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Abstract
Temperature has major influence in insect development and outbreak. At present, the common method of collecting temperature
information mainly relies on ground weather stations. However, this method is unfeasible for a large-scale area as weather stations
distributions are sparse. This, however, can be compensated by the temperature measured through remote sensing satellites known as
Land Surface Temperature (LST). Hence, this paper reviews the advantages and disadvantages of Thermal Infrared (TIR) and Microwave
(MW) sensors for the acquisition of LST. This review will focus on the availability, suitability and adaptability of those sensors in providing
LST for insect pest monitoring with the comparison being concentrated on their spatial and temporal characteristics, along with their
accuracies.
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INTRODUCTION

Pests remain as a constant risk in agricultural production
because they can infest crops and cause substantial monetary
losses to industry. In Malaysia, major insect pests responsible
for damage in oil palms are bagworms, Metisa  plana,  Pteroma
pendula and Mahasena corbetti (Lepidoptera: Psychidae),
nettle caterpillars, Darna trima (Lepidoptera: Limacodidae) and
rhinoceros  beetle,  Oryctes  rhinoceros  (L.)  (Coleoptera:
Scaeabaeidae).  A  severe  infestation  of  bagworms  could
destroy 33-50% of the yield1-4, while a high abundance of
nettle caterpillars and rhinoceros beetles were shown to
significantly reduce yield by about 25-30%5,6 for over the next
two years of infestation. Reports on the economic damage and
losses caused by these pests are still limited5-7. In the example
of bagworms, which is the most economically important
insect pest of oil palm4, it is estimated that 10% of the
damages could cause a loss of approximately USD 2,032 haG1.
This  would  eventually  cause  a  loss  of  USD  2.62  billion  for
2 consecutive years.

With the development of various pest control techniques,
such as cultural, mechanical, biological, genetic and chemical
control, pesticides became the primary means of solving the
problem of having pests in agriculture production. Effective
pest management are usually associated with the use of
chemical pesticide as important tool to contribute to high
farm yield8. However, these control methods for pests are not
very satisfactory due to local health hazards, pesticides
residues to consumers, build-up of resistance of pest and
contamination of the environment9. It also contributed to the
decreasing of natural enemie’s population10. Simultaneously,
precise and efficient pest early warning technology combined
with communication  technology  and  cloud  computing  for
agriculture sector is still in the research and development
stage. The key to this strategy is to detect pests as early as
possible and take scientific prevention immediately. However,
the construction of the pest outbreak forecasting system is
relatively complex, owing to a large number of site-specific
data variables, such as physical landscape, nutrients and
organisms11 and climatic driving variables for instance, the
change in solar intensity that could account for the magnitude
and distribution pattern of altered mean temperature and
precipitation globally. 

At present, the method of gathering information
regarding  diseases  and  insect  pests  mainly  relies  on
periodical manual field surveys, sampling and analysis12,11 as
well as meteorological data13-15. Unfortunately, the traditional
ground-based survey method is inefficient, as well as time and
labour intensive, which often requires specialist knowledge in

addition to being unfeasible for a large-scale area16,17,11.
Meteorological data, however, were used to forecast pest
outbreaks based on knowledge of the biology and ecology of
the pests. For example, a high temperature allows insects
pests to breed continuously and develop faster18, therefore,
this knowledge was used in developing a forecasted warning
of pest’s infestation. In the temperate region, when the
overwintering eggs of Tipula  pagana  hatch or their first
adults emerge from the overwintering, pupae is basically an
emergence warning19-21. Moreover, in the tropical region, the
insect pest warnings for Helicoverpa  armigera  are usually the
first occurrence of a pest attack in the crops or the first
invasion of migratory pests from adjoining areas22-24. 

Herbivorous insects are difficult pests to control due to
their high fecundity and short lifecycles, in addition to their
capability to destroy about 20% of the global crop production
each year25. Generally, insect abundance and distributions are
regulated by several biotic factors, such as natural enemies
and beneficial plants and abiotic factors, such as wind,
temperature, sunshine, humidity and rainfall26. Often, the
interactions between these factors in the environment are
interrelated. Among the abiotic factors, temperature is the key
factor explaining abundance and distributions of insects27-29.
Previous studies have shown that temperature influences the
rate of growth, survival, reproduction, density and dispersal of
insects30-32. According to Bale et al.33, the effects of
temperature are likely to be more significant than any other
factors for insect species to establish a viable population.

