

Asian Journal of Plant Sciences

ISSN 1682-3974

ISSN 1682-3974 DOI: 10.3923/ajps.2018.150.159

Research Article

Comparison Between Salicylic Acid and Selenium Effect on Growth and Biochemical Composition of Celery

¹Aisha Mofeed Abdelhady Ahmed, ¹Fatma Mohamed Abdelkhalek Mohamed Elkady and ²Khalid Ali Khalid

Abstract

Background and Objective: Salicylic acid (SALA) and Selenium (Se) play important roles in physiological process in celery (*Apium graveolens* L.). Celery has different medical and biological properties. In this study, the Influence of SALA or Se on growth and chemical composition of celery plants were investigated at vegetative, flowering and fruiting stages. **Materials and Methods:** Celery plants treated with SALA or Se was applied to foliage at 10 or 20 mg L⁻¹ compared with an untreated control. Plant height, vegetative fresh and dry weights and contents of essential oils composition, photosynthetic pigments, total carbohydrates, soluble sugars and antioxidant enzymes (SOD, CAT, POX) were measured. The averages of data were analyzed using 2-ways analysis of variance. **Results:** The SALA and Se significantly affected the growth and yield of celery crop. Treatment of 20 mg L⁻¹ SALA produced the best growth and the highest chemical contents during the flowering stage. **Conclusion:** The SALA and Se resulted in significant changes on growth, yield and chemical constituents of celery crop.

Key words: Celery, salicylic acid, selenium, growth, essential oil, chemical contents

Citation: Aisha Mofeed Abdelhady Ahmed, Fatma Mohamed Abdelkhalek Mohamed Elkady and Khalid Ali Khalid, 2018. Comparison between salicylic acid and selenium effect on growth and biochemical composition of celery. Asian J. Plant Sci., 17: 150-159.

Corresponding Author: Khalid Ali Khalid, Department of Medicinal and Aromatic Plants, National Research Centre, Dokki, 12311, Cairo, Egypt Tel: +201117727586

Copyright: © 2018 Aisha Mofeed Abdelhady Ahmed *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Botany, National Research Centre, Dokki, 12311, Cairo, Egypt

²Department of Medicinal and Aromatic Plants, National Research Centre, Dokki, 12311, Cairo, Egypt

INTRODUCTION

Celery (*Apium graveolens* L.) contains essential oil used in food and pharmaceutical industries¹. The SALA and Se are chemicals that could be used as elicitors to modify plant growth, yield, secondary products and bioactivities processes of medicinal and aromatic plants^{2,3}.

Salicylic acid (SALA), a plant phenol, was recognized as a regulator of plant physiological processes when applied exogenously to plants, the most investigated roles of SALA are associated with its interference in plant resistance response to pathogen attacks and less than optimal biotic conditions⁴. Improvement in growth, yield and essential oil yield occurred due to SALA treatment of lemongrass (Cymbopogon citratus)⁵. Biomass production and seed yield of coriander (Coriandrum sativum) were increased due to treatment with SALA6. Treatment with SALA increased fresh and dry weights and sugar content of Salvia officianlis L. and Plectranthus tenuiflorus^{7,8}. Application of SALA on Calendula officinalis indicated that SALA enhanced shoot and root dry weights and inflorescences number^{9,10}. Abdou and Mohamed¹¹ reported that SALA improved mint (Mentha piperita L.) production, rates of photosynthetic pigments (chlorophyll a and b and total carotenoid), essential oil amounts and major constituents of essential oil. Khodary¹² reported that SALA accelerated growth, photosynthesis and carbohydrate metabolism of maize (Zea mays L). Pirbalouti et al. 13 reported that monoterpene hydrocarbons and major constituents of summer savory (Satureja hortensis) essential oils (carvacrol, γ -terpinene (Z)-β-ocimene, α -pinene and α -terpinene) were increased by foliar application of SALA. Peppermint (Mentha piperita L.) essential oil was improved due to application of SALA but essential oil constituents were not changed 14. The antioxidant enzymes catalase, CAT; peroxidase, POX; superoxide dismutase, SOD of Brassica juncea, wheat (Triticum aestivum) and sunflower (Helianthus annuus) were enhanced in response to SALA¹⁵⁻¹⁷.

Selenium (Se) is required in various crops at low doses, it has an important role in hormone balance, antioxidative reactions and many physiological processes in plant cell. It can promote glutathione peroxidase (GPX) activities which increase a resistance to substandard biotic factors affecting crops¹⁸⁻²¹. Application of Se enhanced growth, yield and accumulation of photosynthetic pigments in cucumber, alfalfa, peanut and chives²²⁻²⁶. Selenium application was associated with increased *Brassica rapa* L. seed production²⁷. Essential oil productions in aromatic plants were affected by Se application²⁸. Basil and lemon balm plants treated with Se

resulted in improved essential oil contents²⁹. Selenium increased essential oil and monoterpenes of geranium²⁸. Salvia officinalis had improved levels of α -thujone, β -thujone, camphor and ketones while mono and sesquiterpenes were reduced due to Se treatment³⁰. Selenium affected essential oils in chives²⁶. Application of Se increased soluble sugars and total carbohydrate in potato, alfalfa and maize³¹⁻³⁴. Effects of Se concentrations $(0, 10, 20, 40, 80, 150, 175, 200, 250 \text{ mg L}^{-1})$ on activities of glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) and Gua-dep peroxidases (POD) of Spirulina platensis were investigated³⁵, application with >175 mg L⁻¹ producing increased GPX, SOD, CAT and POD activities. Antioxidant enzymes of lettuce were enhanced due to treatment with low doses of Se³⁶. Treated tomato plants with Se resulted in higher activities of CAT than control³⁷.

Scientific research had different techniques to increase the medicinal plants productivity which must increase as demand for food and natural pharmaceutical row materials production increases. The applications of SALA or Se are two ways of research that have the potential to increase the productivity of medicinal plants. Therefore, the effects of SALA and Se on growth, yield and chemical composition of celery plants were evaluated.

MATERIALS AND METHODS

Experimental: Two pot experiments were conducted in a greenhouse of the National Research Centre, Dokki, Cairo, Egypt, during 2 seasons of 2015/2016 and 2016/2017. Celery seeds were obtained from the Department of Medicinal and Aromatic Plants (MAP), Ministry of Agriculture, Giza, Egypt. Ten seeds were sown in each clay pot (30 cm diameter) in the 3rd week of October during both seasons. Each pot was filled with 10 kg of air-dried clay:sand (1:1, V:V) mix. Eight weeks after sowing, seedlings were thinned to 3 plants per pot. Pots were divided into 3 groups. The first group was exposed to SALA at 10 or 20 mg L^{-1} . The second group was subjected to Se at 10 or 20 mg L^{-1} . The third group was subjected to distilled water (as control). The SALA and Se were applied to run-off to foliage at 10 weeks after sowing. All agricultural practices were conducted according to the recommendations by the Egyptian Ministry of Agriculture.

