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Abstract: This study was undertaken to determine the yield performance of 15 mmproved durum wheat
genotypes selected from Tran/TCARDA joint project in 12 environments during 2004-06 in Tran. Our results
showed that contributions to treatment man-effects were: genotype (2.85%), environment (61.59%) and
GE (14.86%). Analysis of the interaction revealed decreasing magnitude of contributions to the GE sum of
squares 1 the order: Interaction Principal Component Axis 1 (IPCA1) = 28.2%, IPCAZ = 25.04%, IPCA3 = 18.98%
and TPCA4 = 8.52%. In this study the TPCA scores presented a disproportionate genotype response, which was
the major source of variation for crossover GE mteraction. GE mteraction patterns revealed by AMMI biplot
analysis indicated that the durum wheat genotypes are narrowly adapted No genotype has superior
performance in all environments. The genotype Mrb3/Mna-1 was the best at combimng yield stability and
productivity. The genotypes 12A-Mar8081 and 14A-Mar8081 had the most stability but low yielding. Mna-
1/Rfm-7 had the highest yield performance and relative widely adapted to across environments.
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INTRODUCTION

Multi Environment Trials (METs) are important in
plant breeding and agronomy for studying yield stability
and predicting yield performance of genotypes mn across
environments. The differential response of genotypes to
environmental changes 13 a Genotype by Environment
(GE) interaction (Vargas et al., 2001). Understanding of the
causes of GE mteraction can be used to establish
breeding objectives, identify ideal test conditions and
formulate recommendations for areas of optimal genotype
adaptation (Yan and Hunt, 2001). The term GE interaction
commonly refers to yield variation that carmot be
explained by the genotype main effect (G) and the
environment main Effect (E). For genotype evaluation,
however, both G and GE must be considered
simultaneously. Using a environments regression model
(SREG), Yan et a. (2000) combined G and GE, denoted as
G+3E or GGE and repartitioned this into noncrossover
GE interaction and crossover GE interaction. The term
GE mteraction will be hereafter used to denote this
combination. Understanding the causes of noncrossover
and crossover GE interaction would help develop an
understanding of the genotypic characteristics that
contribute to a superior genotype and the environmental
factors that can be manipulated to facilitate selection for
such genotypes (Yan ef af., 2000). Numerous methods

have been used for an understanding of the causes of GE
interaction (van Eeuwijk et al., 1996). These methods can
be categorized into two major strategies. The first strategy
involves factorial regression analysis of the GE matrix
(1.e., the yield matrix after the environment and genotype
main effects are removed) against environmental factors,
genotypic traits, or combinations thereof (Baril et af,
1995). The second strategy is associated with the use of
the Additive Main Effects and Multiplicative Interaction
(AMMI) model nMET data analysis.

The AMMI model is a hybrid analysis that
incorporates  both the additive and multiplicative
components of the two-way data structure. AMMI 1s the
only model that distinguishes clearly between the main
and interaction effects and this 13 usually deswable in
order to male reliable yield estimations (Gauch, 1992).
AMMI biplot analysis is considered to be an effective
tool to diagnose GE interaction patterns graphically.
The AMMI modeled describes the GE interaction n
more than one dimension and it offers better opportunities
for studding and nterpreting GE interaction than analysis
of wvariance (ANOVA) and regression of the mean
(Vargas et al., 2001). In AMMI, the additive, portion 1s
separated from interaction by ANOVA. Then the
Interaction Principle Components Analysis (IPCA), which
provides a multiplicative model, is applied to analyze the
mteraction effect from the additive ANOVA model. The
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biplot display of TPCA scores plotted against each other
provides visual inspection and interpretation of the GE
mnteractions. Integrating biplot display and genotypic
stability statistics enables genotypes to be grouped
based on similarity of performance across diverse
environments ( Thillainathan and Fernandez, 2001 ).

