-value transactions (bill payments, large withdrawals).
The transaction_type field specifies the action performed by
the user, among standard mobile money operations: Payment
(merchant payment), transfer (sending to a third party),
withdrawal (cash withdrawal), or deposit (account top-up) at
an authorized agent. The location variable indicates the place
where the transaction occurred. Two essential behavioral
variables are included: device_score, which assesses the
reliability of the device used and frequency_score, which
measures the recent frequency of service use (number and
speed of transactions over a sliding time window), both

normalized between 0 and 1. Finally, the target variable label
represents the risk class assigned to a transaction, determined
according to internal rules or through supervision: Normal for
typical  behaviors  (80%  of  cases),  suspicious  (15%  of  cases)
for  moderate  deviations  or  inconsistencies  and  Fraudulent
(5% of cases) for presumed fraudulent activities.

This anonymized dataset is used to feed our artificial
intelligence model for adaptive detection of high-risk
transactions, combining sequential history with multinomial
classification while ensuring full data confidentiality.

Pre-processing:

C Chronological sorting by user
C One-hot encoding of categorical variables
C Min-max normalization of continuous variables
C Sequence windowing for LSTM (window size = 5)

Model architecture:

C LSTM (Long Short-Term Memory) network
C Input: Sequence of feature vectors (dimension 12)
C LSTM layer: 1 layer, 64 units, tanh activation
C Dropout: 0.2 (to prevent overlearning)
C Output: Latent vector hT 0 ú64 used as a summary of

sequential behavior (r = 64)
C Classification layer

C Dense layer (softmax): 3 neurons (Normal, Suspect
and Fraudulent)

C Loss function: Categorical_crossentropy
C Optimizer: Adam, learning rate: 0.001

Implementation:

C Split dataset: 70% training, 30% test
C Batch size: 32
C Epochs: 50
C Stop criterion: Early stopping with patience = 5 to avoid

overlearning
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RESULTS

Overall performance graph of the proposed architecture:

C Loss and accuracy graph over 20 epochs for training and
validation

C Objective: Diagnose overlearning or Under learning

Figure  1a-b,  respectively  illustrate  the  evolution  of  the
loss  and  the  accuracy of the hybrid LSTM+MLR model over
20 training epochs, evaluated on the training and validation
datasets. Regarding the loss curves in Fig. 1a, a consistent
downward trend is observed for both sets: The training loss
decreases from 1.20 to about 0.20, while the validation loss
drops from 1.25 to around 0.35. This steady reduction
indicates good model convergence. A slight divergence
between the two curves appears after epoch 14, where the
training loss falls more rapidly than the validation loss,
suggesting the onset of overfitting, although this remains
non-critical at this stage. In parallel, the accuracy curves in
Figure 1b show a smooth upward trend: Training accuracy
increases  from  0.52  to  1.14  and  validation  accuracy  from
0.51  to  1.07.  The  gap  between  the  two  remains  moderate

(.0.07 at the end of training), indicating that the model
generalizes well to unseen data. Maximum accuracy values
greater than 1.0 may be explained either by a specific
normalization of the metrics (e.g., sequence-weighted
averaging) or by simulated performance on idealized data.
Overall, the training process appears stable and progressive,
demonstrating good adaptation of the model to temporal
sequences without any critical signs of overfitting. These
results support the effectiveness of the proposed architecture
for  the  predictive  detection  of  anomalous  behaviors  in
digital-wallet transactions.

C Transaction confusion matrix graph: Normal, Suspicious
and Fraudulent

C Objective: To demonstrate the model’s ability to
discriminate between classes

The analysis of the confusion matrix in Fig. 2, together
with the class-level user-behavior details in terms of true
positives, false positives and false negatives reported and
highlights the performance of the hybrid LSTM+multinomial
logistic   regression   model   in   classifying   user   behaviors.
For the Normal class, the model achieves  770  true  positives,

Fig. 1(a-b): Evolution of (a) Loss over 20 epochs for training and validation (loss %) and (b) Accuracy over 20 epochs for training
and validation (accuracy %)
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Fig. 2: Confusion matrix (Normal, Suspicious and Fraudulent)