Ibrahim et al.34 demonstrated that the effects of
temperature on the development and survival of bagworm
species conformed to the insect’s trend to increasing
temperatures until the optimum was reached35,36. The
optimum  temperature for the development and survival for
Pteroma pendula  is in the range of 25-30EC whereas for 
Metisa plana, the optimum temperature is slightly higher,
which is around 30-35EC.  Furthermore,  at  their  respective 
optimum temperature ranges, both Pteroma pendula  and
Metisa plana  have a relatively high percentage of eggs to
adults. According to Aneni et al.37, a dry season with higher
seasonal temperature recorded a greater abundance of leaf
miners, such as Coelaenomenoder  aelaeidis  and predatory
ants in oil palm plantations. These indicated that the oil palm
ecosystem was prone to insect pest attacks as a result of the
increasing temperature.

In contrast, some studies show negative correlation
between temperature and insect pests’ abundance38-40.
Marchioro and Foerster41 found that the abundance of
diamondback moth, Plutella  xylostella  in Southern Brazil was
not influenced by temperature variation  and  was  tolerant  to
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a wide range of temperatures. In response to temperature, the
insect pests  of  mung beans thrips (Thrips tabaci)  was
observed to have a negative and significant correlation
(p<0.05) with temperature42-44. Furthermore, the aphid
population dynamics of Lipaphis erysimi  on Indian mustard
and oil seed Brassicas with temperature were found to be
negatively  correlated.  These  showed  that  temperature  as
the factor influencing insect development and growth may
vary due to different insect thermal requirements and
development. The understanding of this factor is crucial in
order to understand the changes in insect population
densities because they do not stay constant for long. 

The advancement in geospatial technology, which
comprises of remote sensing, Geographic Information System
(GIS) and Global Positioning System (GPS) have previously
benefited agricultural communities through applications of
crop nutrient and pest and disease status monitoring45-48. The
presence of remote sensing tools offers rapid, harmless and
cost-effective means to obtain necessary information on the
triggering factor of pest outbreaks, such as temperature,
relative humidity and their natural enemies. Early detection via
geospatial technology potentially (i) Reduces labour time and
cost, (ii) Limits environmental pollution and (iii) Improves
precision farming by controlling pests before they spread49.
Large area crops could be synchronously monitored with the
help of remote sensing technology.

Remote sensing provides a possible solution to the
traditional  methods  of  intensive  sampling  and  can
significantly provide timely and accurate information for pest
monitoring50,51. Previously conducted researches depicted that
the presence of pests, such as aphids, whiteflies, as well as
thrips in greenhouses and field crops could be detected using
different image processing techniques based on cognitive
vision system52, image and video processing algorithms53-55,
binocular stereo56, acoustic sensor57 and back propagation
neural network58. Furthermore, remote sensing can greatly
support the early warning and monitoring of insect pests
through  the  provision  of  quantitative  information  on  air
and land temperature. Several conducted studies59-64 have
demonstrated the benefits remote sensing  utilization  in
terms of satellite derived land surface temperature (LST) in
monitoring insect pest over the conventional use of
temperature retrieved from ground weather stations such as
higher spatial and temporal resolution and reasonable
accuracies. Lensky and Dayan59 highlighted the major
advantage of MODIS LST product that was high spatial
characteristic of which enabled them to capture spatial
variability of temperature within a finer scale in comparison to
ground   weather   stations.   T his  study  aimed  that  spatial

variability of climatic conditions, driven by topography, was
responsible for a three weeks delay for Heliothis  spp., from the
pupal stage into the adult stage. The authors concluded that
LST played an important role in capturing this variability and
hence, helped in increasing the accuracy of insect outbreak
prediction. An attempt has been made by Sprintsin et al.60 to
develop an early detection mechanism of Mountain Pine
Beetle (MPB) Dendroctonus  ponderosae  infestation through
combination of LST and shortwave infrared reflectance (SWIR)
provided by Landsat ETM+. The principle of the detection was
based upon differences in transpiration cooling and canopies
temperature, of which these parameters were translated into
indices known as Temperature Condition Index (TCI) and
Moisture Condition Index (MCI). Through this indices, the
authors managed to differentiate the areas that were affected
from the unaffected areas in the early attack stage of MPB.
However, lack of available cloud free satellite images limited
the potential of the indices. Furthermore, Yones et al.61