Concerning the use of AMMI in METs data analysis,
which partitions the GE interaction matrix into individual
genotypic and environmental scores, an example was
provided by Zobel e al. (1988), who studied the GE
interaction of a soybean MET. Other examples were
provided by Annicchiarico and Perenzin (1994), Yan et al.
(2000), Vargas et al (2001), Yan and Hunt (2001),
Kaya et al (2002), Lafitte and Courtois (2002),
Brancourt-Hulmel and TLecomte (2003) and
Tarakanovas and Ruzgas (2006). Among multivariate
methods, AMMI analysis 18 widely used for GE
mteraction mvestigation. This method has been shown
to be effective because it captures a large portion of the
GE interaction sum of square, it clearly separates main and
mteraction effects that present agricultural researchers
which different kinds of opporturnties and the model often
provides agronomically meaningful interpretation of the
data (Ebdon and Gauch, 2002). The results of AMMI
analysis are useful in supporting breeding program
decisions such as specific adaptation and selection of
environment (Gauch and Zobel, 1996). Usually, the results
of AMMI analysis shown in common graphs are called
biplot. The biplot shows both the genotypes and the
environments value and relationship using singulars
vectors technique (Tarakanovas and Ruzgas, 2006).

This study was undertaken to interpret GE interaction
obtained by AMMI analysis of yield performances of
genotypes over 12 environments,
visually assess how to vary yield performances across
environments based on the biplot and group the

15 durum wheat

genotypes having similar response pattern across
environments.
MATERIALS AND METHODS

Statistical methods: GE interaction for grain yield was
firstanalyzed according to a classical multiplicative model
or AMMI (Gollob, 1968; Mandel, 1971; Gauch, 1992;
Brancourt-Hulmel and Tecomte, 2003) with three
multiplicative terms. It 1s written as follows:

E[Yga] = a B+ Ay By + Aot a8 At s

Where:

E[Y,.] = Expectation of performance

Y,, = Genotype g grown in environment e
n = (General mean

44 = Genotype main effect

B. = Environment effect; each of the
multiplicative term has the same structure

A = Size

Yy = Normalized genotype vector of the genotype
scores or sensitivities

8, = Normalized environmental vector of the scores

describing the environments, all assigned to the

first term.

main

The parameters of the second and third terms follow
the same defimtion. For each genotype, interaction was
described in terms of ecovalence (von Wricke, 1962) and
the interaction pattern with genotype scores provided by
the AMMI model.

Biplot derived by plotting the genotypes and
environments markers (scores) of the first two
multiplicative terms of the AMMI model arealso useful for
summarizing GE interaction pattems (Vargas et al., 2001).

Other statistics methods: Purchase et al (2000)
developed one test based on the AMMI model's TPCA1
and IPCAZ2 wvalues for each genotype and each
enviromment. They called it the AMMI Stability Value
(ASV). This ASV is in effect the distance from the
coordinate point to the origin in a two dimensional scatter
gram of [PCA] scores agamst [PCA2 scores.

Because the IPCA1 score contributes more to the GE
interaction sum of squares (S3), a weighted value is
needed. This weight is calculated for each genotype
{ASV ) and environment (ASVy,) according to the
relative contribution of IPCA1 to IPCAZ2 to the interaction
S8 as following.

2
ASV, . = J[%(GIPCAI score)} + (GIPCA2score)
(@) SSIPCA2

ASV,

SSIPCAL :
)" J{i (EIPCAL score)] +(EIPCA2score)

SSIPCA2

Where:
SSIPCAl

SSIPCA2

15 the weight given to the IPCAl value by dividing the
TPCA1 sum of squares by the TPCA2 sum of squares
GIPCA1 and GIPCA2 scores are the IPCAT and [PCA2
scores for the specific genotype. ETPCA1 and ETPCA2
scores are the IPCA] and IPCAZ2 scores for the specific
environment.