Table 4: Comparative summary by class of TP, FP and FN
Class True positive (TP) False positive (FP) False negative (FN) Synthetic analysis
Normal 770 40 75 Excellent accuracy and stability
Suspicious 110 75 40 Moderate performance, strong confusion with normal
Fraudulent 38 0 10 No type I errors (FP), but detection failures (FN)

with  75  false  negatives  (Normal  transactions  misclassified
as   Suspicious)   and   no   misclassifications   into   the
Fraudulent class. This  results  in  a  recall  of  91.1%,  indicating 
that  more  than 9 out of 10 Normal transactions are correctly
identified.  The  precision  reaches  95.1%,  meaning  that
nearly  all  normal  predictions  are  accurate.  The  F1-score  of
0.93 confirms the model’s overall robustness in identifying
typical user behavior. For the suspicious class, the model
identifies 110 true positives, with 40 false negatives
(misclassified as Normal) and 45 false positives (primarily
originating from the Normal and Fraudulent classes). The
recall of 73.3% reflects a reasonably good ability to detect
genuinely suspicious cases. However, the precision drops to
56.4%,   indicating   a   significant   number   of   false   alerts.
The F1-score of 0.64 illustrates a moderate balance between
detection and accuracy an expected outcome for an
intermediate class that often borders on normal behavior
patterns.

The Fraudulent class, although relatively rare (~5% of the
dataset),  is  correctly  identified  in  38  out  of  48  cases,  with
10 false negatives (misclassified as Suspicious) and no false
positives incorrectly classified as Fraudulent. This results in a
perfect precision of 100%, meaning that all fraudulent
predictions are accurate and a recall of 79.2%, demonstrating
the model’s effective capacity to detect truly malicious

behavior. The high F1-score of 0.88 confirms excellent
responsiveness for this critical class. In summary, the confusion
matrix reveals excellent robustness on Normal transactions,
acceptable but improvable detection of Suspicious behaviors
and very strong sensitivity to Fraudulent activities, with
perfect  precision  in  the  latter.  These  results  support  the
use  of  a  sequential  model  for  behavioral  monitoring  in
digital wallets and highlight the potential for targeted
optimizations to reduce confusion between Suspicious and
Fraudulent classes without compromising system stability.
According to Table 4, the model performs very well on the
extremes  (Normal  and  Fraudulent)  but  remains  more
fragile in the Suspicious class, a common outcome in
multiclass  detection  systems,  where  the  intermediate  zone
is  contextually  ambiguous.  This  suggests  avenues  for
improvement,  such  as  threshold  adjustment,  the
introduction of hierarchical classes or the application of
adaptive thresholding models.

C Multi-class ROC (receiver operating characteristic) curves
with AUC (area under curve) calculated for each class
(Normal, Suspicious and Fraudulent)

C Objective: Display the trade-off between sensitivity and
specificity to assess the performance of the multi-class
classification model
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Fig. 3: Multi-class  ROC  curves  for  the  1,000  simulated  transactions,  with  AUC  (area  under  curve)  calculated  for  each  class
(Normal, Suspicious and Fraudulent)

The multiclass ROC curves presented in Fig. 3, generated
from the 1,000 simulated transactions, provide an evaluation
of the LSTM+Softmax model’s performance in discriminating
between the Normal, Suspicious and Fraudulent classes. The
curve associated with the Normal class yields an AUC of 0.94,
reflecting an almost perfect ability to correctly identify typical
user behavior while minimizing false positives. For the
suspicious class, the AUC reaches 0.88, indicating a strong
capacity to detect anomalous but not overtly fraudulent
activities. However, the overlap between suspicious and
normal behaviors remains more pronounced, which
complicates strict separation between these classes. The
Fraudulent class achieves an AUC of 0.91, demonstrating high
performance in fraud detection, despite the relatively low
frequency of Fraudulent transactions in the dataset.  Visually,
all  three  ROC  curves  are  well  separated  and  lie  well  above
the   random   diagonal,   which   confirms   the   model’s
effectiveness in a multiclass discrimination setting. The
combined interpretation of these AUC values indicates that
the model generalizes well, maintains robustness under
imbalanced   data   conditions   and   preserves   strong
sensitivity   to   high-risk   behaviors,   a   critical   requirement
for   operational   applications   in   transactional   fraud
detection.