Growth characters: Plant height and vegetative fresh and dry weights were recorded during the vegetative stage, 120 days after sowing (120 DAS), flowering stage, 210 days after sowing (210 DAS) and fruiting stage, 225 days after sowing (225 DAS).

Essential oil isolation: Fresh above ground tissue was collected from each treatment during vegetative, flowering, fruiting stages and fruit yield, air dried and weighed to extract the essential oil, then 100 g from each replicate of all treatments was subjected to hydro-distillation for 3 h using a Clevenger-type apparatus³⁸. The essential oil content was calculated as a relative percentage (v/w). Total essential oil per 100 plants was calculated. The essential oil extracted from celery fruit were collected from each treatment and dried over anhydrous sodium sulfate to identify the chemical constituents.

Gas chromatography-mass spectrometry (GC-MS): The GC-MS analysis was carried out with an Agilent 5975 GC-MSD system. DB-5 column (60 m×0.25 mm, 0.25 mm film thickness) was used with helium as carrier gas (0.8 mL min⁻¹). The GC oven temperature was kept at 60°C for 10 min and programmed to reach 220°C at a rate of 4°C min⁻¹ and then kept constant at 220°C for 10 min followed by elevating the temperature to 240°C at a rate of 1°C min⁻¹. Split ratio was adjusted at 40:1. The injector temperature was set at 250°C. Mass spectra were recorded at 70 eV. Mass range was m/z 35-450.

GC analysis: The GC analysis was carried out using an Agilent 6890N GC system using FID detector temperature of 300°C. To obtain the same elution order with GC-MS, simultaneous auto-injection was done on a duplicate of the same column at the same operational conditions. Relative (%) amounts of separated compounds were calculated from FID chromatograms.

Identification of components: Identification of essential oil components was carried out by comparison of their relative retention times with those of authentic samples or by comparison of their Retention Index (RI) to series of n-alkanes. Computer matching was against commercial (Wiley GC/MS Library, Mass Finder 3 Library)^{39,40} and in-house Başer Library of essential oil constituents built up by genuine compounds and components of known oils. Additionally, MS literature data were used for identification^{41,42}.

Determination of photosynthetic pigments: Chlorophyll (Ch a, Ch b) and total carotenoids (TC) in fresh leaves which collected at vegetative and flowering stages of each treatment were determined using methods described by the Anonymous⁴¹.

Determination of total carbohydrate and soluble sugars:

Total carbohydrate and soluble sugars contents were determined from leaves collected at the vegetative and flowering stages of each treatment. Their contents were determined with the method of Dubois *et al.*⁴³.

Extraction and assaying antioxidant enzymes activities:

Enzyme extraction was with the method described by Mukherjee and Choudhuri⁴⁴. Catalase activity (CAT) EC 1.11.1.6 assayed according to the method of Kar and Mishra⁴⁵. Superoxide dismutase activity (SOD) EC 1.15.1.1 was determined by measuring inhibition of auto-oxidation of pyrogallol with the method of Marklund and Marklund⁴⁶. Peroxidase activity (POX) EC 1.11.1.7 assayed with the method of Kar and Mishra⁴⁵ with slight modifications.

Statistical analysis: The experiment was arranged as a $2\times2\times3$ factorial (SALA, SE, growth stages) with 4 replicates using a randomized complete block design using STAT-ITCF program (Statistica, ver. 7.1, Statsoft Inc., Tulsa, OK)⁴⁷. According to De Smith⁴⁸ averages of data of both seasons were analyzed using 2-ways analysis of variance.

RESULTS

Effect of SALA and Se on growth characters and fruit yield:

Growth characters [plant height (cm) and vegetative fresh and dry weights (g/plant)] were affected by SALA and Se treatments during vegetative, flowering and fruiting stages (Table 1). All SALA or Se, except the Se at 20 mg L $^{-1}$ caused increases in all growth characters compared with the control at the various stages. All growth characters were increased toward the fruiting stage. The greatest growth characters were obtained from treatment of 20 mg L $^{-1}$ SALA with the values of 27.1, 102.5 and 119.8 cm; 4.8, 49.7 and 55.3 g/plant; 2.7, 17.0 and 19.9 g/plant at vegetative, flowering and fruiting stages respectively. Changes in growth characters were significant for SALA or Se treatments, growth stages and treatment \times growth stages. Plants treated with doses of SALA or Se produced high fruit yield compared with the control (Table 2). The greatest fruit yield was due to treatment with 20 mg L $^{-1}$ SALA.

Effect of SALA and Se on essential oil content: The contents of essential oil isolated from celery were affected by SALA and Se levels during vegetative, flowering and fruiting stages (Table 1). Plants treated with levels of SALA and Se had higher essential oil contents than the control at different growth

Table 1: Effect of SALA or Se levels and growth stages on growth characters and essential oil in vegetative tissues