Fox et al. (1990) suggested three parameters for
general adaptability. The proportion of environments at
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Table 1: Code, cropping season, names and origin of genotypes, stats of rainfall+ irrigation for each environment

Env_ Cropping season  Location Code of Env_ Rainfall+SI 1 Code of genotypes  Genotype Origin
1 2003-04 Kermanshah A Rainfed (597.1 mm) Gl Omgenil-3 ICARDA
2 2003-04 Kermanshah B 8T (597.1+50 mm}) G2 Omrabi-5 ICARDA
3 2003-04 Ilam C Rainfed (590 mm) G3 Syrian-4 ICARDA
4 2003-04 Tlam D 8T (590+0 mim) G4 Mrb3/Mna-1 ICARDA
5 2004-05 Kermanshah E Rainfed (431.5 mm) G5 Waha ICARDA
6 2004-05 Kermanshah F 8T (431. 5+ 50 mm}) Gt Mna-1/Rfim-7 ICARDA
7 2004-05 Ilam G Rainfed (552 mm) G7 9A-Kor8081 Iran
8 2004-05 Tlam H 8T (552+50 mm) G8 12A-Mar8081 Tran
9 2005-06 Kermanshah I Rainfed (514.3 mm) G9 14A-Mar8081 Iran
10 2005-06 Kermanshah J 8T (514.3+0 mim) Gl0 15A-Mar8081 Tran
11 2005-06 Ilam K Rainfed (570 mm) Gll 18A-Mar8081 Iran
12 2005-06 Tlam L 8T (5T0+50 mim) Gl2 19A-Mar8081 Tran

Gl3 20A-Mar8081 Iran

Gl4 Zardak (Durnum wheat local check) Tran

G135 Sardari (Bread wheat national check)  Iran

T: 81 is supplemental irrigation

which the genotypes occurred m the top, middle and
bottom third of the ranks was computed to form the
parameters of TOP, MID and LOW, respectively. A
genotype that occurred mostly in the top third (high value
of TOP) was considered as widely adapted genotype.

Data source: This study was carried out with 13 improved
durum wheat genotypes in 12 environments (year-location
combmations during 2004-2006) including six rain-fed
environments and six supplemental irrigation (50 mm at
flowering stage) environments undertaken at dryland
agricultural research stations of Sararcod (Kermanshah
province, Iran) and Zanjireh (Ilam province, Iran). Of
13 genotypes, six were from the mternational durum wheat
improvement program based on Tran/TCARDA joint
project and seven from the national durum wheat
unprovement program. Also two genotypes Zardak
(durum wheat) and Sardari (bread wheat) that are typically
grown by Iraman farmers were considered as national
check 1n this study (Table 1). Experimental layout was a
randomized complete blocks design with three replications
m each environment. Sowing was done by an experimental
drill in 1.2x6 m plots, consisting of six rows with 20 cm
between the rows. Seeding rate was 350 seeds m™ for
each location. Fertilizer application was 41 N kg ha™' and
46 P,O.kg ha™ at planting. Yield (kg ha™") was obtained
by converting the grain yields obtained from plots to
hectares. A combined ANOVA and AMMI analysis on
the values of grain yield was processed using the program
IRRISTAT.

RESULTS

AMMI analysis: The AMMI analysis of variance
(Additive main effects) showed significant effects for
genotype, environment and GE interaction (Table 2).
These results showed that 61.59% of the total sum of
squares (33) was attributable to environment effects, only

2.85 and 14.86% to genotype and GE interaction effects,
respectively. A large of SS for environments indicated
that the environments were diverse, with large differences
among environmental means causing most of the variation
m grain yield. The magnitude of the GE interaction 35 was
5.2 times larger than that for genotypes, indicating that
there were sustainable differences in genotypic response
across environment.

