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Abstract

Background and Objective: Cultivating Calotropis procera for fiber supply to the textile industry can improve the livelihoods of
communities in arid and semi-arid regions. This study determined edaphic and climatic factors affecting phenological traits of C. procera
in the semi-arid regions of Kenya. Materials and Methods: Repeated measure research design was used with multistage sampling
technique to monitor activity indices, number of flowers and fruits and phenophase intensities. Climatic and edaphic factors of study sites
were also monitored. Data was analyzed using linear, Poisson log linear regression based on Generalized Estimation Equation (GEE) and
Mixed Analysis of Variance (ANOVA). Results: High Soil Organic Carbon (OC) content (3%) and exchangeable Na (112.5 ppm) at (0-20)
cm soil depth were recorded in Tharaka. High mean monthly rainfall (160.37 mm) was recorded in Makueni. Flowering activity indices
in (June-August, 2018) were 64.97% and 69.6% in Tharaka and Makueni, respectively . Available P, average monthly rainfall and
temperature had significant association with flowering and fruiting activity indices (p<0.05). The mean number of flowers and fruits per
stem were significantly associated with soil available P, exchangeable Na and OC content (p<0.05). Though edaphic factors were not
significantly associated with phenophase intensities of C. procera, average monthly rainfall and temperature were positively and
negatively associated with phenophase intensities, respectively . Conclusion: Available P, exchangeable Na, available Kand OC content
noticeably affect phenological traits of naturally growing C procera. Rains and temperatures are critical climatic factors affecting
phenological traits of C procera.
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INTRODUCTION

Climate change is leading to acute food shortage,
inadequate livestock forage and decreased incomeinarid and
semi-arid lands (ASALs)'. Therefore, there is need to develop
environment friendly and conservation conscious techniques
to increase communities’ resilience to climate change.
Domesticating multipurpose trees and shrubs can significantly
bring new opportunities for livelihood improvements?. This
is because domestication enhances provision of products
and services from trees to increase productivity, combat
malnutrition and adapt to anthropogenic climate change3.

Calotropis procera is among shrub species that can be
domesticated in semi-arid regions. The shrub is ever green
with deep and solid tap root, it is drought and salt tolerant,
can grow in ecosystems with less than 1000 mm annual
precipitation and temperature range of 20-30°C**, The species
can be used for medicinal and fodder purposes, while its
genes can be used in genetic modification to enhance cotton
fiber strengths®. However, the shrub has been reported to be
having undesirable characteristics such as invasiveness in
some parts of the world like Australia”2.

Different kind of research has established that its seeds
and fruits can produce quality calotrope fiber that can be
used in the textile industry. Compared to silk and cotton
fiber, calotrope fiber has good stable lengths, fiber strengths,
fiber uniformity ratio, fiber fairness and moisture absorption
characteristics®''. Therefore, under proper management,
C procera can be ecologically, economically, culturally and
socially important to ASAL communities. However, the
phenological behavior of C procera under different climatic
and edaphic conditions has received limited research
attention with most studies having been conducted in
greenhouses'?3, Lack of adequate information regarding this
species makes it difficult to conclusively predict how climate
change and changes in soil condition asaresult of erosion and
salination will influence the phenology of the species when
domesticated'. Therefore, this study determined edaphicand
climatic factors affecting the phenological traits of naturally
growing C. procerain the semi-arid regions of Kenya.

MATERIALS AND METHODS

Research site: The study was carried out in the semi-arid
regions of Tharaka and Makueni in the Eastern part of Kenya
from June, 2018 to April, 2020. Tharaka lies between latitudes
00° 07" and 00° 26' S and longitudes 37° 19" and 37° 46'E,
while Makueni lies between latitude 1°35'and 3°00'S and
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Longitudes 37° 10" and 38° 30' E. The two regions lie in the
agro-climatic and eco-climatic zone V, which is characterized
by low and unreliable rainfall, dispersed population,
marginal agricultural lands and infertile soils'. The study was
specifically conducted in lowland areas (altitude less than
600 m above sea level) that receive unreliable and poorly
distributed rains of less than 500 mm per year and higher
temperatures of up-to 40°C at certain periods'®.