reported a difference of approximately 59.22 DD when
comparing  DD calculated from air temperature simulated
from the NOAA  satellites and air temperature from ground
weather stations. This DD value was translated to a reasonable
difference of 2.85 forecasting days for the outbreak of cotton
leaf worms, Spodoptera  littoralis.  This finding was further
supported by Da Silva et al.62 who stated that there was a
significant linear relationship between the accumulated DD of
South American tomato moth, Tuta absoluta  (Lepidoptera:
Gelechiidae) calculated using LST obtained from the MSG
satellite  and  accumulated  DD  computed  from the
conventional in-situ meteorological temperature data. The
authors highlighted the main restriction of LST data that was
cloud presence that attributed to underestimated LST values
and difficulties to remove partial cloud pixels. However, these
limitations were compensated by the availability of LST data
that was better than scarcely distributed ground weather
stations. Blum et al.63,64 on the other hand used tree canopy
temperature provided by the integration of MODIS LST  and
in-situ data to model the population fluctuation trends  of
olive flies, Bactrocera oleae. Significant, strong correlation
coefficients of r = 0.74 and r = 0.82 has been attained when a
comparison  was  being  made  between  the  seasonal
population obtained from the model  with adult-olive
trapping data.

Hence, the purpose of this review, is to discuss and
compare the usage and application of remote sensing satellite
for  temperature,  specifically  Thermal  Infrared  (TIR)  and
Microwave (MW) sensors in monitoring insect pest population
abundance in agriculture.
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REMOTE SENSING APPROACH

Monitoring and predicting insect development and
outbreak using a fixed date calendar can be difficult as
developmental thresholds for insects are different from one
species to another. Hence, insects monitoring and prediction
should be based on a temperature-based principle62, of which
the   most   common  method  utilized  is  the  Degree Days
(DD)65-71,62. Apart from DD, there are other several methods
that have been used to describe the effect of temperature on
insects development, for example, temperature-dependent
phenology  model72,  regression  model73,74,  analysis  of
covariance  (ANCOVA)75  and  Seasonal  Autoregressive
Integrated Moving Average (SARIMA)76.

Degree day is a thermal unit that is used to indicate the
amount  of  accumulated  heat  needed  for  insects to
undergo their developmental stages prior to time77,62. The
calculation   involves   two   different   thresholds   as   shown
in Eq. 1, (i) minimum developmental threshold or baseline
temperature of which no development will occur at
temperatures below this threshold, or alternatively stated as
the minimum temperature required for insects to start to
develop and (ii) maximum developmental threshold or cut-off
temperature of which no development will occur at
temperatures above this threshold or the maximum
temperature of which insects stop to be developed77. 

(1)(Tmin+Tmax)
DD = -Baseline temperature 

2

Where, Tmin  stands for minimum temperature of the day
and stands for maximum temperature of the day.

Different types of temperature data are able to be used in
DD calculations depending on the habitat of the pests,
commonly: air temperature, land surface temperature (LST)
and soil temperature. Air temperature and LST are different
from one another in terms of the magnitude they cover and
the technique used to measure them. Air temperature is
measured 1.5-2 m above ground, which is sparse over a large
geographical area (>10 km) and due to this, it is not able to
capture  topographic  and  other  geographic  effects  that
might have affected the ecology of the pests. However, LST is
associated with a relatively high spatial heterogeneity because
a distance of several metres could stimulate the temperature
changes by several degrees due to the influence of emissivity
and other thermal properties of different surfaces and
materials78. Land surface temperature is derived from satellite
with a TIR or a MW sensor at a finer scale, which has the ability
to capture the geographic and topographic elements over an
area.

The  TIR on board of satellites observe the thermal
infrared radiation emitted by earth surface at the range of a
wavelength from 3.0-14.0 µm through 2 thermal windows that
usually  operate  in  the  range  of  3.0-5.0   µm   as   well   as
8.0-14.0 µm. The main principle that allows this operation is
the fact that all objects that have a temperature above
absolute zero 0EK or -273.16EC or a -459.69EF possess kinetic
heat, which is the energy of particles in random motion. When
these particles collide with each other, electromagnetic
radiation will exit from the object and this radiation is called
radiant  flux.  Radiant  flux is measured in watt unit and this
flux concentration is referred as radiant temperature and there
is usually a highly positive correlation between radiant flux
and the true kinetic energy of an object. 