Results from AMMI analysis (Multiplicative effect)
also showed that the first Interaction Principle Component
Axis (JPCAT) captured 28.2% of the interaction SS in
15.58% of the interaction Degrees of Freedom (df).
Sumlarity the IPCAZ and IPCA3 explamed a further
27.86 and 18.98% of the GE interaction 33, respectively.
Furthermore, TPCA1 and TPCAZ2 had S8 greater than that
of genotypes. The mean squares for TPCA] and TPCA2
were sigmficant (p<0.01) and cumulatively contributed
to 53.24% of the total GE mteraction. Therefore, the
post-dictive evaluation using an F-test at p = 0.01
suggested that two IPCA1 and IPCA2 were significant for
the model with 46 df. In total, AMMI2 model contained
91.23% of the treatment SS, while the residual contained
only 9.6%. The treatment and block S5 combined make up
81.8% of the total SS, with only 37.7% of the total df, while
the error term's 33 make up 18.6% of the total S3, while
containing 62.3% of the total df. These results indicate
that the AMMI model fits the data well and justifies the
use of AMMI2.

IPCAs represent noncrossover and crossover GE
interaction: TPCAs scores of genotypes and
environments took both positive and negative values
(Table 3, 4). Consequently, a genotype that has large
positive IPCA score with some environments must have
large negative interactions with some other environments.
Thus, these presented a disproportionate
genotype response (Yan and Hunt, 2001), which was the
major source of variation for any crossover GE interaction.

SCOres
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Table 2: Additive main effects and multiplicative interactions analysis of variance for grain vield of the 15 genotypes in 12 environments

Source df ) MS F Explained (%)
Total 539 332281147 616477 - -
Treatment 179 263488660 14772004 8.18%* 79.29
Genotypes 14 9457645 675546 3. 75% 2.85
Environments 11 204637631 18603421 53.62%* 61.59
Interactions (GxE) 154 49393384 320736 1.78%* 14.86
IPCAL 24 13930366 580432 3.23%% 28.20
IPCA2 22 12367005 562137 3124+ 25.04
IPCA3 20 9374946 468747 260k 18.98
IPCA4 18 4207834 233769 1.30¢% 8.52
Residuals 70 9513233 135903 0.76* 19.26
Block 24 8327278 346970 1.93%* 2.51
Error 336 60465209 179956 - 18.20

The block source of variation refers to blocks within environments, ** and ™ are significant at 196 level and non-significant, respectively

Table 3: Mean yield and the first two TPCAs scores, AMMI Stability Value (ASV) parameter and parameters of TOP, MID and LOW and for 135 genotypes
in 12 environments

Genotype Mean yield GIPCA1' GIPCA2 AVt TOP! MID! Lowl
Gl 2874 -0.65 -15.59 15.61 25 33 42
G2 2948 1011 3.63 11.95 25 42 33
G3 3131 -8.94 -5.49 11.47 50 25 25
G4 3122 3.76 2.67 5.01 42 58 0
GS 3093 7.01 -20.28 21.76 50 17 33
G6 3255 22.61 6.23 26.22 83 0 17
G7 2927 -16.21 16.92 24.89 33 25 42
G8 2732 1.96 3.79 4.39 0 17 83
G9 2932 =231 1.35 2.93 25 50 25
Gl10 3121 1617 22.66 29.07 42 33 25
Gl1 2937 -2046 1.18 23.08 42 17 42
Gl12 2853 -10.24 5.77 12.90 8 50 42
G13 3070 13.84 -15.82 22.21 33 42 25
Gl4 2892 -5.96 5.46 8.65 8 42 50
G1s 3020 -10.69 -12.49 17.35 33 50 17

T: GIPCA is genotypic IPCA scores, I: ASV is genotypic AMMI stability value parameter by Purchase et &f. (2000b), 9 TOP, MID and LOW are parameters

by Fox et al. (1990)