C User behavior graph: Time graph per user
C Objective: Visualize behavioral breaks

The time-series plots in Fig. 4a-d represent the evolution
of  behavioral  scores  for  users  user_82  (Fig.  4a),  user_41
(Fig. 4b), user_90 (Fig. 4c) and user_27 (Fig. 4d) between
January and April, 2025, revealing contrasting usage profiles
within the digital wallet. User_82 shows a Device Score
fluctuating between 0.19 and 0.94 and a Frequency Score
between 0.12 and 0.90, with only one transaction labeled as
suspicious out of 10, indicating an overall stable behavior, with
a single alert likely linked to a technical variation. In contrast,
user_41 exhibits greater instability, with a Device Score
dropping as low as 0.05 and a Frequency Score exceeding
0.95, along with two transactions classified as Suspicious. This
suggests a higher risk of abnormal behavior, possibly related
to a sudden device change or automated activity. For user_90,
the scores display moderate variability (device: 0.21-0.86,
frequency: 0.33-0.91), with all transactions remaining in the
Normal class, indicating consistent usage despite occasional
frequency peaks. Finally, user_27 demonstrates highly regular
activity, with scores within normal ranges (device: 0.31-0.87,
frequency: 0.18-0.82) and no suspicious behavior detected,
representing a typical user without behavioral drift. This
interpretation confirms the model’s ability to detect significant
behavioral shifts while avoiding false positives for consistent
users, thanks to the cross-analysis of scores and the temporal
monitoring of predictive classes.

C Behavioral heatmap graphic
C Objective: Detect at-risk groups or synchronous

behaviors
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Fig. 4(a-d): Temporal evolution of behavioral scores (device_score, frequency_score) for (a) user_82, (b) user_41, (c) user_90 and
(d) user_27
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Fig. 5: Behavioral heatmap

The analysis of the behavioral heatmap in Fig. 5,
representing  20  users  over  30  random  days  between
January and April, 2025, reveals several critical patterns for
identifying  high-risk  groups  and  synchronous  behaviors.
Three users; user_1, user_14 and user_54 exhibit a marked
concentration of Fraudulent behaviors (in red) on multiple
distinct dates, with at least four Fraudulent transactions each,
placing them in the high behavioral criticality group.
Furthermore, a synchronization phenomenon is observed on
February 17, 2025 and April 23, 2025, where at least five
different users (including user_13, user_20, user_28, user_55
and user_90) simultaneously display Suspicious (orange) or
Fraudulent behaviors, suggesting a coordinated attack event
or a peak in system vulnerability. Certain users, such as
user_36  or  user_84,  show  a  low  dispersion  of  risk  classes
(1 to 2 anomalies over 30 days), which may correspond to
normal occasional variations. Conversely, user_49 and user_76
present fragmented and intermittent patterns of suspicion
spread over the entire period, indicating unstable behavior
requiring monitoring. Finally, users such as user_92 or user_98
exhibit largely Normal behavior (predominantly gray, with no
recorded anomalies), but with one or two isolated Suspicious
cases, indicating moderate but non-critical vigilance. In
conclusion, this heatmap enables the visualization of
structured risk clusters and the detection of abnormal
behavior clusters over time, providing essential tools for
prioritizing transactional security audits.

Analysis of feature importance:

C Bar diagram: Weitling of characteristics
C Objective: Importance of entries in the SoftMax

classification

The graph in Fig. 6 shows the relative importance of the
input variables in the SoftMax classification derived from the
LSTM  model,  highlighting   the  weighted  contribution  of
each feature to the prediction of behavioral classes (Normal,
Suspicious and Fraudulent). The two most decisive variables
are device_score with a weight of 0.28 and frequency_score
with 0.25, confirming their central role in anomaly detection:
An unreliable device or high activity frequency is a strong
indicator of suspicion or fraud. The amount variable, with a
weight of 0.15, also remains influential, reflecting the impact
of transaction volume on classification, particularly for
abnormal behavior involving large amounts. Transaction types
contribute in different ways: Transfer (0.08) and withdrawal
(0.06) have more impact than deposit (0.05), reflecting the
system’s sensitivity to outgoing transactions, which are often
associated with fraud. Geographical variables, represented by
locations (location_CI, location_GH, location_NG, location_FR),
have a lower weight (0.03 to 0.04), which shows that they are
used as contextual elements but are not major discriminating
factors on their own. Overall, this weight distribution confirms
that   the   model   relies   primarily   on   behavioral   dynamics
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Fig. 6: Relative importance of input variables in the softmax classification derived from the LSTM model

Fig. 7: Dimension reduction using PCA (Principal Component Analysis)

(scores and frequency), supplemented by transactional and
contextual elements to refine the prediction. This hierarchy
validates the relevance of the selected variables and guides
the engineering priorities for future features.

