Aslian Journal of
Plant Sciences

ISSN 1682-3974

science ﬁﬁuaée!%fg

alert http://ansinet.com




Asian Journal of Plant Sciences 5 (2): 397-408, 2006
ISSN 1682-3974
© 2006 Asian Network for Scientific Information

Spatial Variability of Soil Fertility Variables
Influencing Yield in Oil Palm (Elaeis guineensis Jacq.)

S.K. Balasundram, 'P.C. Robert, *[2.J. Mulla and D.L. Allan
Department of Agriculture Technology, Faculty of Agriculture,
Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
'(deceased), formerly Department of Soil, Water and Climate,
University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, MN 55108, USA
*Department of Soil, Water and Climate, University of Minnesota, 439 Berlaug Hall,
1991 Upper Buford Cirele, Saint Paul, MN 55108, USA

Abstract: This study reports on the spatial variability of soil fertility variables mfluencing oil palm yield n
small-scale plots situated at varying topographic positions. For each topographic position, Yield-influencing
Variables (YIVs) were determined and subjected to spatial data analyses involving variography and
mterpolation (inverse distance weighting). Results showed that the spatial structure of YIVs differed across
topographic positions. The optimum sampling strategy was found to depend on the type of variable being
investigated and its topographic position. A management zone concept with topography as the delineation
factor seemed appropriate for fertility management. Only potassium (K) showed a clear demarcation of zones
with high, moderate or low values and hence the need for variable rate management.
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INTRODUCTION

Variation in soil properties (Brubaker et al., 1993;
Cassel et al., 1990), crop yields (Verity and Anderson,
1990, Mahli et al, 1993) and fertilizer response
(Nolan et al., 1995) over the landscape 1s well established.
Results from these studies validate the recommended
strategy of apportioning more resources at lower slope
positions (Kachanoski ef al., 1985) where yield potential
1s greatest.

In order to understand soil spatial variability, it is
common to collect extensive soil samples. Often this
exercise poses a cost constraint. Depending on field
variability, the number of samples per ha ranges from
25 to 50 for hydraulic conductivity, 7 to 14 for infiltration
rate and 24 to 55 for determining solute concentration
(Hajrasuliha et al., 1980, Gajem et ol., 1981, Vieira et al.,
1981). Additionally, the large degree of spatial varation in
the field necessitates collection of soil samples from
closer spacing in order to obtain an accurate estimate of
a soil property. Sampling intervals as small as 1 m for
hydraulic conductivity, 0.05 to 2 m for infiltration rate and
0.2 to 80 m for electrical conductivity have been
suggested (Russo and Bresler, 1981; Sisson and
Wierenga, 1981). Spatial variability in soil properties

inevitably affects the efficiency of input (i.e., fertilizers,
pesticides) use within a field Studies have shown that

such variability often justifies variable fertilizer
recommendation, which is based on the nutrient
requirements of a specific site, rather thana

umiform fertilizer recommendation for the entire field
(Carr etal., 1991).

Quantifying the spatial variability of soil properties
and/or crop yield is an important pre-requisite when

considering site-specific applications, more so for
cropping systems that are established on rolling
topography.

The Republic of Indonesia ranks number two in
global palm o1l production and has the fastest
growing palm oil sector in the world (Mielke, 1998).
Approximately 70% of oil palm cultivation in Indonesia
is concentrated in the island of Sumatra (ARAB, 2000).
The need for site-specific practices m o1l palm
plantations 1s mamly driven by stagnant productivity
and increasing input costs over the past 20 years.
Fertilization is often reported as the biggest cost
component (35-50%) i the operating budget. The
concept of  site-specific nutrient management
appears as an afttractive solution to offset this existing
dilemma.
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Currently, there is limited information about the
spatial variability in oil palm yield or its soil fertility and
how soil spatial variation impacts sampling strategy. In
the context of plantation-based o1l palm, such mformation
will allow the demarcation of a field into clusters of palms
where palms are spatially related within each cluster but
mdependent between clusters. Thus, each cluster of
palms 13 unique and can be managed separately for
optimum returns. Technically, this approach is known as
management zoning.

Hence, tlus study was aimed at quantifying the
spatial variability of soil fertility variables influencing oil
palm yield in small-scale plots situated at varying
topographic positions.