Table4: Environments ranked on FIPCA1 scores; including the first four recommended genotypes for each environment based on AMMI2 estimates and

environmental ASV parameter

AMMI2 genotype recommendations

EIPCAL1T EIPCA2

Environment  Mean score score 1st 2nd 3rd Ath ASVE
C 1688 23.90 -6.58 G13 G6 G10 G5 27.71
D 3462 14.85 -20.22 G6 G3 GS G4 26.24
G 2548 10.31 5.41 G10 G6 G2 G4 12.81
K 2068 7.90 31.65 Gl0o G6 Gl3 G4 32.88
F 3381 5.42 323 Gl0 G6 G7 G2 6.91
E 2780 2.35 -4.90 G6 G3 GS G4 5.57
B 3131 -0.42 -5.33 G5 G13 G3 G6 5.35
A 1994 -0.79 -4.36 G3 GS G6 G4 4.45
J 3809 -8.83 16.03 G6 G7 Gl1 G10 18.87
L 3387 -11.17 -1.06 G3 G1s Gl1 GS 12.63
1 3270 -19.59 -14.40 Gl15 Gl4 G7 Gl1 26.35
H 3549 -23.92 0.53 G6 Gl11 Gl15 G3 26.95
Dominant. Go Go - G

genotype

T: EIPCA is environmental TPCA scores, {: ASV is environmental AMMI Stability Value parameter of Purchase et ai. (2000)

This disproportionate genotype response 1s referred to as
crossover GE mteraction for convemence. Diversely,
scores with the same sign or near zero represent a
noncrossover GE interaction or a proportionate genotype
response.

Explaining the behavior of the most interactive
genotypes: The analysis of genotypes and environments

parameters resulting from AMMI, because this parameters
help to describe the behavior of genotypes. Genotypes
near to origin show little interaction, while genotypes
distance from it represent the most interactive genotypes
(Fig. 1). Genotypes G6, G10, G13, 37, G11 and G15 were the
most mteractive, while G4, G8 and 39 were the least
interactive. Out of six most interactive genotypes, G6 and

G10 had the most similar interaction pattern. G10
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320 Kk

21.4+

10.84

IPCA2

-10.44

-21.0 r T T T
=24 -14.4 -4.8 438 14.4 24
IPCAl

Fig. 1: AMMIZ biplet of 15 genotypes (Numbers) and
12 environments (Letters) for grain yield using
genotypic and environmental scores

showed positive interaction effect at the environments F,
G and K. G6 showed positive interaction effects at C, D, F,
G and K. G13 showed positive interaction effects at
D environment (Fig. 1, Table 3). In the experiments under
consideration, not only G4 had positive interaction in
environments with high yield, but also had the lowest
interaction in across environments. It had higher grain
yield than grand mean in all environments (Table 3, Fig. 1).

According to AMMI  Stability Value (ASV),
genotypes G9, followed by G8 and G4 were stable and
undesirable genotypes regarding to this parameter were
G10,G6, G7, G11 and G5, respectively. G6 had the highest
vield mean across environments and according to TOP
parameter was considered as widely adapted genotype

(TOP = 83%) (Table 3).

Test of environments: The results of AMMI analysis
showed that 61.59% of the total Sum of Squares (SS) was
attributable to environment effects. A large of 38 for
enviromments indicated that the environments were
diverse, with large differences among environmental
means causing most of the variation in grain yield
(Table 2). Also, to help interpret AMMI results from the
environmental viewpomt, the correlations between the
environments were computed. Correlations of genotypes
yield among environments varied widely. The correlations
were varied from -0.60 to 0.77 (p<0.01) (Data not shown).
The largest yield were recorded in environments with
supplemental irrigation (B, D, F, H, T and L). The
environments F, K and G were close to each other in the
AMMIZ biplot mndicating similar discrimination of
genotypes (Fig. 1, Table 4). Simularity, environments C and

D grouped together. The environments K, C, D, T and H
differed from all other environments in interaction with
genotypes. Environmental IPCAs scores close to zero are
characteristic of environments which contribute little to
the interaction, that is, they are stable. In this study the
environments of A, B, E and F were stable and had the
least interaction with genotypes. These results were taken
by ASV parameter too (Table 4).