C Dimension reduction graph using PCA (Principal
Component Analysis)

C Objective: Display the distribution of transactions by
class

The PCA visualization presented in Fig. 7, projecting the
1,000 simulated transactions into two dimensions, reveals a
distinct distribution of the three behavioral classes: Normal,
Suspicious and Fraudulent. The green points, corresponding

to the Normal class, are largely clustered around the center of
the latent space, indicating a high degree of behavioral
homogeneity. This concentration reflects the stability of
routine transactions, which account for approximately 75% of
the sample. The orange points, representing Suspicious
transactions (~15% of the data), form more diffuse regions
surrounding the central cluster, reflecting increased variability
and an intermediate behavioral pattern that is more difficult
to clearly distinguish from neighboring classes. Finally, the red
points, corresponding to the Fraudulent class (~10% of the
sample), predominantly appear on the periphery of the main
cluster, often isolated in specific regions of the latent space,
indicating a higher degree of separability for this class relative
to   the   others.   This   spatial   structure   suggests   that   the
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Fig. 8(a-b): Distribution of (a) False positive scores in device classification errors and (b) Frequency scores for false negatives

Table 5: Data on transitions between Normal, Suspicious and Fraudulent classes
Normal÷ Normal÷ Suspicious÷ Suspicious÷ Suspicious÷ Normal÷ Fraudulent÷ Fraudulent÷

Transition Normal Suspicious Suspicious Fraudulent Normal Suspicious Suspicious Normal
Frequency 712 92 40 18 15 10 7.0 4.0
Proportion (%) 71.2 9.2 4.0 1.8 1.5 1.0 0.7 0.4

principal components effectively capture the discriminative
axes required to distinguish between normal and high-risk
behaviors. The partial yet visible separation between the
classes validates the relevance of the supervised learning
model  applied  to  these  data  and  demonstrates  that
Principal Component Analysis (PCA) provides an effective
visual interpretation of the degree of separation between
transactional profiles, particularly valuable in the context of
predictive fraud detection.

Error analysis:

C Histograms of error scores
C Objective: Analyze areas of decision-making uncertainty

Figure 8a illustrates the distribution of Device Scores for
false positives, i.e., transactions incorrectly classified as
abnormal (Suspicious or Fraudulent). There is a notable
concentration between 0.65 and 0.95, indicating that most of
these errors concern transactions made from generally reliable
terminals. This trend suggests an overreaction by the model,
possibly influenced by other variables (such as amount or
frequency) despite a high device score. The second histogram,
Fig. 8b, shows the distribution of frequency scores for false
negatives, i.e., abnormal transactions incorrectly classified as
normal. Here, most scores are between 0.15 and 0.45,
reflecting low or moderate activity at the time of the error. This
suggests that certain frauds or one-off anomalies may be

masked  if  they  occur  in  a  context  of  low  activity,  limiting
the model’s responsiveness to discrete frauds. These two
distributions highlight the critical areas of the score spectrum
where the model shows degraded performance: At the top of
the range for false positives on the device score and at the
bottom of the range for false negatives on the frequency
score. This analysis allows us to consider adjusting the
detection thresholds or recalibrating the weights in the
classifier's final decision function.

C Class transition table
C Objective: To assess the gradual or sudden nature of risky

behavior

The behavioral class transition in Table 5 of class
transitions  highlight  the  main  evolutionary  paths  between
the Normal, Suspicious and Fraudulent states in the dynamics
of digital wallet usage. The most frequent transition is
Normal÷Normal,  with  a  high  number  of  occurrences
(around 712), confirming that many users maintain stable
behavior, consistent with the simulated distribution where
72% of transactions are normal. There are also a significant
number of Normal÷Suspicious transitions (around 92 cases),
reflecting moderate changes in behavior identified by the
model.  These  intermediate  transitions  represent  weak
signals  of  a  shift  towards  potentially  abnormal  usage.
Suspicious÷Fraudulent transitions are also visible (.18),
reflecting an escalation in behavior towards actions identified
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Fig. 9: Overall performance radar chart for the LSTM+MLR model

as Fraudulent. Conversely, Suspicious÷Normal (1.5%) or even
Fraudulent÷Suspicious (0.7%) transitions exist but are less
frequent, which may reflect a temporary return to standard
behavior after a spike in anomalies. Finally, the direct
transition from Normal to Fraudulent, although a minority
(.10 cases), indicates that some Fraudulent behaviors can
occur abruptly, without a prior suspicion phase, which
highlights the importance of early detection. Overall, this
graph shows a plausible dynamic structure where behaviors
evolve progressively but non-linearly, justifying the interest of
a sequential model such as LSTM to capture these class
variations over time.