However, it is worth noticing that objects of a same
kinetic energy level do not necessarily possess a same
radiance temperature depending on the object emissivity. The
emissivity of an object can be influenced by several factors,
the first being colour: Darker colour objects are usually better
absorbers and hence, have a higher emissivity compared to
lighter coloured objects. Second is surface roughness: The
greater  the  surface  roughness  in  relation  to  incidence
wavelength, the greater the surface area for energy emission
and absorption. Third factor is moisture content: Objects with
higher moisture content have a greater ability to absorb
energy and hence, higher emission. This is followed by
compaction: degree of soil compaction has the ability to affect
emissivity. Next is field of view: Resolution will affect the
emissivity  of  object  viewed.  Followed  by  wavelength:
Emissivity is wavelength dependent and lastly, viewing angle:
Emissivity of an object can vary with the sensing viewing
angle. 

Apart from emitting infrared radiation, earth surface also
emits MW radiation. This radiation can be measured as
brightness temperature by passive MW sensors. MW radiation
is emitted at a relatively lower energy level when compared to
infrared radiation and thus, the radiation must be collected
over a larger region in order to collect sufficient energy and
consequently, this low energy level characteristic contributes
to a lower spatial resolution of MW sensors. This radiation is
also able to penetrate haze, light rain, smoke and snow, which
is the opposite of the TIR. The retrieval of LST from MW sensors
are based on the Planck blackbody radiation principle and
Rayleigh-Jeans approximation ,which stated that microwave
radiance of the ordinary surface features are linear to the real
temperature79.

A  huge  number  of  different   multiband   TIR   sensors
on-board  a  variety  of  satellites  are  able  to  provide LST,
namely  Thermal  Infrared   Sensor   (TIRS)   on-board    Landsat
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8 (10.60-11.19 µm and 11.5-12.51 µm), Advanced Spaceborne
Thermal    Emission    and    Reflection    Radiometer    (ASTER)
on-board  TERRA   (8.125-8.475,  8.475-8.825,  8.925-9.275,
10.25-10.95  and  10.95-11.65  µm),  Moderate  Resolution
Imaging Spectroradiometer (MODIS) on-board TERRA/AQUA
(10.780-11.280 and 11.770-12.270 µm), Advanced Very High
Resolution Radiometer (AVHRR) on-board National Oceanic
and  Atmospheric  Administration  (NOAA)  (10.3-11.3  and
11.5-12.5 µm) and Spinning Enhanced Visible and Infrared
Imager (SEVIRI) on-board Meteosat Second Generation (MSG)
(9.80-11.80 and 11.0-13.0 µm). The most common algorithm
used to retrieve LST from TIR sensors is Split Window
Algorithm (SWA), which was developed by incorporating three
major  LST  influencing  elements:  (i)  Water  vapour  content,
(ii) Surface emissivity and (iii) Sensor viewing angle. Overtime,
SWA  was  continuously  developed  and  modified  to  fit  the
LST retrieval process by different TIR sensors80-91.

The use of TIRS based LST were reported to achieve
reasonable  accuracies  in  comparison  with  ground
temperature  data,  as  reported  by  Parinussa  et  al.92,93

(MODIS, Standard Error (SE) = 2.17-6.5 K, R2 =  0.80-0.97),
Zhong et al.94, (MODIS, Percentage Error (PE) = 0.3-18.4%,
AVHRR, PE = 4.1-22.4%), Hachem et al.95 (MODIS, Mean
Difference (MD) = 1.8 K, R = 0.97), Yu et al.96 (MODIS, Mean
Absolute  Error  (MAE)  =  2-3K),  Jiang  et  al.97  (MODIS,  Root
Mean  Square  Error  (RMSE)  =  4.53EC)  and  Atitar  et  al.98

(MSG, RMSE = 1.9K). The most commonly used TIR sensors to
measure LST are TERRA/AQUA MODIS76,99,100 and NOAA
AVHRR101 owing to the frequent revisiting time of two images
per day. Nonetheless, between these two sensors, MODIS was
found to result in better accuracies of LST derivation in
comparison with in situ data, as reported by Hachem et al.95,
where the former depicted an average PE of 8.3% whereas the
error of the latter was 10.5%. The mean of the differences
between the LST products acquired from these sensors were
2-5 K as reported by Batra et al.102. 