			Growth character		-	Essential oil in v	egetative tissue
Growth stages	Treatment (mg L ⁻¹)		Plant height (cm)	Fresh weight (g/plant)	Dry weight (g/plant)	Percentage	Yield (mL/100 plants)
Vegetative	Control	0	17.6±0.1	2.2±0.0	1.5±0.0	0.9±0.2	1.4±0.2
	SALA	10	23.0 ± 0.1	3.4 ± 0.0	2.4 ± 0.1	1.5±0.1	3.6 ± 0.2
		20	27.1 ± 0.2	4.8±0.1	2.7 ± 0.0	1.9±0.1	5.1 ± 0.1
	Se	10	21.3 ± 0.1	2.9 ± 0.1	2.1 ± 0.1	1.3 ± 0.2	2.7±0.2
		20	15.9±0.1	2.1 ± 0.1	1.3 ± 0.0	1.5±0.1	2.0 ± 0.1
Overall vegetative			21.0±0.2	3.1±0.1	2.0±0.2	1.4±0.1	3.0±0.1
Flowering	Control	0	61.1 ± 0.2	10.8 ± 0.2	5.7±0.1	1.1 ± 0.1	6.3 ± 0.2
	SALA	10	69.7±0.1	30.9 ± 0.1	11.1±0.2	1.6 ± 0.2	17.8 ± 0.1
		20	102.5 ± 0.1	49.7±0.1	17.0 ± 0.1	2.1 ± 0.1	35.7±0.3
	Se	10	65.3±0.1	13.7±0.1	6.6±0.1	1.5±0.1	9.9±0.2
		20	58.0±0.1	8.6±0.1	4.9±0.1	1.7±0.1	8.3 ± 0.3
Overall flowering			71.3±1.6	22.7±1.6	9.1±0.5	1.6±0.2	15.6±0.3
Fruiting	Control	0	70.6 ± 0.1	12.7±0.1	6.6±0.0	0.8 ± 0.1	5.3±0.3
	SALA	10	95.8±0.0	34.2±0.2	13.6±0.0	1.1 ± 0.1	15.0 ± 0.2
		20	119.8±0.1	55.3±0.1	19.9±0.1	1.3 ± 0.1	25.9 0.3
	Se	10	79.8 ± 0.0	15.7±0.1	8.0±0.1	0.9 ± 0.1	7.2 ± 0.2
		20	65.7±0.1	10.4±0.1	5.4±0.1	1.0 ± 0.1	5.4±0.1
Overall fruiting			86.4±2.3	25.7±1.7	10.7±0.4	1.0±0.1	11.8±0.3
Overall treatments	Control	0	49.8±2.4	8.6±0.3	4.6±0.1	0.9 ± 0.1	4.3±0.2
	SALA	10	62.8±3.2	22.8±0.5	9.0±0.2	1.4 ± 0.1	12.1±0.3
		20	83.1±4.2	36.6±2.4	13.2±0.7	1.8 ± 0.1	22.2 ± 0.3
	Se	10	55.5±2.2	10.8±0.6	5.6±0.3	1.2±0.1	6.6±0.1
		20	46.5±2.3	7.0 ± 0.3	3.9±0.2	1.4 ± 0.1	5.2±0.1
F-ratio							
Treatments			170710.7***	165369.7***	18473.3***	8.5***	2416.6***
Growth stages			1571192.6***	265534.6***	44051.4***	13.8***	3067.6***
Treatments×growtl	n stages		25227.9***	34706.1***	3510.2***	0.4ns	440.7***

^{***}Significant at p<0.001, ANOVA, SALA: Salicylic acid, S: Selenium

Table 2: Effect of SALA or Se levels and on fruit yield and essential oil of fruit

			Essential oil (fru	Essential oil (fruits)		
Treatme	nt (mg L ⁻¹)	Fruit yield (g Plant ⁻¹)	Percentage	Yield (mL) (100 Plant) ⁻¹		
Control	0	7.9±0.1	1.2±0.2	13.4±0.4		
SALA						
	10	17.8 ± 0.2	1.9±0.1	33.8±0.1		
	20	23.8±0.2	2.3 ± 0.2	54.7 ± 0.3		
Se						
	10	18.7±0.3	1.6 ± 0.1	29.9 ± 0.3		
	20	13.8±0.2	1.4 ± 0.1	19.3 ± 0.3		
F-value		2403.7***	6.8***	9753.3***		

^{***}Significant at p<0.001, ANOVA, SALA: Salicylic acid, Se: Selenium

stages. The greatest essential oil content was due to treatments with 20 mg L $^{-1}$ SALA at flowering stage. The SALA or Se treatments increased contents of essential oil extracted from celery fruit (Table 2). About 20 mg L $^{-1}$ SALA treatment produced the highest values of essential oil in fruit.

Effect of SALA and Se on essential oil components: Analysis with GC-MS indicated the presence of 19 compounds of essential oil from celery fruit (Table 3). Limonene, β -selinene, sedanolide and sedanenolide were identified as major constituents that produced the highest amounts of essential

oil due to treatment with SALA or Se. Increases occurred in the major essential oil constituents with all doses of SALA or Se. The 20 mg L $^{-1}$ SALA produced the highest amounts of limonene, β-selinene, sedanolide and sedanenolide (Table 3). All identified components were classified into 4 fractions. Monoterpene hydrocarbons (MCH), sesquiterpene hydrocarbons (SCH) and oxygenated sesquiterpenes (SCHO) were the main fractions. Oxygenated monoterpenes (MCHO) formed a minor fraction. Treatment with 20 mg L $^{-1}$ SALA produced the highest amounts of MCH, SCH and SCHO; treatment with 20 mg L $^{-1}$ of Se produced the greatest amount of MCHO. There were highly significant variations in β-pinene, myrcene, p-cymene, limonene, carvone, β-selinene, sedanolide, sedanenolide and MCHO due to treatment.

Effect of SALA and Se on photosynthetic pigments: Most levels of SALA or Se caused increases in photosynthetic pigments (chlorophyll a, b and total carotenoids) during vegetative and flowering stages, except for 20 mg L^{-1} (Se) which caused a decrease (Table 4). Higher values were found in the photosynthetic pigments at the flowering stage than at the vegetative stage. The greatest amounts of chlorophyll a, b and total carotenoids were due to treatment with 20 mg L^{-1} SALA (Table 4).