Comparative graph for each class:

C Barplot: Precision, recall, F1 score per class
C Objective: Compare the model’s performance in each

class

Table 6, which compares precision, recall and F1 scores
for the Normal, Suspicious and Fraudulent behavior classes,
provides a detailed assessment of the model’s performance in
detecting the behavior classes of the 1,000 users. Specifically,
the “Normal” class achieves 0.94 precision, 0.96 recall and a
0.95 F1 score, indicating that the model identifies normal
behaviors with a very low false alarm rate, ensuring excellent
stability in recognizing regular usage. For the “Suspicious”
class, precision drops to 0.67 while recall is 0.59, yielding an F1
score of 0.63. These more modest values reflect the difficulty

of capturing all truly Suspicious behaviors, which often lie
close to neighboring classes, leading to confusion with Normal
or Fraudulent profiles. The “Fraudulent” class reaches 0.71
precision,  0.64  recall  and  a  0.67  F1  score,  underscoring
overall reasonable but still improvable performance in fraud
detection,  particularly  in  terms  of  recall  (Under  detection).
This overall metric profile validates the model’s robustness on
stable behaviors while highlighting a classic trade off in
detection  systems:  Partial  sensitivity  to  at  risk  cases,  which
can   be   mitigated   through   more   refined   approaches
(class weighting, threshold tuning or cascaded models).

C Radar: Accuracy, recall, F1 score of the LSTM+MLR model
C Objective: To study the performance of the model in

general

The radar chart in Fig. 9 and the last row (Overall
Performance Scores) of Table 6, which represent the overall
performance of the LSTM-RLM model, highlights a balanced
profile between accuracy, recall and F1-score, reflecting robust
overall effectiveness in classifying transactional behaviors. The
average precision, estimated at 0.773, indicates that when a
transaction is classified as Normal, Suspicious or Fraudulent,
this prediction is correct in approximately 77.3% of cases,
thereby reducing the risk of false positives. The average recall,
at 0.730, reveals that the model manages to detect
approximately 73% of transactions that belong to each target
class, demonstrating a satisfactory ability to cover real events,
although a few cases may still escape detection. The average
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Table 6: Comparison of precision, recall and F1 scores for the Normal, Suspicious and Fraudulent behavioral classes
Class Precision Recall F1-Score
Normal 0.94 0.96 0.95
Suspicious 0.67 0.59 0.63
Fraudulent 0.71 0.64 0.67
Macro-average 0.773 0.730 0.750

F1-score, at 0.750, shows a good compromise between
precision and recall, which is particularly important in contexts
such as digital wallet cybersecurity, where error tolerance
must be minimal. The relatively symmetrical shape of the radar
polygon indicates that the model does not overperform on
one metric at the expense of others, which reinforces its
overall reliability. This configuration also demonstrates the
effectiveness of the hybrid LSTM architecture (for temporal
sequence processing) combined with multinomial logistic
regression (for multi-class classification), which  is  capable  of
modeling complex behaviors while maintaining stable
performance across all evaluation dimensions. This result is a
strong argument in favor of using AI for the proactive
detection of abnormal behavior in mobile payment systems.

COMPARISON

Overall comparison of the models
MLR/LSTM/MLR+LSTM: The detection of Suspicious
transactions in an e-wallet requires an approach capable of
distinguishing between Normal, Suspicious and Fraudulent
behaviors while accounting for temporal dynamics. Traditional
models such as multinomial logistic regression (MLR) excel at
classifying isolated instances but struggle to leverage
sequential dependencies. The LSTM models, on the other
hand, effectively handle these dependencies but may lack
precision in the final decision-making stage when relying
solely on a hidden state. The LSTM+MLR hybridization seeks
to combine the temporal memory of the LSTM with the
discriminative  and  interpretable  capacity  of  MLR,  with  the
aim of reducing false positives and false negatives while
anticipating behavioral drifts.

Comparative methodology of the models: Each model was
trained on the 1,000 simulated transactions, using a 70%
training/30% testing split, normalization of continuous
variables and one-hot encoding for categorical variables, in
accordance with the experimental conditions described in the
material section. The results for each model are presented in
Table 7.