Differences   in   the   accuracy   level   of   space   derived
LST measurements were mainly influenced by several factors,
such as maintenance programs by data service providers,
derivation of water vapour within the TIR algorithm used,
different passing times, different measurement angles and
different spatial resolutions. Generally, MODIS LST product out
performs the AVHRR LST primarily due to ongoing
improvements, maintenance and up-to-date algorithms103.
This is further supported by the development of the
versioning system that resulted from the effort of constant
reviews of MODIS LST product104, apart from the accuracy of
MODIS LST product, which is less than 1 K105. In contrast to the
well-maintained MODIS LST product, AVHRR LST product is
slightly of lower quality, owing to the lack of metadata layers

in the AVHRR product, specifically data describing the time of
acquisition, satellite zenith and azimuth angle, which results
in data usage and interpretation difficulties. Additionally,
AVHRR LST also underwent insufficient cloud masking, which
reduced the LST by several degrees78, contributing to the
accuracy gap.

Different ways of deriving water vapour content were
found to affect the ability of SWA algorithm to retrieve
accurate LST. Similar SWA can be utilised to retrieve LST for
MODIS and AVHRR. The water content term for AVHRR is
estimated  by using the Split Window Covariance Variance
Ratio (SWCVR) using brightness temperature and satellite
observation angle. Water vapour content for MODIS, on the
other hand, is derived directly from the transmittance of
MODIS thermal bands (band 31 and 32) because these two
terms were found to statistically satisfy a linear relationship91. 

Furthermore, the differences between overpass times
among sensors have affected the accuracy of LST, due to the
fact that LST is highly dependent of atmospheric conditions,
especially the presence of clouds. If AVHRR and MODIS are
taken as an example, these sensors have a different overpass
time  with  MODIS  usually  crossing  at  midday  whereas
AVHRR is making the same pass one or two hours later. This
has caused images acquired from AVHRR to be contaminated
by clouds more than that of MODIS and thus, lowers the
accuracy94.

Varying accuracies of LST products also have resulted
from different sensors, chiefly due to different viewing angles
leading to differences in surface sensed by sensors106,78. This
matter was given attention in the development of  SWA for
LST retrieval by MSG2 SEVIRI by taking its angular dependency
into consideration. Variations in the viewing angle (0-60E)
found to increase the standard deviation of LST measured by
as much as 54%. In the application of SEVIRI, measurements
made  at  nadir  from  the  combination  of  thermal  band  of
(8.7, 13.4, 10.8 and 12.0 µm) showed the lowest standard
deviation in the estimated LST. When the viewing angle was
increased to 50E, the standard deviation consequently
increased to almost one98.

Another essential characteristic to evaluate for space
derived LST is spatial resolution among sensors. Spatial
resolution directly manifests spatial heterogeneity, which
refers to pixel values that reflect the mixture of different type
of land covers, such as bare soil, vegetation and water bodies.
For instance, while ASTER and MODIS sensors are on-board of
the  same  satellite, TERRA, implying that the observations
were made from the same height and coincident nadirs,
nevertheless,  they  have  different  spatial  resolutions,  which
is 1km for MODIS and 90 m for ASTER. The differences of
ASTER and MODIS LST were approximately 3 K over a semi-arid
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area and this disparity was related to the differences in spatial
resolution apart from the different retrieval algorithms
used107,108. 

The utilisation of LST derived from TIRS sensors are
subject to a few vital considerations, such as the retrieval of
LST  from  TIR  sensors  would  only  be  applicable  under
cloud-free conditions. This is due to the ability of clouds to
jeopardise the data retrieved from satellites by preventing the
sensor to capture the radiance emitted from the earth surface,
leading  to  a  mixture  of  earth  surface  and  cloud  emission
and consequently, an underestimation of LST values. While
this situation can somehow be fixed by the application of
atmospheric correction techniques to eliminate pixels with
cloud cover, this is not the best solution because the
elimination of pixels can lead to data loss and thus, lower the
accuracy of LST retrieved109. Nevertheless, MODIS offers a
solution to this problem by providing a freely available 8 days
average clear-sky product, which is MOD11A2. 