Table 3: Effect of SALA or Se levels e on fruit essential oil constituents

			Treatments (mg L ⁻¹)					
				SALA		Se		
Number	Components (%)	RI	Control 0	10	20	10	20	F-value
1	α-Pinene	939	0.6±0.1	0.5±0.1	0.3±0.1	0.6±0.1	0.5±0.1	4.5*
2	Sabinene	976	0.9 ± 0.1	0.9 ± 0.1	0.8 ± 0.2	0.7 ± 0.2	0.7 ± 0.2	1.1ns
3	β-Pinene	980	0.3 ± 0.1	0.3 ± 0.1	0.9 ± 0.1	0.3 ± 0.1	0.6 ± 0.2	13.7***
4	Myrcene	991	0.3 ± 0.1	0.1 ± 0.0	0.5 ± 0.1	0.4 ± 0.1	0.2 ± 0.1	9.4***
5	p-Cymene	1026	0.2 ± 0.1	0.4 ± 0.1	0.6 ± 0.2	0.9 ± 0.1	0.8 ± 0.2	11.2***
6	Limonene	1031	32.3±0.3	32.8 ± 0.2	33.5 ± 0.5	32.4±0.4	32.9±0.1	6.2***
7	Limonene Oxide	1138	0.4 ± 0.1	0.5 ± 0.1	0.3 ± 0.1	0.7 ± 0.2	0.6 ± 0.1	4.7*
8	Menthol	1173	1.3 ± 0.3	1.1 ± 0.1	1.2 ± 0.2	1.6 ± 0.1	1.6 ± 0.1	1.7ns
9	Citronellol	1228	1.4 ± 0.1	1.3 ± 0.3	1.2 ± 0.1	1.1 ± 0.1	1.5 ± 0.1	0.7ns
10	Carveol	1229	1.5 ± 0.1	1.7 ± 0.2	1.6 ± 0.2	1.7 ± 0.1	1.4 ± 0.1	0.4ns
11	Citral	1240	1.3 ± 0.1	1.2 ± 0.2	1.4 ± 0.2	1.1 ± 0.1	1.6 ± 0.1	1.6ns
12	Carvone	1242	0.2 ± 0.1	0.5 ± 0.1	0.6 ± 0.1	0.4 ± 0.1	0.7 ± 0.1	11.1***
13	Phellandral	1249	0.4 ± 0.1	0.9 ± 0.1	0.8 ± 0.2	0.5 ± 0.1	0.6 ± 0.2	5.8ns
14	β-Elemene	1375	0.5 ± 0.1	0.6 ± 0.1	0.4 ± 0.1	0.3 ± 0.1	0.6 ± 0.2	3.2ns
15	Tetradecane	1399	0.7 ± 0.2	0.6 ± 0.2	0.5 ± 0.1	0.6 ± 0.2	0.5 ± 0.1	0.8ns
16	β-Humulene	1440	0.5 ± 0.2	0.8 ± 0.2	0.9 ± 0.1	0.7 ± 0.1	0.8 ± 0.2	2.5ns
17	β-Selinene	1485	26.8 ± 0.2	27.3 ± 0.3	28.9 ± 0.1	26.9 ± 0.1	27.1 ± 0.1	69.4***
18	Sedanolide	1601	9.8±0.2	10.9 ± 0.1	11.1 ± 0.1	9.9 ± 0.1	10.4 ± 0.4	22.0***
19	Sedanenolide	-	10.2 ± 0.2	10.9 ± 0.1	11.8±0.2	10.5 ± 0.1	10.6 ± 0.4	11.3***
MCH			34.6 ± 0.4	35.0 ± 0.1	36.6 ± 0.4	35.3 ± 0.3	35.7±0.2	6.0*
MCHO			6.5±0.1	7.2 ± 0.2	7.1 ± 0.1	7.1 ± 0.1	8.0 ± 0.1	7.7***
SCH			28.5 ± 0.4	29.3±0.3	30.7 ± 0.7	28.5 ± 0.5	29.0±0.5	2.4ns
SCHO			20.0±0.2	21.8 ± 0.4	22.9±0.1	20.4 ± 0.4	21.0±0.3	3.5*
Total iden	tified		89.6	93.3	97.3	91.3	93.7	

SALA: Salicylic acid, Se: Selenium, RI: Retention index, ***p<0.001, *p<0.01, *p<0.05, MCH: Monoterpenes hydrocarbons, MCHO: Oxygenated monoterpenes, SCH: Sesquiterpene hydrocarbons, SCHO: Oxygenated sesquiterpenes

Table 4: Effect of SALA or Se levels on photosynthetic pigments, total carbohydrates and total soluble sugars during various growth stages

			Photosynthetic pigments (mg g^{-1})				
						Total carbohydrates	Total soluble
Growth stages	Treatments (mg L^{-1})		Ch a	Ch b	TC	(mg g ⁻¹)	sugars (mg g ⁻¹)
Vegetative	Control	0	3.1±0.0	2.9±0.0	1.4±0.0	56.9±0.1	36.6±0.1
	SALA	10	3.4 ± 0.0	3.3 ± 0.0	1.5 ± 0.0	72.0 ± 0.1	46.8±0.2
		20	3.5 ± 0.0	3.4 ± 0.0	1.5 ± 0.0	85.3±0.1	48.2±0.1
	Se	10	3.2 ± 0.0	3.1 ± 0.0	1.5±0.0	69.6±0.2	44.9±0.1
		20	3.0 ± 0.0	1.8 ± 0.0	1.4±0.0	52.2±0.2	29.9±0.2
Overall vegetative			3.2±0.2	2.9±0.2	1.5±0.0	67.2±0.1	41.3±0.2
Flowering	Control	0	3.3 ± 0.0	3.2 ± 0.0	1.6±0.0	67.7±0.1	38.2±0.1
	SALA	10	3.7 ± 0.0	3.5 ± 0.0	1.7±0.1	78.6±0.3	47.1 ± 0.1
		20	4.0 ± 0.0	3.7 ± 0.0	1.8±0.1	102.0 ± 0.1	72.0 ± 0.1
	Se	10	3.5 ± 0.0	3.3 ± 0.0	1.6±0.0	68.0±0.1	40.6±0.1
		20	3.1 ± 0.1	3.0 ± 0.0	1.5±0.0	65.5±0.4	35.9±0.2
Overall flowering			3.5±0.3	3.3±0.2	1.6±0.1	76.4±0.1	46.7±0.1
Overall treatments	Control	0	3.2 ± 0.1	3.0 ± 0.1	1.5±0.1	62.3±0.2	37.4±0.2
	SALA	10	3.6 ± 0.2	3.4 ± 0.1	1.6±0.1	75.3±0.3	46.9±0.2
		20	3.7 ± 0.3	3.5 ± 0.2	1.6±0.2	93.6±0.1	60.1 ± 0.1
	Se	10	3.3 ± 0.2	3.2 ± 0.1	1.6±0.1	68.8±0.3	42.8 ± 0.2
		20	3.1 ± 0.1	2.4 ± 0.2	1.4±0.0	58.9±0.3	32.9 ± 0.3
F-ratio							
Treatments			1434.6***	6632.7***	24.4***	30939.0***	54614.5***
Growth stages			2275.7***	7751.5***	173.1***	17227.0***	18722.3***
Treatments x growth stages			135.6***	1648.8***	9.1***	2029.4***	14852.1***

SALA: Salicylic acid, Se: Selenium, ***p<0.001

Table 5: Effect of SALA or Se levels on antioxidant enzymes activities during various growth stages