MATERIALS AND METHODS

Study location and site attributes: This study was carried
out m Sungai Lilin, South Sumatra, Indonesia. The study
site, Sri Gunung FEstate, 18 geographically located at
02° 31" South and 104° East and is characterized by rolling
topography with 4-12% slope (Fig. 1). The area planted to
o1l palm in Sr1 Gunung 1s 887 ha. The palm trees are
planted in an equilateral triangular pattern resulting in all
palms being equidistant from one another. Planting and
inter-row  distances are typically 9.1 and 7.9 m,
respectively. This translates into a planting density of
136 palms per ha. The ammual ramnfall at Sn Gummng ranges
from 3000 to 3200 mm annually.

Plot layout: The study site was partitioned into three
observational plots that were established based on
topography, one plot each at the toeslope (0.88 ha),
sideslope (3.44 ha) and summit (1.15 ha) position. All
observation plots comprised single-variety palms that
were field-planted in January of 1998.

Each plot featured two adjacent blocks that were
divided by a collection road. The number of palms chosen
to represent an observation strip was based on the
plantation’s standard harvesting procedure comprising
13 palms per strip per block. Two strips of palms per block
were designated as an observation unit bearing a
dimension of 84119 m. A total of 3 observation umnits
(6 strips) were established on each block for the toeslope
and summit plots. For the sideslope plot, 3 observation
units on both adjacent blocks constituted a replicate. The
sideslope plot consisted of 3 replicates.

Sampling protocol: Three composite samples were
obtained from each observation unit using a systematic
scheme. Each leaf sample was made up of four
sub-samples obtammed from the central leaflets of frond
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mumber 17. Each soil sample was made up of six
sub-samples taken randomly at 0-20 cm and 20-40 cm
depths outside the fertilizing ciurcle, the area girdled
beneath the palm canopy. Within each plot sample
points  were spaced 36.4 m apart between palms
(x direction) and 8.7 m apart between strips (y direction).
Leaf and soil samples were obtained 2 months after
standard routine fertilization ata 6-month interval over
2 years. A total of 30 samples were obtained at the
toeslope and summit positions while the sideslope
position afforded 54 samples.

Yield and fertility measurements: Oil palm yields were
recorded in situ for each observation unit based on the
standard 10-day harvest interval and then averaged to
give a monthly count expressed as kg fresh fruit bunch
(FFB) per palm. Leaf analysis was performed to quantify
N, P, K, Mg and Ca while soil analysis was carried out to
determine pH, orgamic carbon (C), extractable P,
exchangeable K, Mg and Ca, Effective Cation Exchange
Capacity (ECEC) and texture.

Bivariate relationships were explored using Pearson
correlation and backward stepwise multiple linear
regression. The difference in leaf/soil variables and yield
as a function of topographic position was determined
using analysis of variance followed by mean separation
using the Least Sigmficant Difference (LSD) criterion.
Empirical production functions based on measured
leaf/soil variables as well as leaf/topsoil nutrient ratios
were defined for each topographic position at both study
sites.

Geo-spatial data analysis: Geo-spatial description of the
data was performed in two stages: 1) spatial continuity
analysis using variography and 2) interpolation using
inverse-distance weighting (IDW). The toeslope and
summit positions were represented by 30 observations,
while the sideslope had 34 observations. To perform
kriging, the mimimum number of observation pairs
required 13 30, which effectively translates to more than
30 observation points (Journel and Huijbregts, 1978).
According to Whelan et al. (1996), TDW is more effective
than kriging when interpolating based on a small number
of observations collected at moderate intensity. In either
event, the data should still display spatial dependency.
Webster and Oliver (1992) showed how sensitive the
variogram 1s to sample size. They advocated that with
fewer than 100 samples, the variogram 1s likely to be an
unreliable representation of the true spatial structure.
Variograms  quantify spatial
dependence of a given variable using semivariance
(Burgess and Webster, 1980). Prior to computing the

and  model
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semivariance, spatial outliers were detected at alocal scale
{each topographic position within individual study sites)
uging the Hawking (1980) method. This method is based
on comparison among neighbourhood values and has the
following formula:

Il|:Z

(n+1)

m

Zs (1
where, z,, is the spatial outlier, z(x) represents a particular
data point, n is the number of neighbouring walues
excluding z(x), M equals the arithmetic mean of the n
values and o° denotes the average variance for
equivalently sized neighbourhoods over the sampling
space.