Research design: The study used a repeated measure
research design by taking multiple measurements of the
dependentvariable on the same object over a period of time'”.
This was appropriate because the purpose of the study was to
evaluate phenological plasticity of C procera over a period
of time under different climatic seasons and edaphic
conditions.

Sampling proceduresand sample sizes: Purposeful sampling
technique was used in selecting research blocks (farms) with
naturally growing C procera and whose owners voluntarily
allowed research to be conducted. In Makueni two blocks
(Kyumani and Kyanguli) were selected while in Tharaka three
blocks (Kathwana, Kilimangare and Kajiampau) were chosen.
In each block, permanent main plots measuring (20 X20 m)
were marked using blue painted pipes. Each main plot was
sub-divided into 15 permanent sub-plots measuring (5X5m)
that were demarcated using red painted pipes. Systematic
random sampling technique was used in selecting sub-plots
to be included in the study, where every third sub-plot was
selected. The total number of sub-plots selected per plot was
determined as explained by Dell et a/'8, Eq. 1:

_loga
a logp (1)
Where:
N = Sample size (number of subplots)
a = Permitted error at 95% confidence level = 0.05
p = Proportion of sub-plots estimated as having a

particular characteristics, in this case C procera

Since it was not known, it was estimated at 50% (0.5) as
recommended by Dell et a/’®:
Therefore, number of sub-plots per plot was:

log0.05
n=
log0.5

.5 =4.32 plots = 5 sub —plots

All C procera stems in sub-plots were numbered and
included in the sample.
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In each sub-plot, one pit was randomly dug to collect
subsoil at 0-20 cm and deep soil at 20-40 cm. Soil samples at
0-20 cm and 20-40 cm from all sub-plots in a plot were mixed
to form subsoil and deep soil composites, respectively . From
each composite in the respective depth, one sample was
picked and put into 2000 g well labeled bags for laboratory
analysis.

Data collection

Phenology of naturally growing C. procera: Naturally
growing C. procera stems with and without flowers and
fruits were identified and counted. Activity index was
calculated by dividing the number of stems with flowers or
fruits by the total number of stems in a sub-plot. The number
of flowers and fruits (green or ripe) per stem were counted
and recorded. On every stem the total number of branches,
number of branches with flowers and fruits were counted in
the selected sub-plots. This was used to calculate the
Phenophase Intensity (Pi) levels as indicated in Eq. 2 and 3'3:

fr

Pi, =(B )xlOO
B

Pi, = [5] x100
B

)

Where:

Pi; and Pi; = Phenophase intensity levels for fruits and
flowers, respectively

Brand By = Branches with fruits and flowers, respectively

B = Withtotal numberof branches onanindividual

stem

Soil properties: Soil samples were taken to Kenya Forest
Research Institute (KEFRI) laboratory for analysis. Sample
preparation and analysis of soil pH using pH meter, Electric
Conductivity (EC) using conductivity meter, Organic Carbon
(OQ) using Walkley Black method, Phosphorus (P) using
UV-Spectrophotometer and Magnesium (Mg), Nitrogen (N),
Sodium (Na), Calcium (Ca) and Potassium (K) based on Atomic
Absorption Spectrophotometer (AAS) were conducted
according to Udelhoven et a/'®.

Climatic factors: The geographical coordinates of the study
area were used in obtaining rainfall and temperature data
from National Aeronautics and Space Administration website.

Data analysis: Mixed ANOVA was used to determine
statistically significant differences in the mean flowering and
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fruiting activity indices and phenophase intensities within
research time points. Relationships between phenological
traits with edaphic and climatic factors were established using
linear and Poisson regression based on GEE. Analysis was
conducted up-to a level that all remaining variables were
significantly associated with phenological traits. Therefore,
variables indicating insignificant association were removed
from the model list-wise for the next analysis level.

RESULTS

Edaphic and climatic factors in Tharaka and Makueni semi-
arid regions

Edaphicfactors in Tharaka and Makueni semi-arid regions:
Soil OC content and exchangeable Na at 0-20 cm soil horizon
were 3.0% and 112.5 ppm in Tharaka and 3.08% and 75 ppm
in Makueni, respectively , compared to 2.92% and 85 ppm in
Tharaka and 2.63% and 74 ppm in Makueni, respectively at
(20-40) cm soil depth (Table 1).