			Antioxidant enzymes (unit gFW/ min)			
Growth stages	Treatments (mg L^{-1})		SOD	CAT	POX	
Vegetative	Control	0	1.3±0.0	25.9±0.0	0.6±0.0	
	SALA	10	1.5 ± 0.0	26.1±0.0	1.0±0.0	
		20	1.6±0.0	28.3±0.0	1.1 ± 0.0	
	Se	10	1.4±0.0	26.2±0.2	0.9 ± 0.0	
		20	1.2±0.0	25.7±0.0	0.5 ± 0.0	
Overall vegetative			1.4±0.1	26.4±0.1	0.8±0.2	
Flowering	Control	0	2.1±0.1	26.2±0.1	0.8±0.0	
	SALA	10	2.2±0.0	27.9±0.1	1.1 ± 0.0	
		20	2.5±0.0	31.5±0.5	1.2±0.0	
	Se	10	2.1 ± 0.0	26.7±0.3	0.9±0.0	
		20	1.8±0.0	26.0±0.0	0.6 ± 0.0	
Overall flowering			2.1±0.2	27.7±0.2	0.9±0.2	
Overall treatments	Control	0	1.7±0.4	26.1±0.2	0.7 ± 0.1	
	SALA	10	1.9±0.4	27.0±0.9	1.0 ± 0.1	
		20	2.0±0.5	29.9±0.8	1.2±0.0	
	Se	10	1.7±0.4	26.5±0.3	0.9±0.0	
		20	1.5±0.3	25.9±0.2	0.5 ± 0.1	
F-ratio						
Treatments			803.4***	448.4***	1119.4***	
Growth stages			16073.3***	310.9***	243.2***	
Treatments x growth stage	?S		59.0***	67.1***	13.1***	

SALA: Salicylic acid, Se: Selenium, ***p<0.001, CAT: Catalase, SOD: Superoxide dismutase, POX: peroxidase

Effect of SALA and Se on total carbohydrate and total soluble sugars: Foliar application of SALA, Se or the interaction affected total carbohydrate and soluble sugars during various growth stages compared with control (Table 4). Celery plants had lower amounts of total carbohydrates and soluble sugars at the vegetative stage than at the flowering stage. The highest amounts of total carbohydrate and soluble sugars were due to treatment with 20 mg L⁻¹ SALA at flowering stage.

Effect of SALA and Se on antioxidant enzymes: Treatments, growth stages and the interaction affected antioxidant enzymes activities (SOD, CTA and POX) (Table 5). Activities of antioxidant enzymes due to treatment with SALA or Se, except 20 mg L⁻¹ Se which resulted in a decrease compared with control, varied at the various growth stages. During flowering stage, the 20 mg L⁻¹ SALA produced higher values in activities of antioxidant enzymes than other treatments or the control.

DISCUSSION

The stimulating effects of SALA on plant growth characters at the growth stages could be attributed to SALA effects on ion uptake, cell elongation, cell division, cell differentiation, sink/source regulation, changes in the hormonal status, improvement of photosynthesis, transpiration and stomatal conductance⁴⁹⁻⁵⁴. The SALA

increased rate of cell metabolism, prerequisite for synthesis of auxin and/or cytokinin55,56. The stimulating effects of SALA on growth characters were confirmed by Khodary¹² on maize, Hayat et al.57 on wheat, Abdel-Wahed et al.58 on yellow maize, El-Khallal et al.59 on maize, Delavari et al.60 on Ocimum basilicum and Dawood et al.61 on sunflower. The effect of SALA on the essential oil has been confirmed. Rowshan et al.⁶² indicated that increased essential oil contents due to treatment with SALA may be due to increase in numbers of leaf oil glands and enzyme activities of mono and sesquiterpenes biosynthesis. The results agreed with Abdou and Mohamed¹¹ and Talaat et al.⁶³, they reported that SALA caused a significant increase in *Mentha piperita* and Ammi visnaga essential oil and its major constituents. The increases in photosynthetic capacity due to treatment with SALA could be attributed to stimulatory effects on pigment composition, rubisco activities, CO2 assimilation, photosynthetic rate and nutrient uptake^{12,64}. The SALA has beneficial effects on photosynthetic apparatus through increase of antioxidants and new protein and decreases its degradation 54,65. Salicylic acid inhibits synthesis of ACC enzyme that prevents formation of ethylene and chlorophyll loss⁶³. Positive effects of SALA on photosynthetic pigments were confirmed by some previous investigators. Salicylic acid at low doses caused increases in photosynthetic pigments of wheat, Brassica juncea, Mytrus communis and Phaseolus vulgeris^{12,57,66-67}. The increase in total carbohydrates

and soluble sugars under SALA treatments may be implicated in osmotic adjustment as it has been reported in tomato plants treated with SALA⁶⁸. The results from this work agree with Tari et al.68, Talaat69, El-Din and Reda70 and El-Moursi et al.71, who reported that total carbohydrates and soluble sugars were increased due to SALA treatment of camellia, pelargonium, chamomile, plectranthus and sweet marjoram. Activities of SOD, CTA and POX were increased due to treatment with SALA doses due to enhanced capacity of tissues to scavenge excess ROS. Salicylic acid application influences a wide variety of plant inductions of antioxidant synthesis^{72,73}. The effects of SALA on the growth and biochemical characters of Mentha suaveolens under salt stress were investigated 74, the results decided that application of SALA at 30 mM caused significant increases in growth parameters, chlorophyll pigments, total phenolic compounds, tannins, soluble sugars, proline and hydrogen peroxide.

Variation occurred in growth characters, photosynthetic pigments and essential oil due to treatment with Se which may be due to increased chlorophyll content and amount of respiration value and glutathione peroxidase (GSH-Px) activity in mitochondria and dry matter content⁷⁵⁻⁷⁹. That treatment with Se affects photosynthetic pigments has been reported80-82. Low doses of Se can affect chlorophyll by increasing uptake of magnesium (Mg) in leaves⁸³. Treatment with Se caused an increase in essential oil contents and major constituents. This may be due to Se ability to increase essential oils²⁸. Selenium affects CO₂ assimilation rates that increase photosynthetic pigments content and ultimately accumulation of essential oil composition²⁸. Obtained results agree with Lee et al.29, Khalid 30 and Khalid et al.26 who reported that Se increased essential oil of basil and lemon balm and parsley compared with control. Selenium caused an increase in carbohydrate and soluble sugars, which may be due to higher CO₂ fixation as result of enhanced stomatal conductance or activation of enzymes involved in CO2 assimilation producing a more efficient photosynthetic process and producing more carbohydrates^{32,84}. The activation of antioxidant enzymes by Se has been reported in dill^{85,86}. On other hand, the effects of Se on enzymatic activities and productivity of dill under saline condition were investigated⁸⁷; the results decided that Se caused various improvements in antioxidant enzymes activities and osmotic adjustment; therefore, adding Se under saline condition could be a better strategy for maintaining the dill productivity in arid regions. Application of Se with iodine resulted in an increase of carrot productivity88.