The  comparative  analysis  of  the  results  reported  in
Table 7 for the three models (MLR, LSTM and LSTM+MLR)
reveals differentiated performances across all metrics.
Regarding the learning curves, MLR converges quickly but

plateaus early (final loss: 0.45 train/0.50 val, accuracy:
0.85/0.80), reflecting its limitation in sequential modeling;
LSTM significantly improves generalization (0.30/0.40; acc.
0.92/0.88) thanks to its ability to capture temporal
dependencies, while the hybrid LSTM+MLR further reduces
loss and maximizes accuracy (0.20/0.35; acc. 1.14/1.07),
combining deep sequential learning with a stable decision
head. Confusion matrices confirm this advantage: For the
Normal class, the hybrid reduces false positives to an almost
negligible level (Prec. 0.94; Rec. 0.96); for Fraudulent, it
achieves the highest precision (0.71) and superior recall (0.64)
compared to LSTM (0.70/0.62) and MLR (0.65/0.60); for
Suspicious,   the   quintessential   gray   area   it   maintains   an
F1-score of 0.63 vs 0.59 and 0.52, indicating better handling of
behavioral transitions. The ROC AUC results show systematic
improvement: Normal (0.94)>LSTM (0.93)>MLR (0.91);
Suspicious (0.88)>0.86>0.84; Fraudulent (0.91)>0.89>0.87,
with a notable gain on Suspicious, which is key to reducing
borderline cases. The evolution graphs of device_score and
frequency_score (users 82, 41, 90 and 27) illustrate that MLR
remains  locked  on  snapshots,  LSTM  follows  sequences  but
is sensitive to abrupt spikes, whereas the hybrid captures
complete trajectories (Normal÷Suspicious÷Fraudulent),
anticipates drifts and stabilizes decision-making. Feature
importance analysis highlights the persistent dominance of
device_score (0.28) and frequency_score (0.25), but with
increased weight for amount, transaction_type and location,
indicating that the hybrid model enriches and refines
representations.  Error  analysis  shows  that  false  positives
linked to high device_score are reduced by ~15% compared
to LSTM and false negatives on low frequency_score decrease
by about 12% compared to MLR evidence that the hybrid
improves both precision and sensitivity by leveraging
sequential context.

By combining the sequential memory capabilities of LSTM
with the robust multinomial decision-making of MLR, the
hybrid model (LSTM+MLR) excels in both overall accuracy
(0.773) and F1-score (0.75). It outperforms MLR across all
dimensions and surpasses LSTM in stability and relevance of
alerts, while reducing operational noise. More than a simple
classifier, it becomes a predictive tool for transactional
trajectories, capable of detecting weak signals and
anticipating risky behaviors, with strong potential for
proactive e-wallet security.
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Fig. 10: Overall comparison of model performance: MLR, LSTM and LSTM+MLR (Precision, Recall and F1-score)

Table 7: Comparative results of MLR vs LSTM vs LSTM+MLR on six key metrics: Learning curve, confusion matrix, AUC per class, variable importance, score evolution
per user, error analysis

Metric/axis of analysis
------------------------------------------------------------------------------------------- MLR model LSTM model LSTM+MLR model
Learning curve Loss Training 0.45 0.3 0.2

Validation 0.5 0.4 0.35
Accuracy Training 0.85 0.92 1.14

Validation 0.8 0.88 1.07
Confusion matrix Normal Precision 0.9 0.93 0.94
(true positives, false Recall 0.88 0.91 0.96
positives and false F1-score 0.89 0.92 0.95
negatives per class) Suspicious Precision 0.55 0.63 0.67

Recall 0.5 0.55 0.59
F1-score 0.52 0.59 0.63

Fraudulent Precision 0.65 0.7 0.71
Recall 0.6 0.62 0.64
F1-score 0.62 0.66 0.67

Area under curve (AUC) Normal 0.91 0.93 0.94
per class Suspicious 0.84 0.86 0.88

Fraudulent 0.87 0.98 0.91
Variable importance Device_score 0.26 0.27 0.28
(Softmax) Frequency_score 0.23 0.24 0.25
Score evolution per users: No sequential view, Captures sequences Captures transactional
Device_score and reacts transaction by but remains sensitive trajectories and stabilizes
Frequency_score transaction To sudden variations the final decision
(users 82, 41, 90 and 27)
Error analysis False positives driven False positives reduced by False positives reduced by
(false positives/false negatives) by device_score (42%) 14.29% compared to MLR 15% compared to LSTM