Climatic factors in Tharaka and Makueni semi-arid regions:
The mean monthly rainfall of 143.83 mm and 160.37 mm were
experienced inthe period of (October, 2019 to February, 2020)
in the semi-arid regions of Tharaka and Makueni, respectively
(Fig. 1). Monthly average relative humidity of 60.42% and
61.52% and wind speed of 3.6 m/s and 3.07 m/s were
experienced in (April-September, 2019) in Tharaka and
Makueni, respectively (Fig. 2).

Factors Affecting Flowering and Fruiting Activity Indices of
C. procera

Flowering and fruiting activity indices of C Procera:
Flowering activity indices of naturally growing C procera
decreased from 75.87% in Tharaka and 64.97% in Makueni
in (June-August, 2018) to 48.05% in Tharaka and 50.48%
in  Makueni in (September-November, 2019) (Fig. 3).
Similarly, fruiting activity indices decreased from 83.06%
in Tharaka and 69.6% in Makueni to 42.71% and 43.64% over
the same research time point, respectively (Fig. 3). Mixed
ANOVA showed that mean flowering and fruiting activity
indices varied significantly within research time points with
(Faaen =27.211, p< 0.001, np2 = 0.234) and (Fj 6, = 15.692,
p< 0.001, np2 = 0.150), respectively .

Edaphic and climatic factors affecting flowering and
fruiting activity indices: An increase in soil OC content,
exchangeable Ca, exchangeable Na, soil EC, total N,
exchangeable K and exchangeable Mg at 0-20 sm and 20-40
cm depth were neither increasing nor decreasing flowering
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Fig. 1: Average monthly rainfall and temperature in Tharaka and Makueni
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Fig. 2: Monthly relative humidity and wind speed in Tharaka and Makueni

(October, 2019-
February, 2020)

and fruiting activity indices of C procera significantly
(p>0.05). However, a unit increase in soil available P
increased C  procerds flowering activity index by
1.006 times in Tharaka and Makueni (Table 2). On the other
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hand, a unit increase in average monthly rainfall and
temperature increased C. procerds flowering and fruiting
activity indices by 1.143 and 1.144 times, respectively
(Table 3).
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Fig. 4: Number of flowers and fruits per C procera stem
Factors affecting number of flowers and fruits variations in mean number of flowers (F 345, 744261) = 185.420,

Number of flowers and fruits: The average number of  p<0.001, np2 = 0.369) and fruits (Fysgs77s237) = 269.464,
flowers per flowering C procera stem in Tharaka and ~ P<0.001,np2 = 0.472) per flowering and fruiting C. procera
Makueni decreased from 150 and 166 in (June-August, 2018)  stem within research time points.

to 71and 80 in (September-November, 2019), respectively

(Fig. 4). The highest number of fruits, 10 in Tharaka and 12in ~ Edaphic and climatic factors affecting number of flowers
Makueni were recorded in (June-August, 2018) (Fig. 4). and fruits: [t was established that a unit increase in
Adjusted Greenhouse-Geisser, showed statistically significant exchangeable Na at 0-20 cm, OC content, available P,
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exchangeable Ca and exchangeable Na at 20-40 c¢m
significantly increased the number of flowers by 1.002, 1.015,
1.048, 1.002 and 1.005 times, respectively (Table 4). On the
other hand, a unit increase in exchangeable Mg significantly
reduced the number of flowers by 0.984 times (Table 4). On
fruits, a unit increase in soil exchangeable Na at 0-20 cm, OC
content, available P, exchangeable K, exchangeable Mg and
exchangeable Na at 20-40 c¢m significantly increased the
number of fruits by 1.005, 1.027, 1.049, 1.044, 1.044 and 1.009
times, respectively (Table 4).

On climatic conditions, a unitincrease in monthly average
rainfall and relative humidity significantly increased the
number of flowers by 1.009 and 1.084 times, respectively,
while a unit increase in monthly average temperature and
wind speed reduced the number of flowers by 0.792 and
0.844 times, respectively (Table 5). On fruits, a unitincrease in
mean monthly rainfall, temperature and wind speed
significantly increased the number of fruits by 1.056, 1.338 and
1.207 times, respectively (Table 5). Contrary, a unitincreasein
relative humidity significantly reduced the number of fruits by
0.794 times (Table 5).