CONCLUSION

It may be summarized that SALA and Se caused significant effects on growth characters and chemical composition of celery plants. The treatment of 20 mg L⁻¹ (SALA) resulted in higher values in growth characters, essential oil yield and major constituents of essential oil, photosynthetic pigments, total carbohydrates, soluble sugars and some antioxidant enzymes activities than control and other treatments.

SIGNIFICANCE STATEMENT

This study discovered that production of celery crop under SALA treatments is required. The SALA application caused significant variations in the active principals (essential oil) isolated from celery; so this investigation help the producers, ministry of agriculture and pharmaceutical companies to increase the yield and active principal of celery as a natural source of pharmaceutical and drug industries.

REFERENCES

- Khalid, K.A. and M.S. Hussien, 2012. Effect of cattle and liquid manures on essential oil and antioxidant activities of celery (*Apium graveolens* L.) Fruits. J. Essent. Oil Bear. Plants, 15: 97-107.
- 2. Van Wees, S.C. and J. Glazebrook, 2003. Loss of non host resistance of *Arabidopsis NahG* to *Pseudomonas syringae* pv. phaseolicola is due to degradation products of salicylic acid. Plant J., 33: 733-742.
- Germ, M. and V. Stibilj, 2007. Selenium and plants. Acta Agric. Slov., 89: 65-71.
- 4. Jalal, R.S., S.O. Bafeel and A.E. Moftah, 2012. Effect of salicylic acid on growth, photosynthetic pigments and essential oil components of Shara (*Plectranthus tenuiflorus*) plants grown under drought stress conditions. Int. Res. J. Agric. Sci. Soil Sci., 2: 252-260.
- Idrees, M., M.M.A. Khan, T. Aftab, M. Naeem and N. Hashmi, 2010. Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J. Plant Interact., 5: 293-303.
- Hashemi, A., A. Abdolzadeh and H.R. Sadeghipour, 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, *Brassica napus* L., plants. Soil Sci. Plant Nutr., 56: 244-253.
- 7. Jalal, R.S., A.E. Moftah and S.O. Bafeel, 2012. Effect of salicylic acid on soluble sugars, proline and protein patterns of shara (*Plectranthus tenuiflorus*) plants grown under water stress conditions. Int. Res. J. Agric. Sci. Soil Sci., 2: 400-407.

- 8. Sahar, K., B. Amin and N.M. Taher, 2011. The salicylic acid effect on the *Salvia officianlis* L. sugar, protein and proline contents under salinity (NaCl) stress. J. Stress Physiol. Biochem., 7: 80-87.
- 9. Bayat, H., M. Alirezaie and H. Neamati, 2012. Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (*Calendula officinalis* L.) under salinity stress. J. Stress Physiol. Biochem., 8: 258-267.
- 10. Pacheco, A.C., C. da Silva Cabral, E.S. da Silva Fermino and C.C. Aleman, 2013. Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. J. Med. Plants Res., 7: 3158-3163.
- 11. Abdou, M. and M.A.H. Mohamed, 2014. Effect of plant compost, salicylic and ascorbic acids on *Mentha piperita* L. plants. Biol. Agric. Hortic., 30: 131-143.
- 12. Khodary, S.E.A., 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int. J. Agric. Biol., 6: 5-8.
- 13. Pirbalouti, A.G., M. Rahimmalek, L. Elikaei-Nejhad and B. Hamedi, 2014. Essential oil compositions of summer savory under foliar application of jasmonic acid and salicylic acid. J. Essent. Oil Res., 26: 342-347.
- 14. Saharkhiz, M.J. and T. Goudarzi, 2014. Foliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (*Mentha piperita* L.). J. Essent. Oil Bear. Plants, 17: 435-440.
- 15. Sakhabutdinova, A.R., D.R. Fatkhutdinova and F.M. Shakirova, 2004. Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Applied Biochem. Microbiol., 40: 501-505.
- 16. Sedghi, M., H.K. Basiri and R.S. Sharifi, 2013. Effects of salicylic acid on the antioxidant enzymes activity in sunflower. Ann. West Univ. Timisoara Ser. Biol., 16: 67-72.
- 17. Yusuf, M., S.A. Hasan, B. Ali, S. Hayat, Q. Fariduddin and A. Ahmad, 2008. Effect of salicylic acid on salinity-induced changes in *Brassica juncea*. J. Integr. Plant Biol., 50: 1196-1202.
- 18. Csiszar, J., M. Szabo, L. Erdei, L. Marton, F. Horvath and I. Tari, 2004. Auxin autotrophic tobacco callus tissues resist oxidative stress: The importance of glutathione S-transferase and glutathione peroxidase activities in auxin heterotrophic and autotrophic calli. J. Plant Physiol., 161: 691-699.
- 19. Djanaguiraman, M., D.D. Devi, A.K. Shanker, A., Sheeba and U. Bangarusamy, 2005. Selenium-an antioxidative protectant in soybean during senescence. Plant Soil, 272: 77-86.
- Cartes, P., A.A. Jara, L. Pinilla, A. Rosas and M.L. Mora, 2010.
 Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann. Applied Biol., 156: 297-307.
- Filek, M., R. Keskinen, H. Hartikainen, I. Szarejko, A. Janiak, Z. Miszalski and A. Golda, 2008. The protective role of selenium in rape seedlings subjected to cadmium stress. J. Plant Physiol., 165: 833-844.