The above equation has a chi-square (") distribution
with an assumption that the neighbourhood values are
normally distributed. Thus, if the value calculated from
Eq. 1 falls outside the expected * distribution, then that
z(x) is regarded as a gpatial outlier.
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Semivariance (v} is estimated as follows:

nchy

yh)= 0511(11)2[21 Z1+h] (2)

where, h is the separation distance between location x, or
X, 4 % OT Z,,, are the measured values for the regionalized
variable at location x; or x,,,, and n(h) is the number of pairs
at any separation distance h

The process of selecting sample intervals, lag
distances and semivariogram models is typically done
baged on trial and error. Journel and Huijbregts (1978)
advocate two criteria that guide this selection process:
1) semivariograms should not include lag distances
greater than about half the maximum distance between
gsampling points, and 2) plotted lag intervals should be
short enough to allow identification of the most
appropriate model to be fitted to the semivariogram.

Semivariograms were constructed for yield-
influencing variable(s) from each topographic position
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using GS+ Version 5.1.1 (Gamma Software Design,
Plainwell, MT). In constructing the semivariogram, the data
were assumed to be stationary (trend-free). Stationarity of
the data requires that the semivariance between any two
locations in the study region depends only on the
distance and direction of separation between the two
locations and not their geographic location. The
semivariogram was also assumed to be isotropic and
omnidirectional, meaning that pairwise squared
differences were averaged without regard to direction.
Spatial dependence was defined using the nugget to sill
ratio (Cambardella et al., 1994), which has the following
interpretation:

MNugget:Sill < 0.250.25
< Nugget:Sill < 0.75
Nugget:Sill > 0.75

Inference strong spatial dependence
Moderate spatial dependence
Weak spatial dependence

Spatial variability nformation (1e. the spatial
correlation length) obtained from the semivariance
analysis was used to design a suitable sampling strategy,
particularly with regard to sample spacing. The mimmum
number of samples (1,.,) required for reliable estimation of
the mean value of each variable, however, was estimated
using a non-spatial approach based on the following
relationship (Cochran, 1977):

cv?

2
nmm = t(l*&fzj RE2

3
where, t 15 the Student function corresponding to the
confidence level ¢, CV 1s the coefficient of variation and
RE is the sample mean relative error (%) considered
acceptable

The next stage in geo-spatial analysis was to predict
values 1n areas that have not been sampled using inverse
distance weighting (TDW) interpolation. The formula used
for IDW (Tsaaks and Srivastava, 1989) is:

Zn:[21 /(h, +5) ]
e )

zj =

> [l +57]

where, EJ 1s the estimated value for location j, n 1s the
number of measured data points used for interpolation, z
is the measured sample value at point i, h; represents the
distance between  z; and z, s 15 the smoothing factor and
p is the weighting power’

Cross validation: Interpolated values were assessed for
accuracy using a cross-validation procedure (Isaaks and
Srivastava, 1989) based on the criteria proposed by
Delhomme (1978) and Dowd (1984). Firstly, the
interpolated mean error (ME) should be close to zero. The
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ME 18 calculated as follows:

ME =1/n[z(x,) - z(x,)] (6)
i1
where, n is the number of sample points, z(x) is the
predicted value of the variable at point x; and x(x;) is the
measured value of the variable at point x;
Secondly, the Mean Squared Error (MSE) should be
less than the sample variance. The MSE 15 given by:
MSE =1/n3[2z(x,) - z(x,) (N
i1
Thirdly, the ratio of theoretical and calculated
variance, called the standardized mean squared error
(SMSE), should be approximately close to one. The SMSE
1s given by:
SMSE =1/n-13[z(x,) - z(x,)T /6° (8)
i1

where, 0 1s the theoretical variance
RESULTS AND DISCUSSION

Comparison of variables across topography: A clear yield
gradient existed across topographic positions in the
following order: toeslope > sideslope > summit. The
toeslope tested high for almost all leaf (N, P, K and Ca)
and several soil variables (pH, OM, Ca). Soils at the
toeslope were sandy clay in texture. In contrast, the
majority of lower test values, particularly leat N, P, Ca and
soil pH, P, Ca, emanated from the summit. Soils at the
summit and the sideslope were light clay in texture.
Differences in soil K, Mg and ECEC were not significant
across topography (Table 1).