Factors affecting phenophase intensity of C. procera in
Tharaka and Makueni

Phenophase intensity of C procera in Tharaka and
Makueni: In (June-August, 2018), naturally growing C procera
in the semi-arid regions of Tharaka and Makueni recorded the
highest flowering (77.57%) and (79.09%) phenophase
intensities, respectively (Fig. 5). Mixed ANOVA showed
statistically  significant variations in mean flowering
(Fo36 = 67.859, p<0.001, np? = 0.179) and mean fruiting
(Fao3 P<0.001, np? = 0.043) phenophase intensities within
research time points.

Edaphic and climatic factors affecting flowering and
fruiting phenophase intensities: Parameter estimate
(Table 6) indicates thata decrease 0f0.999, 0.993,0.994,0.992,
0.997 and 0.956 times in C. procera’s flowering phenophase
intensity as a result of a unit increase in soil pH, EC, OC, K, Ca
and Na, respectively at 0-20 cm soil depth was not statistically
significant (p>0.05). In addition, an increase of 1.002, 1.000
and 1001 timesin C procera$flowering phenophase intensity
as aresult of a unitincrease in soil N, P and Mg at 0-20 cm soil
depth was not statistically significant (p>0.05) (Table 6). At
20-40 cm soil depth, a unitincrease in soil pH, EC,N, P and Mg
caused no statistically significant increase in C procera’s
flowering phenophase intensity of 1.004, 1.003, 1.005, 1.000
and 1.009 times, respectively (Table 6). However, a unit
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Table 4: Edaphic factors affecting number of flowers and fruits produced by C. procera

95% wald confidence
interval for Exp(B)

Hypothesis test

95% wald confidence interval

Lower Upper

Exp(B)

df p-vale

Wald chi-square

Upper

Lower

Parameters

Estimates of edaphic factors affecting number of flowers

7.065
1.003
1.270
1.068
0.990
1.002
1.097

6.817

2171
1.002

1.015

1.002
1.181
1.028
0.979

1.048
0.984
1.002
1.005

1.001
1.094

96.638
65.027
55.145
23.557
27.988
51.748
51.899

4.345
0.003

4.040
0.002

4.194%0.077
0.002+0.000
0.015%0.021
0.04710.009
0.016%0.003
0.002+0.000
0.005+0.000

Estimates of edaphic factors affecting number of fruits

Intercept

Na at (0-20) cm

0.217

0.200
0.028
-0.022

OC at (20-40) cm
P at (20-40) cm

0.065
-0.010

Mg at (20-40) cm
Ca at (20-40) cm

0.002

0.001

0.003

0.006

Na at (20-40) cm

4438
0.997
1.013

—_ ———

0.995
1.005

— = o — — —

2488
005
027
049
.001
044
0.996

1.009

<0.001
<0.001
<0.001

0.002

0.031
<0.001
<0.001
<0.001

94.621
33.667
67.819

9.731

4.646
33919
60.330
21.674

3.859
0.004
0.334
0.019
0.000
0.058
-0.003
0.013

2.909
0.007
0.206
0.082
0.003
0.029
-0.005
0.005

3.384£0.2426
0.005%0.000
0.0271£0.032
0.050+0.016
0.001+0.000
0.043+0.007
0.004%0.000
0.009+0.002

OC at (20-40) cm
Mg at (20-40) cm
Ca at (20-40) cm
Na at (20-40) ¢

Na at (0-20) cm
P at (20-40) cm
K at (20-40) cm

Intercept
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Fig. 5: Flowering and fruiting phenophase intensities of C. procerain Tharaka and Makueni