Biplot: The AMMI biplot was generated using genotypic
and environmental scores of the first two IPCAs (Fig. 1).
In this case, biplot has four sections, depending upon
sings of the genotypic and environmental scores. In the
figure 1, the environments fell into four sections: with
respected to all three environments F, K and G, G10 and
36 were the best, respectively. Also G6 has the highest
yield among the genotypes in the environments D, E,
T and H. For the environments of C and D the genotypes
of G13, G5 were the best (Fig. 1). Genotypes located near
the plot origin were less responsive than the vertex
genotypes. Genotype G6 gave the highest average yield
(largest TPCAT score) but was relatively stable in across
environments, due to the fact that it does not give very
small absolute IPCA2 score. In contrast the non adapted
genotypes of G8 and G9 yielded low at all environments,
as indicated by their small TPCA1 (low yielding) and small
IPCA2 (high stable). G3 and G4 had high yield
(G6>G3>G4) and relatively high stable (G4>G3>G6), n this
fact due to relatively small TPCA1 and TPCA2 scores G3
and G4 in comparison with G6. The biplot shows not only
the average vield of a genotype (IPCAL), but also how 1t
1s achieved. That 1s, the biplot also shows the yield of a
genotype at individual environments. For example
genotype G6 had the highest average yield because it
yielded at environments B, G, I and T and yielded above
average at all other environments.

Genotype recommendations: In this study we want to
make genotype recommendations based on the
genotypes  used. Accordingly a good estimate of
genotype performance for specific environments can be
made. Tn Table 4 the first four genotype recommendations
based on estimated yield are shown for each environment.
From this table it can be seen that firstly, G6 1s prominent
in the top four environments (D, E, T and H) followed by
G3 being the genotype of choice inenvironments of
A and L. Gl0 13 the preferred genotype for the
environments F, G and K and G13 for C. Lastly G15 was
adapted to the environment I.

According to Fox et al. (1990) parameter, a genotype
usually found in the top third of entries across
environments can be considered relatively well adapted.
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Thus, G6 was adapted because it ranked in the top third
of genotype in a high percentage of environments
(lugh top value, 83%) and was followed by G3 (50%) and
(G5 (50%). The undesirable genotypes i this method were
G8, G12 and G14 (Table 3).

Table 3 and 4 give valuable information regarding
genotypes performance and adaptation. From Table 3,
becomes evident that G6 was the first recommendation in
four out of 12 times, second in four out of 12 times, third
in one out 12 times and fourth in one out of 12 times,
being in the top four recommendations 10 out of 12 times.
No other genotype matches the performance of G6. The
both G10 and G3 were in the top four recommendations
5 out of 12 times.

DISCUSSION

There are two strategies for developing genotypes
with low G x E interactions. The first is sub-division or
stratification of a heterogeneous area into smaller, more
homogeneous sub-regions, with breeding programs aimed
at developing genotypes for specific sub-regions.
However, even with this refinement, the level of
interaction can remain high, because breeding area does
not reduce the mteraction of genotypes with locations
and vears. The second strategy for reducng GxE
mteraction mvolves selecting genotypes with better
stability across a wide range of environments in order to
better predict behaviour (Eberhart and Russell, 1966;
Tai, 1971). Variouws methods use G*E interaction to
facilitate genotype characterization and as a selection
index together with the mean yield of the genotypes.