Table 1: Comparison of variables (leaf and soil) and the corresponding yield
across topography at Sri Gunung estate

Variables! Toeslope Sideslope Summit
Leat

N 2.75° 2.75° 273
P 0.18 0.15¢ 0.16°
K 0.98° 0.93" 0.96%
Mg 0.40° 0.43* 0.42%
Ca 0.78 0.72" 0.71°
Roail

pH 4.78, 4.27b 4.16°
OM 2.5 2.22b 2.33%
P 79.38 77.98a 714
K 0.23* 0.20a 0.20°
Mg 0.65° 0.70a 0.61°
Ca 1.63* 1.49a 119
ECEC 5.46° 5.80a 507
*Texture s8C LC LC
*Yield 4.43* 3.60° 31%F

'Expressed in the following units: % (for leaf nutrients and soil OM),
mg kg™ (for soil P) and m.e. 100 g~ (for soil K, Mg, Ca and ECEC)
“Interpreted based on International Society of Soil Sciences (ISSS) scheme
(where: LC = Light clay, SC = Sandy clay)
*Reported as 3-month average FFB (kg) palm™
For each experimental site, mean values followed by the same superscript
along each row are not significantly different at p = 0.05

1
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Fig. 2: Semivariograms of YIVs at the toeslope
Table 2: Yield influencing variables (¥IVs) across topography
Topographic position Regression model (5)* R? Adjusted R?
Toeslope (1) Yield =15.22-253% Leaf Mg 0.76 0.70
(2a) Yield = 3.19+0.15* Leaf (N:Mg) 0.80 0.75
(2b) Yield = 3.04+2.66*Leaf (P:Mg) 0.79 0.74
(3) Yield =3.66+0.10% pH 0.66 0.58
Sideslpe (3) Yield =878-0.70* ECEC-19.03*log (Subsoil Mg) 0.89 0.82
(1) Yield =2825-9.28* Leal N 0.89 0.86
(4) Yield =3.88-2.57* Soil (K:Mg) 0.75 0.68

*Developed separately using the following group as yield predictors:

(1) leat variables, (2) leaf nutrient ratios, (3) soil variables and (4) topsoil nutrient ratios

Yield-influencing Variables (YIVs): Regression models
were developed to explain the dependence of oil palm
vield on measured leaf and scil variables at each
topographic position (Table 2). These production models
clearly differed across topography. All three positions
had significant models. Generally, both leaf and soil
variables showed comparable predictability (based on R’
values).

Spatial structure assessment: Semivariograms for the
toeslope YIVs (leaf N, leaf P, leaf Mg and pH) were
constructed based on an active lag of 85-110 m (Fig. 2).
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Leaf N and leaf P did not exlubit any definable spatial
structure. Meanwhile, leaf Mg and soil pH showed
definable spatial structure that was described by a
spherical model. Leaf Mg and soil pH demonstrated a
strong spatial dependence with 84-86% of its total
variation attributed to spatial variability. Leaf Mg
exhibited a short correlation length of 32 m while pH
showed a moderate correlation length of 81 m.
Semivariograms for the sideslope YIVs (ECEC and
subsoil Mg) were constructed based on an active lag of
120m (Fig. 3). Only subsoil Mg showed a definable spatial
structure, which was described using a spherical model.
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Fig. 4: Semivariograms of YIVs at the summit

The spatial dependence of subsoil Mg was moderate with
74% of its total variation explamnable. Subsoil Mg
exhibited a short correlation length of 58 m.
Semivariograms for the summit YTVs (leaf N, topsoil
K and topscil Mg) were constructed based on an active
lag of 80 m (Fig. 4). All YIVs showed definable spatial

structure, which was described using an exponential
model (for leaf N) and a spherical model (for topsoil K and
topsoill Mg). Leaf N  exlubited strong spatial
dependence with 96% of its total variation explainable.
Meanwhile, topsoil K and topsoil Mg also demonstrated
strong spatial dependence with 99% of thewr total
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variation explainable. The spatial correlation length of leaf
N, topsoil K and topsoil Mg was short at 41 , 54 and 38 m,
respectively.

TImplications for sampling design: To derive a rigorous
sampling protocol, it is imperative that sampling points
provide accurate information about the sampled
population. In classical statistics, the sample mean 1s
assumed to provide the best estimate of the population
mean. The sample mean, however, does not provide any
mformation about spatial variability. In order to account
for spatial variability, a sampling protocol should
effectively consider the optimal sample size and spacing
from a spatial perspective (Wollenhaupt et al., 1997).