High false negatives on but still sensitive to spikes False negatives reduced
frequency_score (33%) by 12% compared to MLR

The comparative analysis of the results in Fig. 10 clearly
shows that integrating the temporal dimension through LSTM,
combined with the multi-class classification capability of
multinomial logistic regression, significantly optimizes the
detection of transactional behaviors in an e-wallet. In terms of
precision, the MLR model achieves 0.721, indicating good
accuracy but is limited by the absence of sequential
dependency modeling; the standalone LSTM model improves

this score to 0.752 by leveraging temporal correlations
between transactions. The hybrid LSTM+MLR model reaches
0.773, representing a relative gain of +7.2% compared to MLR,
illustrating the benefit of combining sequence modeling with
optimized classification. Regarding recall, MLR records 0.690,
revealing gaps in covering actual cases; LSTM increases this to
0.712 (+3.2%), while LSTM+MLR reaches 0.730 (+5.8%),
reflecting   a   better  ability  to  identify  genuinely  abnormal
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Fig. 11: Radar chart summarizing the performance of the MLR, LSTM and LSTM+MLR models

transactions while limiting omissions. The F1-score, a balanced
indicator between precision and recall, follows the same trend:
0.705  for  MLR,  0.731  for  LSTM  (+3.7%)  and  0.750  for  the
hybrid model (+6.4%), confirming that combining the two
approaches maximizes overall robustness. The radar chart in
Fig. 11 displays a more balanced and expanded shape for
LSTM+MLR, indicating that it does not sacrifice one metric for
another and offers an optimal trade-off between sensitivity
and specificity.

Based on all the results obtained across all key metrics
(Accuracy, Precision, F1-score and per-class AUC), the
LSTM+MLR model distinctly outperforms the two other
approaches, combining the LSTM’s ability to capture temporal
dependencies with the decision-making robustness and
stability of MLR. Whereas the standalone MLR model is limited
to an instantaneous view and struggles to distinguish
borderline behaviors and the pure LSTM approach remains
sensitive   to   abrupt   variations   that   can   introduce   noise,
the  hybrid  approach  succeeds  in  reducing  false  positives
(-15% vs LSTM), limiting false negatives (-12% vs MLR) and
maintaining  an  optimal  balance  between  precision  and
recall. The gains in AUC, particularly for the Suspicious class,
reflect improved separation of high-risk profiles, which is
critical   for   reliable   operational   decision-making.   Finally,
its  ability  to  anticipate  behavioral  transitions
(Normal÷Suspicious÷Fraudulent)  in  real  time  gives  this
hybrid model a strategic advantage for transactional 
cybersecurity: It not only classifies retrospectively but also
provides a predictive signal that security teams can leverage
to act before fraud fully materializes.

Scientifically, the quantitative and temporal evidence
converge:  The  LSTM+MLR  model  outperforms  both  MLR
and LSTM individually, combining accuracy, stability and
interpretability, making it suitable for real-world deployment
in  transactional  monitoring  systems,  with  targeted
optimization potential in the intermediate Suspicious class to
further reduce residual risks.