- 22. Hawrylak-Nowak, B., 2009. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res., 32: 259-269.
- 23. Chamheidar, H. and K. Parvanak, 2014. Investigation of selenium fertilizer different rates on uptake of selenium in alfalfa plant. WALIA J., 30: 1-3.
- 24. Jozwiak, W., M. Mleczek and B. Politycka, 2016. The effect of exogenous selenium on the growth and photosynthetic pigments content of cucumber seedlings. Fresenius Environ. Bull., 25: 142-152.
- 25. Irmak, S., 2017. Effects of selenium application on plant growth and some quality parameters in peanut (*Arachis hypogaea*). Pak. J. Biol. Sci., 20: 92-99.
- Khalid, K.A., H.M. Amer, H.E. Wahba, S.F. Hendawy and T.M. Abd El-Razik, 2017. Selenium to improve growth characters, photosynthetic pigments and essential oil composition of chives varieties. Asian J. Crop Sci., 9: 92-99.
- 27. Lyons, G.H., Y. Genc, K. Soole, J.C.R. Stangoulis, F. Liu and R.D. Graham, 2009. Selenium increases seed production in Brassica. Plant Soil, 318: 73-80.
- 28. Misra, A., A.K. Srivastava, N.K. Srivastava and A. Khan, 2010. Se-acquisition and reactive oxygen species role in growth, photosynthesis, photosynthetic pigments and biochemical changes in essential oil (s) monoterpene of Geranium (*Pelargonium graveolens* L. Her.'ex. Ait.). Am.-Eurasian J. Sustainable Agric., 4: 39-46.
- 29. Lee, M.J., G.P. Lee and K.W. Park, 2001. Status of selenium contents and effect of selenium treatment on essential oil contents in several Korean herbs. Korean J. Hort. Sci. Technol., 19: 384-388.
- 30. Khalid, K.A., 2011. Evaluation of *Salvia officinalis* L. essential oil under selenium treatments. J. Essent. Oil Res., 23: 57-60.
- 31. Turakainen, M., H. Hartikainen and M.M. Seppanen, 2004. Effects of selenium treatments on potato (*Solanum tuberosum* L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem., 52: 5378-5382.
- 32. Owusu-Sekyere, A., J. Kontturi, R. Hajiboland, S. Rahmat, N. Aliasgharzad, H. Hartikainen and M.M. Seppanen, 2013. Influence of selenium (Se) on carbohydrate metabolism, nodulation and growth in alfalfa (*Medicago sativa* L.). Plant Soil, 373: 541-552.
- Hajiboland, R., S. Rahmat, N. Aliasgharzad and H. Hartikainen, 2015. Selenium-induced enhancement in carbohydrate metabolism in nodulated alfalfa (*Medicago sativa* L.) as related to the glutathione redox state. Soil Sci. Plant Nutr., 61: 676-687.
- 34. Gul, H., S. Kinza, Z.K. Shinwari and M. Hamayun, 2017. Effect of selenium on the biochemistry of *Zea mays* under salt stress. Pak. J. Bot., 49: 25-32.
- 35. Chen, T.F., W.J. Zheng, Y.S. Wong and F. Yang, 2008. Selenium induced changes in activities of antioxidant enzymes and content of photosynthetic pigments in *Spirulina platensis*. J. Integr. Plant Biol., 50: 40-48.

- 36. Ramos, S.J., V. Faquin, L.R.G. Guilherme, E.M. Castro and F.W. Avila *et al.*, 2010. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ., 56: 584-588.
- 37. Mozafariyan, M., M. Pessarakli and K. Saghafi, 2017. Effects of selenium on some morphological and physiological traits of tomato plants grown under hydroponic condition. J. Plant Nutr., 40: 139-144.
- 38. Clevenger, J.F., 1928. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc., 17: 345-349.
- 39. Adams, R.P., 2007. Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectroscopy. 4th Edn., Allured Publ. Corp., Carol Stream, IL.
- 40. Kumari, S., S. Pundhir, P. Priya, G. Jeena and A. Punetha *et al.*, 2014. EssOilDB: A database of essential oils reflecting terpene composition and variability in the plant kingdom. Database, Vol. 2014. 10.1093/database/bau120
- 41. Anonymous, 2016. Official Methods of Analysis. 20th Edn., Association of Official Analytical Chemists, Washington, DC.
- 42. Cincotta, F., A. Verzera, G. Tripodi and C. Condurso, 2015. Determination of sesquiterpenes in wines by HS-SPME coupled with GC-MS. Chromatography, 2: 410-421.
- 43. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Roberts and F. Smith, 1956. Phenol sulphuric acid method for carbohydrate determination. Ann. Chem., 28: 350-359.
- 44. Mukherjee, S.P. and M.A. Choudhuri, 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in *Vigna* seedlings. Plant Physiol., 58: 166-170.
- 45. Kar, M. and D. Mishra, 1976. Catalase, peroxidase and polyphenoloxidase activities during rice leaf senescence. Plant Physiol., 57: 315-319.
- 46. Marklund, S. and G. Marklund, 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47: 469-474.
- 47. Statsoft, 2007. Statistica version 7.1. Statsoft Inc., Tulsa, Oklahoma.
- 48. De Smith, M.J., 2015. STATSREF: Statistical Analysis Handbook-A Web-Based Statistics Resource. The Winchelsea Press, Winchelsea, UK.
- 49. Blokhina, O., E. Virolainen and K.V. Fagerstedt, 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot., 91: 179-194.
- 50. Shakirova, F.M., 2007. Role of Hormonal System in the Manifestation of Growth Promoting and Antistress Action of Salicylic Acid. In: Salicylic Acid-A Plant Hormone, Hayat, S. and A. Ahmad (Eds.). Springer, New York, pp: 69-89.
- 51. El-Tayeb, M.A., 2005. Response of barley grains to the interactive e.ect of salinity and salicylic acid. Plant Growth Regul., 45: 215-224.

- 52. Abreu, M.E. and S. Munne-Bosch, 2009. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant *Arabidopsis thaliana*. J. Exp. Bot., 60: 1261-1271.
- 53. Stevens, J., T. Senaratna and K. Sivasithamparam, 2006. Salicylic acid induces salinity tolerance in tomato (*Lycopersicon esculentum* cv. Roma): Associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul., 49: 77-83.
- 54. Daneshmand, F., M.J. Arvin and K.M. Kalantari, 2010. Acetylsalicylic acid ameliorates negative effects of NaCl or osmotic stress in *Solanum stoloniferum in vitro*. Biol. Planta., 54: 781-784.
- 55. Metwally, A., I. Finkemeier, M. Georgi and K.J. Dietz, 2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol., 132: 272-281.
- 56. Gharib, F.A., 2006. Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. Int. J. Agric. Biol., 8: 485-492.
- 57. Hayat, S., Q. Fariduddin, B. Ali and A. Ahmad, 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron. Hungar., 53: 433-437.
- 58. Abdel-Wahed, M.S.A., A.A. Amin and S.M. El-Rashad, 2006. Physiological effect of some bioregulators on vegetative growth, yield and chemical constituents of yellow maize plants. World J. Agric. Sci., 2: 149-153.
- 59. El-Khallal, S.M., T.A. Hathout, A.E.A. Ashour and A.A. Kerrit, 2009. Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Res. J. Agric. Biol. Sci., 5: 380-390.
- Delavari, P.M., A. Baghizadeh, S.H. Enteshari, K.M. Kalantari, A. Yazdanpanah and E.A. Mousavi, 2010. The effects of salicylic acid on some of biochemical and morphological characteristic of *Ocimum basilicucm* under salinity stress. Aust. J. Basic Applied Sci., 4: 4832-4845.
- 61. Dawood, M.G., M.S. Sadak and M. Hozayn, 2012. Physiological role of salicylic acid in improving performance, yield and some biochemical aspects of sunflower plant grown under newly reclaimed sandy soil. Aust. J. Basic Applied Sci., 64: 82-89.
- 62. Rowshan, V., M.K. Khoi and K. Javidnia, 2010. Effects of salicylic acid on quality and quantity of essential oil components in *Salvia macrosiphon*. J. Biol. Environ. Sci., 4: 77-82.
- 63. Talaat, I.M., H.I. Khattab and A.M. Ahmed, 2014. Changes in growth, hormones levels and essential oil content of Ammi visnaga L. plants treated with some bioregulators. Saudi J. Biol. Sci., 21: 355-365.
- 64. Szepesi, A., J. Csiszar, S. Bajkan, K. Gemes and F. Horvath *et al.*, 2005. Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biol. Szegediensis, 49: 123-125.