However,  microwave  sensors  have  an  advantage  over
TIR sensors, in which their measurements are not easily
hindered  by  clouds  and  rain,  due  to  the  ability  possessed
by the sensors to observe microwave emissions that are
capable  to  penetrate  clouds.  Among  MW  sensors  that  are
LST providers include: Advanced Microwave Scanning
Radiometer (AMSR-E) on-board AQUA, Advanced Microwave
Scanning Radiometer 2 (AMSR-2) on-board Global Change
Observation Mission (GCOM-W1), Thermal Microwave Imager
(TMI), on-board Tropical Rainfall Measuring Mission (TRMM),
Special Sensor Microwave Radiometer (SSM/I) and Special
Sensor Microwave Imager/Sounder (SSMIS) on-board Defence
Meteorological Satellite Program (DMSP). Microwave sensors
commonly use Ku band (18 GHz) and Ka band (37 GHz) with
a preference leaning towards the usage of Ka band because it
is able to balance the reduced sensitivity to soil surface
characteristics  with  a  relatively  high  atmospheric
transmissivity.  Apart  from  that,  vertical  polarisation  is
preferable  over  horizontal  polarisation in order to retrieve
LST because it is less susceptible to the changes in soil
moisture at an incidence angle of 50-55E.

The usage of MW sensors to provide LST estimation has
showed reasonable accuracies as compared to ground data.
Some of the accuracies are reported in Parinussa et al.92

(AMSR-E, Standard Error of Estimate (SEE) = 1.5K-4.5K),
Parinussa   et   al.93   (AMSR-E,   SSM/I,   TMI,   SE   =   2.1K-4.9K,
R2  =  0.74-0.97)  and  Gao  et  al.110  (AMSR-E,  r  =  0.7)  and
Zhang   et  al.111  (AMSR-E,  R2  =  up  to  0.86).  Furthermore,
LST   product   from   MW   were   frequently   compared   to
LST product from TIR sensors, especially the established
MODIS. The performance of this TIR sensor was widely
compared  with  AMSR-E  because  both  of  the  sensors  were

on-board the same platform. Reports detailing the comparison
accuracies   can   be   found   in   Parinussa   et   al.92   (SE   =  4K,
R2 = 0.93-0.97) and Chen et al.112  (average error = 2-3EC).
Additionally, a comparison between the AMSR-E successor,
AMSR-2 and MODIS demonstrated R2 = 0.5 for the anomalies
and R2 = 0.8-1.0 for raw time series93.

The ability of MW sensors to retrieve LST under cloudy
and rainy conditions has given them the potential to provide
alternative means to reduce the temporal gap of LST obtained
from  TIR sensors. Under wet conditions, AMSR-E had the
ability to provide 4 times more frequent data compared to
MODIS and advantageously, the former depicted a higher
correlation to ground data (r = 0.7) as compared to the latter
(r = 0.42)110. While the tested area was over humid tropical
forest, the availability of TIR LST data was reduced by as much
as 80% due to crop transpiration and thus, the MW based
sensor served as a better alternative.

Despite being able to perform under wet conditions, the
performance of MW sensors can still be compromised by rain
bearing clouds or active precipitation with droplets to the size
of wavelength (8 mm or 37 GHz), primarily due to the ability to
scatter the MW emission. Additionally, the use of MW sensors
to retrieve LST are hampered by the presence of snow, frost
and frozen soil surfaces, which are attributable to the inability
of MW sensors to discriminate the emissivity sensed over
these surfaces111.