Soil variables (with the exception of pH) generally
showed a higher sample size requirement than leaf
variables. Sample size requirements were typically higher
at a higher confidence level (CL) corresponding to a lower
relative error (RE) (Table 3). These requirements differed
across topographic positions at both sites. The sampling
intensity employed in this study was fairly appropriate for
the majority of YIVs based on the commonly acceptable
criteria of a 90% CL with a 10% RE. However, the sampling
mtensity for topsoil K, topsoil Mg and subsoil Mg was
below such criteria. Results indicated that accurate
estimates (95% CL, 10% RE) of leaf test values can be
obtained from a sample size comprising 5 poimts. Sample
size requirement varied according to leaf variable in the
following order:

N/P<Mg

[
»

Increasing sample size {n)

For
(95% CL, 10% RE) require a sample size comprising

so1l variables, reasonably accurate estimates

86 points. Sample size requirements varied according to
soil variable in the following order:

pH < ECEC < subsoil Mg < topsoil K < topsoil Mg

Increasing sample size (n)

When spatial correlation 1s expected, estimation of
sample size should be modified to account for the fact that
spatial correlation will entail a larger sample size to
estimate the population mean (Mulla and McBratney,
1999),

The Effective Range (ER) for yield-influencing
variables that exhibited a definable spatial structure
across topographic positions is given in Table 4. At both
study sites, the ER not only varied across topographic
position, but also among test variables. Sample points
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Table 3: Optimal sample sizes for estimating mean values of yield-
influencing variables
Confidence level (¢0)

90 95

Relative error (%)

10 20 10 20
Toeslope
Leafl N 1 1 1 1
Leat P 1 1 1 1
Leaf Mg 4 1 1 1
pH 1 1 1 1
Sideslope
ECEC 6 1 8 2
Subsoil Mg 30 8 43 11
Sumrmit
Leafl N 1 1 1 1
Topsoil K 38 10 54 14
Topsoil Mg 61 15 86 21

Table 4: Effective range (ER)* of yield-inthiencing variable (YTVs) across
topography
Topographic Yield-influencing

Proposed sample

position variables ER (m) spacing (m)®
Toeslope Leaf P 32 Sto 16
Leat Mg 32 8to 16
pH 77 20to 39
Rideslope Subsoil Mg 62 16 to 31
Sumrmnit Leaf N 36 9to 18
Topsoil K 72 18to 36
Topsoil Mg 89 23 to 45

*Derived from the semivariongram analysis (Fig. 1-3)
$Based on the Flatman and Yfantis (1984) prognosis

separated by distances greater than the ER will no longer
exhibit spatial correlation (Webster, 1985). At this
juncture, it is worth noting that the semivariogram does
not provide any information for distances shorter than the
minimum spacing between samples. Sampling designs that
are aimed at delineating spatial structures usually feature
separation distances that are less than the ER. Flatman
and Yfantis (1984) recommended that samples be spaced
from 0.25 to 0.5 of the ER. In this study, samples were
spaced 364 m in the X direction (between palms) and
8.7 m in the Y direction (between rows). This spacing
corresponds to 0.4-1.5 and 0.1-0.3 of the ER (computed for
YTVs) in the X and Y directions, respectively. Generally,
the sample spacings used in this study were fairly
adequate for the soil variables but more intensive than
necessary for the leaf variables. According to Webster
(1985), close spacings 1s one way of mimmizing the
nugget effect. Previous research done by Goh ef al. (2000)
showed that the maximum spatial variation m o1l palm
yields from mature stands was reached within 2 to 3
palms. They attributed this to the canopy structure of o1l
palm, which characteristically extends to the unmediate
neighbouring palms only, while its roots have been
shown to exploit soil resources at least 2 palms away.
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Fig. 7: Spatial variability of (1) leaf N, (ii) topsoil K and iii) topsoil Mg at the summit
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Fig. 8: Re-classed variability map of topseil K at the summit

Table 5: Cross validation of interpolated values (based on IDW)

120
Distance between palms (m)

- Low

0.18
0.16
0.14
0.12

0.1

140 160 180 200

Statistic Sample variance Mean error (ME) Mean squared error (MSE) Standardized mean squared error (SMSE)
Toeslope

Leaf Mg 0.0025 2.67x107% 0.0018 0.7708

pH 0.0841 0.0163 0.0832 1.0511

Sideslope

Subsoil Mg 0.0036 0.0082 0.0267 7.5804

Summit

Leaf N 0.0049 -0.0023 0.0049 1.0333

Topsoil K 0.0006 0.0007 0.0051 0.9201

Topsoil Mg 0.0043 0.0011 0.0039 0.9492

In practical terms, this means that any strong
environmental influence on the oil palm would probably
affect the nearest 3 palms most similarly. The work of
Goh et al. (2000) was the only available literature to gude
the choice of sample spacings for this study.