- 65. Avancini, G., I.N. Abreu, M.D.A. Saldana, R.S. Mohamed and P. Mazzafera, 2003. Induction of pilocarpine formation in jaborandi leaves by salicylic acid and methyljasmonate. Photochemistry, 63: 171-175.
- 66. Ahmed, A.H.H., G.M.A. Mervat, Hassan and A. Mona, 2002. *In vitro* mass production of *Myruts communis* and factors affecting its acclimatization. Proceeding of the Minia 1st Conference for Agriculture and Environmental Science, March 25-28, 2002, Minia, Egypt, pp: 1721-1744.
- 67. Fariduddin, Q., S. Hayat and A. Ahmad, 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in *Brassica juncea*. Photosynthetica, 41: 281-284.
- 68. Tari, I., J. Csiszar, G. Szalai, F. Horvath and A. Pecsvaradi *et al.*, 2002. Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol. Szeged., 46: 55-56.
- 69. Talaat, I., 2005. Physiological effect of salicylic acid and tryptophan on *Pelargonium graveolens*. Egypt. J. Applied Sci., 20: 751-760.
- 70. El-Din, K.G. and F. Reda, 2006. Effect of foliar application of salicylic acid on growth, flowering, essential oil content and components and protein pattern of chamomile (*Chamomilla recutita* L.) Rausch. J. Genet. Eng. Biotechnol., 4: 183-195.
- 71. El-Moursi, A., I.M. Talaat and L.K. Balbaa, 2012. Physiological effect of some antioxidant polyphenols on sweet marjoram (*Majorana hortensis*) plants. Nusant. Biosci., 4: 11-15.
- 72. Yordanova, R. and L. Popova, 2007. Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Applied Plant Physiol., 33: 155-170.
- 73. Ghasemzadeh, A. and H.Z.E. Jaafar, 2012. Effect of salicylic acid application on biochemical changes in ginger (*Zingiber officinale* Roscoe). J. Med. Plants Res., 6: 790-795.
- 74. Zohra, E.S.F., H. Zakaria, M. Youssef, E. El-Hassan and A.J. Khalid, 2016. Effect of salicylic acid and salt stress on the growth and some biochemical parameters of *Mentha suaveolens*. Int. J. Scient. Eng. Res., 7: 54-62.
- 75. Breznik, B., M. Germ, A. Gaberscik and I. Kreft, 2005. Combined effects of elevated UV-B radiation and the addition of selenium on common (*Fagopyrum esculentum* Moench) and tartary [*Fagopyrum tataricum* (L.) Gaertn.] buckwheat. Photosynthetica, 43: 583-589.
- 76. Germ, M. and J. Osvald, 2005. Selenium treatment affected respiratory potential in *Eruca sativa*. Acta Agric. Slov., 85: 329-335.

- 77. Smrkolj, P., M. Germ, I. Kreft and V. Stibilj, 2006. Respiratory potential and Se compounds in pea (*Pisum sativum* L.) plants grown from Se-enriched seeds. J. Exp. Bot., 57: 3595-3600.
- 78. Kafi, M. and Z. Rahimi, 2010. Salinity effects on germination properties of purslane (*Portulaca oleracea* L.) Iran. J. Field Crop Res., 8: 615-621.
- 79. Emam, M.M., H.E. Khattab, N.M. Helal and A.E. Deraz, 2014. Effect of selenium and silicon on yield quality of rice plant grown under drought stress. Aust. J. Crop Sci., 8: 596-605.
- 80. Xue, T., H. Hartikainen and V. Piironen, 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil, 237: 55-61.
- 81. Valkama, E., M. Kivimaenpaa, H. Hartikainen and A. Wulff, 2003. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (*Fragaria*× *ananassa*) and barley (*Hordeum vulgare*) treated in the field. Agric. For. Meteorol., 120: 267-278.
- 82. Lefsrud, M.G., D.A. Kopsell, D.E. Kopsell and W.M. Randle, 2006. Kale carotenoids are unaffected by, whereas biomass production, elemental concentrations and selenium accumulation respond to, changes in selenium fertility. J. Agric. Food Chem., 54: 1764-1771.
- 83. Haghighi, M., A. Sheibanirad and M. Pessarakli, 2016. Effects of selenium as a beneficial element on growth and photosynthetic attributes of greenhouse cucumber. J. Plant Nutr., 39: 1493-1498.
- 84. Voisin, A.S., C. Salon, C. Jeudy and F.R. Warembourg, 2003. Root and nodule growth in *Pisum sativum* L. in relation to photosynthesis: Analysis using ¹³C labelling. Ann. Bot., 92: 557-563.
- 85. Gong, H.J., D.P. Randall and T.J. Flowers, 2006. Silicon deposition in the root reduces sodium uptake in rice (*Oryza sativa* L.) seedlings by reducing bypass flow. Plant Cell Environ., 29: 1970-1979.
- 86. Habibi, G. and R. Hajiboland, 2013. Alleviation of drought stress by silicon supplementation in pistachio (*Pistacia vera* L.) plants. Folia Hortic., 25: 21-29.
- 87. Shekari, F., A. Abbasi and S. H. Mustafavi, 2017. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J. Saudi Soc. Agric. Sci., 16: 367-374.
- 88. Smolen, S., L. Skoczylas, I. Ledwożyw-Smolen, R. Rakoczy and A. Kopec *et al.*, 2016. Biofortification of carrot (*Daucus carota* L.) with iodine and selenium in a field experiment. Front. Plant Sci., Vol. 7. 10.3389/fpls.2016.00730.