Another demerit of MW sensors is its use over mixtures of
bare soil and dense canopy areas. Within the AMSR-2 field of
view, the cooling effect from the canopy transpiration during
the day can mislead the soil temperature to be higher. This
effect is worsened by the relatively low spatial resolutions of
MW sensors in which the heterogeneity of the earth surface
may not be captured in a single pixel111,93. In contrast, TIR
sensors have relatively higher spatial resolutions and thus,
they are able to represent soil and canopy temperature
separately.  Among  TIR  sensors  that  are  able  to   provide
LST data, Landsat TIRS and TERRA ASTER are considered to be
high spatial resolution sensors, which are 100 and 90 m,
respectively. Other satellites with medium spatial resolution
sensors are TERRA/AQUA MODIS and NOAA AVHRR of 1 and
1.1 km and low spatial resolution, MSG SEVIRI with 4.8 km.
However,  MW  sensors,  offer  LST  with  a  relatively  lower
spatial resolution as compared to TIR sensors starting with
GCOM-W1 AMSR2, which offers LST at 10 km spatial
resolution.  This  is  followed  by  several  other  MW  sensors
on-board satellites that provide LST at 25 km spatial
resolutions,  which  are:  TRMM  TMI,  AQUA  AMSR-E  and
DMSP SSMIS. DMSP SSM/I sensor offers LST at a wider expanse
of 28-37 and 43-69 km. 
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In relation to pest monitoring, LST data derived from high
spatial resolution sensors is commonly associated with low
temporal resolution, thus making them less preferable.
Temporal resolution signifies the importance of investigating
the effect of temperature on insect pest’s development and
outbreak. Hence, frequent data availability is essential in
studying insect pests since their life cycles are relatively short,
for  example,  Plutela  xylostela  has  an  average  life  cycle  of
10.5 days113, Metisa plana has 80-113 days114 and Oryctes
rhinoceros has 4-9 months115 to complete their life cycle,
respectively. While many sensors with high temporal
resolution have the capability to capture the variations and
fluctuations of temperature  overtime,  currently,  the  highest 
temporal resolution is 15 min or 96 times revisiting capability
per day, which are being offered by a constellation of
geostationary weather satellites, which are MSG SEVIRI. With
the availability of four satellites orbiting the earth
simultaneously looking over North and South Africa, Europe
and South America, they increase the chances of capturing
cloud-free imageries. Nevertheless, their coverage for the
Asian region is unquestionably occasional, plus the LST are
obtainable at a relatively low spatial resolution as mentioned
earlier. It is worth noting that despite high temporal resolution
justifying the selection of satellite derived LST for examining
the effect of temperature on pests, such high temporal
resolution is superfluous because changes in insects’
development do not occur in such a time period as that of the
MSG temporal resolution. While it is important to consider
insect lifecycles in weighing the most appropriate temporal
resolution for pest monitoring, another important factor that
must be taken into account is insect’s development rate. Take
Metisa plana  for example, it requires 8.4 days to develop its
eggs into first larval insta, another 8.5 days into second larval
insta and 12.4 days for its male pupa to develop into a male
adult. Following this essential statement, daily or weekly LST
data should be able to characterise temperature summation
for insect development and lifecycle. Hence, several
alternatives can be found on the shelf, with the sensors that
are capable of revisiting in 12 h, such as AVHRR NOAA, MODIS
TERAA/AQUA, AMSR-E AQUA, AMSR-2 GCOM-W1, TMI TRMM
and SSM/I and SSMIS of DMSP. Furthermore, Landsat TIRS and
TERRA ASTER can only provide LST variations in every 16 days,
considering that their scenes are free from cloud
contamination and in reality, the timeframe between usable
images could be extended. Consequently, if the Metisa  plana 
is being used as an example, important development of such
insects would be sorely missed. 

Different strengths and limitations possessed by TIR and
MW sensors can be put into a good use because they are able

to complement each other. The assimilation of both of these
sensors would be able to increase the availability of LST data
and hence, efforts had been put into assimilating LST obtained
from these sensors, for example, LST products retrieved from
MODIS on-board TERRA/AQUA and AMSR-2 on-board of
GCOM-W1. The merged product had higher revisiting times,
but at the expense of declined LST performance compared to
the individual products. The performance drop was most likely
contributed by the uncertainties in the MW products due to
the rain-bearing clouds and active precipitations over the
study site.

CONCLUSION AND FUTURE RECOMMENDATION

The LST is known to be one of the main key  parameters
in the monitoring and management of insect pest outbreaks
because insect life cycles are highly temperature-dependent.
Ground  temperature  is  measured  through  point
measurements that contribute to high spatial variability
because the locations of ground data stations are widely
sparse over a region. Contradictory to this, the usage of
satellite remote sensing to retrieve LST are able to compensate
spatial resolution of LST measurements derived through
ground observations with less man-power, shorter time and
lower cost. Assimilation of TIR and MW sensors could be the
best alternative in retrieving LST products with high temporal
and spatial resolutions. However, as mentioned above, the
product of the assimilated sensors has not yet achieved the
performance of the individual products. Hence, further studies
are needed to improve the assimilated products to ensure that
products of high spatial, temporal, as well as accuracy could
be produced.

SIGNIFICANCE STATEMENTS

This review discovers the ability and potential of remote
sensing technology as a platform in providing land surface
temperature (LST) data for insect pests monitoring application. 
This  review compares remote sensing derived LST with
temperature data obtained from in-situ weather stations and
between thermal infrared and microwave sensors in terms of
their quality, availability and adaptability for providing LST.
The comparisons are focused on their spatial and temporal
characteristics, along with their accuracies. As such, this review
will be able to assist researchers to evaluate the potential of
remote sensing derived LST for applications of pest
management such as understanding of insect pest landscape
ecology and prediction of their outbreak.
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