Based on a cutoff value of 70 (Mulla and McBratney,
1999), the ER data from Table 3 can be classified as narrow
(Table 3) (ER less than 70 m) and moderate (ER more than
70m). Essentially, this implies that sample spacings would
depend on the type of variable being investigated and its
topographic position. Using the Flatman and Yfantis
(1984) prognosis, optimum sample spacings for leaf
nutrients range from 8 to 18 m, whule sample spacings for
soil properties range from 16 to 45 m (Table 4).
Interpolation and spatial variability mapping:
Interpolation was performed only on YIVs that exlubited
moderate or strong spatial dependence. The distribution
and pattern of both measured and interpolated values for
each YIV are represented as spatial variability maps.

High values of leaf Mg were aggregated in the
southern half of the plot, while high values of pH were
concentrated in the north-central region of the plot. Leaf
Mg was negatively correlated with pH (r = -0.73) (Fig. 5).
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High values of subsoil Mg were concentrated along
the North-South transect within the central region of the
plot, while low values were clustered in the northeastern
region of the plot (Fig. 6).

High values of leaf N were clustered along the central
region of the plot in the North-South direction, while
pockets of low values were evident at the western
boundary (Fig. 7). Topsoil K showed a comparable
distribution to that of leaf N, except that clusters of low K
values were apparent in the southemn region of the plot.
Topsoil Mg showed a contrasting distribution of high/low
values to that of leaf N. Notably, the western boundary
toward the North was dominated by low Mg values. Leaf
N and topsoil Mg were negatively correlated (r = -0.79).

All YTVs with the exception of subsoil Mg showed
acceptable accuracy in mterpolated values (Table 5). The
spatial variability of these YIVs was re-mapped based on
published threshold values (Foster et al., 1988; Rankine
and Fairhurst, 1999). Results showed that leaf nutrients
(N, P and Mg) and soil pH demonstrated moderate test
values across the entire plot. Topsoil Mg was dommated
by high values (99%). In contrast, topsoil K showed a
distribution in the following order: 63% low values, 33.8%
moderate values and 3.2% high values (Fig. 8).
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TImplications for management zoning: It is clear that the
YTVs varied spatially across and within topographic
positions. Such spatial variability can be addressed using
the concept of management zones. Generally, most YIVs
can be managed as a function of topography (between
plots), i.e. toeslope, sideslope and summit. Evidently,
yield and fertility gradients were driven by differences
topography. Considering the yield potential, application
of nutrient inputs should be made in the following order:

Summit < Sideslope< Toeslope

Ll

Increasing nutrient inputs

In the case of K, however, an additional level of
management 1s appropriate based on within plot spatial
variability. Higher K inputs are appropriate in the low-test
areas and a standard K application rate is appropriate in
the remaining areas.

CONCLUSIONS

The spatial structure of Yield-influencing Variables
(YIVs) differed across topographic positions with most
YTVs exhibiting moderate to strong spatial dependence
that was defined by a spherical model. Variables that
demonstrated a definable spatial structure showed marked
differences mn the sampling intensity required for reliable
estimation of mean values. These variables were also
subjected to varying spatial correlation lengths. Most
variables showed a relatively short correlation length.
Essentially, the sampling strategy in terms of size and
spacing was found to depend on the type of variable
being investigated and its topographic position.

A management zone concept using topography as a
delmeation factor seemed appropriate for the majority of
YTVs. This approach would require different input rates at
different topographic positions. Test values for K,
however, showed clear demarcation of zones with high,
moderate or low test values within plots and hence the
need for variable rate application.

This study has demonstrated and quantified the
spatial variability of yield-influencing soil fertility
variables in small-scale plots situated at varying
topographic positions. The concept of site-specific
nutrient management appears to be a feasible approach to

address such variability.
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