Numerous methods have been used for an
understanding of the causes of GxE mteraction
(van Eeuwijk et al., 1996). One of them is Additive Main
Effects and Multiplicative Interaction (AMMI) model in
MET data analysis. The AMMI modeled describes the GE
mteraction in more than one dimension and it offers better
opporturities for studding and interpreting GE mteraction
than analysis of variance (ANOVA) and regression of the
mean (Vargas et al., 2001). In AMMI, the additive, portion
is separated from interaction by ANOVA. Then the
Interaction Principle Components Analysis (TPCA), which
provides a multiplicative model, is applied to analyze the
interaction effect from the additive ANOVA model. The
biplot display of TPCA scores plotted against each other
provides visual inspection and interpretation of the GE
mnteractions. Integrating biplot display and genotypic
stability statistics enables genotypes to be grouped
based on smmilarity of performance across diverse
environments (Thillaimathan and Fernandez, 2001).

In this study the results of AMMI analysis indicated
that the AMMI model fits the data well and justifies the
use of AMMI2. This made it possible to construct the
biplot and calculate genotypes and environments effects
{(Gauch and Zobel, 1996, Vargas and Crossa, 2000,
Yan and Hunt, 2001; Kaya ef al., 2002). The Interaction
Principal Component Axes (IPCA) scores of a genotype
1in the AMMI analysis indicate the stability of a genotype
The closer the IPCA scores to
zero, the more stable the genotypes are across their
testing environments (Carbonell et al., 2004). In this
study, G6 gave the highest average yield (largest TPCAl
score) but was relatively stable over the environments. In
contrast the non adapted genotypes of G8 and G9 yielded
low at all environments, as indicated by their small TPCA1
(low yielding) and small IPCA2 (lugh stable). G3 and G4
had high yield and relatively high stable, mn thus fact due
to small IPCAZ scores G3 and G4.

The most accurate model for AMMI can be predicted
by using the first two IPCAs (Gauch and Zobel, 1996,
Yan and Hunt, 2001; Kaya et al, 2002). Conversely,
Sivapalan et al. (2000) recommended a predictive AMMI
model with the first four TPCAs. These results indicate
that the number of the terms to include in an AMMI
model cannot specify a prior without first trying AMMI
predictive assessment. In general, factors like type of
diversity of the germplasm and range of

across  environments.

crop,
environmental conditions will affect the degree of
complexity of the best predictive model (Crossa ef al,
1990).

However, the prediction assessment indicated that
AMMI with only two mteraction principal component
axes was the best predictive model (Zobel et al., 1988).
Further interaction principal component axes captured
mostly noise and therefore did not help to predict
validation observations. In this study, the interaction of
the 15 genotypes with 12 environments was best
predicted by the first two principal components of
genotypes and environments.

AMMI Stability Value (ASV) 1s m effect the distance
from the coordinate point to the origin in a two
dimensional scattergram of TPCAI scores against TPCA2
scores (Purchase et al., 2000). Stability in itself should
however not be the only parameter for selection, as the
most stable genotype wouldn't necessarily gives the best
yield performance. As example, consider G9, which has
the lowest ASV. If G9 was selected as genotype of choice
because of its stability, a mean yield 2932 kg ha™' would
have been reached (Table 3). Thus 1s no real improvement
on the grand mean of 2994 kg ha™'. Referring to Table 4,
(G9 was not recommended according to AMMI2 in first
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four This
performance does not match that of a genotype like G4,
with reasonably good ASV (ASV = 5.01) and good
average vield (3122 kg ha™). If G4 was planted in all
12 enviromments, an increase in average yields from
2994 to 3122 kg ha™' would be achieved. Only at three
environments the average yield of G4 was below grand
mean of environments. G3 13 another genotype with
higher mean yield than G4 (3131>3122 kg ha™) but its
ASV higher than G4 (11.47>5.01).

Genotypes evaluation must be conducted in multiple
locations for multiple years to fully sample the target
environment (Cooper ef al, 1997). Genotype in the
presence of unpredictable GE interaction is a perennial
problem in plant breeding (Bramel-Cox, 1996). To select for
superior genotypes, it seems that there is no easier way
other than to test widely (Troyer, 1996) and select for
both average yield and stability (Lin and Binns, 1994,
Kang, 1997).

recommendations across environments.
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