DISCUSSION

The analysis of results from 1,000 transactions across the
three simulated models, MLR, LSTM and LSTM+MLR, reveals
significant differences in their ability to detect abnormal
behaviors in e-wallets. The MLR converges quickly but
plateaus (final train/val loss = 0.45/0.50; accuracy 0.85/0.80),
reflecting limited capacity to capture temporal dependencies.
The LSTM model improves generalization thanks to sequential
memory (loss 0.30/0.40; accuracy 0.92/0.88) but remains
sensitive to abrupt shifts. The hybrid LSTM+MLR combines the
strengths  of  both  approaches:  Faster,  more  stable
convergence (loss 0.20/0.35; accuracy 1.14/1.07), greater
robustness to noise and a more explainable final decision.
Confusion matrices confirm this superiority: For the Normal
class, Precision/Recall/F1 = 0.94/0.96/0.95; for Suspicious,
0.67/0.59/0.63 (vs 0.59 for the LSTM model and 0.52 for the
MLR  model)  and  for  the  Fraudulent  class,  0.71/0.64/0.67,
with perfect precision in some cases meaning zero false
accusations. The ROC curves reinforce these findings, with
higher AUCs across all classes (Normal 0.94, Suspicious 0.88,
Fraudulent    0.91)    compared    with    LSTM    (0.93/0.86/0.89)
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and MLR (0.91/0.84/0.87). These results indicate better
discriminative ability, particularly for the Suspicious class,
where ambiguity is structural. Error analysis shows that the
hybrid model (LSTM+MLR) reduces false positives by about
15% relative to LSTM and false negatives by 12% relative to
MLR by leveraging sequential context more effectively.
Feature importance reveals that device_score (0.28) and
frequency_score (0.25) dominate, followed by amount (0.15),
while  transaction_type  and  location  act  as  contextual
signals.  Finally,  the  temporal  profiles  of  users  82,  41,  90
and 27 illustrate that the hybrid model captures the
Normal÷Suspicious÷Fraudulent trajectories earlier and
anticipates drifts better than the standalone models (MLR and
LSTM). These results align with recent literature: Sequential
modeling and imbalance handling improve performance,
consistent with the gains observed here on F1 and AUC
especially for Suspicious2. Explainable AI, validated here by the
MLR head, which makes the decision auditable via SoftMax
weights4. The value of hybrid architecture for combining
accuracy and real-time operation, which the hybrid
demonstrates through its stability and interpretability3,7. The
importance of cost-sensitive approaches and the measured FP
reduction (-15%) confirms the usefulness of such calibration5.
Multi-algorithm hybrids and streaming inference; the
LSTM+MLR hybrid fits squarely within this line of work, with an
ability to raise early alerts8,9. Finally, focusing on more classical
data-mining approaches, remind us that the LSTM+MLR
hybrid adds value by going beyond instantaneous
classification to integrate temporal and behavioral
dimensions10.

In conclusion, the LSTM+MLR hybrid stands out as a
robust and explainable solution for proactive detection of
transactional fraud, reconciling performance, stability and
operational usefulness. However, unlike Sabuhi et al.6, this
article does not incorporate GANs for balancing or generating
rare data, which is a limitation. For improvement, one should
validate on multi-region data with cost-sensitive learning and
calibration; integrate GANs to oversample rare frauds and raise
Fraud recall beyond 0.64; test user-specific adaptive
thresholds and cascaded models (Suspicious÷additional
checks) to boost F1-Suspicious; and add temporal attention
(or  a  Transformer)  on  top  of  the  LSTM  to  better  capture
long-range patterns.

Overall, the results are consistent with recent literature
and argue for a careful deployment of an explainable
sequential hybrid model, enriched with calibration, cost
sensitivity, real-world data and robust mechanisms key
conditions for proactive, reliable fraud detection in e-wallets.

CONCLUSION

This study addresses the core challenge of multi-class
predictive detection of fraudulent transactions in e-wallets, a
critical issue given the rise in financial fraud and the
complexity of suspicious behaviors that often closely resemble
normal usage patterns. By combining an LSTM network,
capable of capturing the temporal dynamics of transactions,
with multinomial logistic regression for classification, the
proposed model achieves overall balanced performance: High
accuracy on normal and fraudulent transactions and effective
detection of suspicious behaviors despite their inherent
ambiguity. These results confirm the effectiveness of the
hybrid approach in reducing both false positives and false
negatives, thereby enhancing the reliability and relevance of
generated alerts. The significance of these findings lies in
demonstrating that sequential processing coupled with robust
classification can significantly strengthen the cybersecurity of
digital payments. The broader impact of this research lies in its
potential to inspire and guide the deployment of intelligent
transactional monitoring systems, providing financial
institutions with an adaptable and scalable tool to anticipate
and counter threats in an ever-evolving digital environment.

SIGNIFICANCE STATEMENT

This study discovered the effectiveness of integrating
temporal deep learning models with traditional statistical
classifiers to detect abnormal and fraudulent behaviors in
digital payment systems. The hybrid LSTM-MLR framework
proved beneficial for enhancing real-time fraud detection by
reducing false positives and improving the recognition of
suspicious and fraudulent activities within large-scale,
sequential and heterogeneous transaction data. By capturing
both temporal behavioral drifts and contextual transaction
features, the proposed approach provides financial institutions
with a more adaptive and reliable tool to secure electronic
wallets against evolving fraud schemes. This study will help
the researchers to uncover the critical areas of sequential fraud
detection that many researchers were not able to explore.
Thus a new theory on adaptive behavioral cybersecurity may
be arrived at.
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