Table 7: Edaphic factors affecting fruiting phenophase intensity of C procera

95% wald

95% wald confidence

confidence interval Hypothesis test interval for Exp(B)
Parameters B Lower Upper Wald chi-square  df p-vale Exp(B) Lower Upper
Intercept 2.8691+2.428 3.270 5.469 44470 1 <0.001 1414 1.399 2.302
pH at (0-20) cm 0.037£0.615 -1.170 1.244 0.004 1 0.952 1.007 0310 3.469
EC at (0-20) cm -4.3821+3.548 -59.096 -1.668 7.887 1 0.060 1.005 2.163 3.889
N at (0-20) cm 5.660+2.581 -9.201 2.520 0.557 1 0.455 1.009 0.000 0.081
OCat (0-20) cm -1.8721+0.906 -3.649 -0.096 4.269 1 0.059 0.994 0.026 0.908
P at (0-20) cm 0.061£0.619 -1.153 1.276 0.010 1 0.921 1.003 0316 3.583
Kat (0-20) cm 0.001£0.009 -0.018 0.019 0.007 1 0.932 1.001 0.983 1.019
Mg at (0-20) cm 0.075£0.059 -0.042 0.191 1.565 1 0.211 1.007 0.959 1.211
Caat (0-20) cm 0-.002£0.004 -0.011 0.007 0.168 1 0.682 0.998 0.989 1.007
Na at (0-20) cm 0.058+0.018 0.022 0.095 7.742 1 0.054 1.006 1.022 1.099
pH at (20-40) cm 0.298+0.739 -1.151 1.748 0.163 1 0.687 1.018 0316 5.744
EC at (20-40) cm 2.651+£3.016 -9.141 14.442 0.194 1 0.660 1.000 0.000 1.719
N at (20-40) cm 2.209+3.136 -7.857 12.276 0.185 1 0.667 1.001 0.000 1.446
OC at (20-40) cm 5512+0.724 -6.931 -4.092 7.921 1 0.052 1.004 0.001 0.017
P at (20-40) cm 1.696+0.420 0.873 2519 6.305 1 0.059 1.004 2394 12.421
Kat (20-40) cm 0.009+0.010 -0.012 0.030 0.761 1 0.383 1.009 0.988 1.031
Mg at (20-40) cm 0.609+0.123 -0.852 -0.367 4303 1 0.082 0.994 0.427 0.693
Ca at (20-40) cm 0.056%0.009 0.037 0.074 3.763 1 0.097 1.007 1.038 1.077
Na at (20-40) cm 0.118%£0.025 -0.167 -0.068 2.769 1 0.105 0.999 0.846 0.934

increase in soil OC, K, Ca and Na at (20-40) cm soil depth led to
a statistically no significant decrease of 0.996, 0.999, 0.998 and
0.999 times in C procera’s flowering phenophase intensity
(Table 6).

Onfruiting,anincrease of 1.007, 1.005, 1.009, 1.003, 1.001,
1.007and 1.006 times in C procera$s fruiting phenophase

intensities as a result of a unit increase in soil pH, EC, N, P, K,
Mg and Na, respectively at 0-20 cm soil depth was not
statistically significant (p>0.05) (Table 7). A unit increase in
soil OC and Ca at 0-20 cm soil depth led to a statistically
no significant decrease (p>0.05) in C procera’s fruiting
phenophase intensity by 0.994 and 0.998 times, respectively.
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Table 8: Climatic factors affecting phenophase intensities of C. procera

95% wald confidence
interval for Exp(B)

Hypothesis test

95% wald confidence interval

Exp(B) Lower Upper

p-vale

Wald chi-square df

Upper

Lower

Parameters

Climatic factors affecting flowering phenophase intensity

2.668
1.216
0.144

1.524
1.069
0.005

2.017

<0.001
<0.001
<0.001

1
1
1

49.888
15.930
17.435

19.096

18.643

15.36£2.289

Intercept

1.014
0.981

0.196
-1.936

0.067

-5.362

0.131£0.0329
3.6491+0.8739

Climatic factors affecting fruiting phenophase intensity

Mean monthly rainfall

Mean monthly temperature (°C/month)

3.142
1.698
1.000
0.947

1.151
1.591
0.987

1.014
1.012
0.965
0.987

<0.001
<0.001
<0.001
<0.001

1
1
1
1

73.952
107.618

60.982

45.610

38.296+2.596

Intercept

0.527
-18.691
-24.422

0.359
-25.430
-36.458

0.443%0.0427
1.061+1.719
1.440%+3.071

Mean monthly rainfall (mm/month)
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64.645
98.278

Mean monthly temperature (°C/month)

Mean monthly wind speed (m/s)

0.841
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At 20-40 cm soil depth, soil pH, EC,N, OC,P,Kand Caledto a
statistically no significant increase (p>0.05) in C procera’s
fruiting phenophase intensity by 1.018, 1.000, 1.001, 1.004,
1.004, 1.009 and 1.007 times, respectively (Table 7). On the
other hand, a statistically no significant decrease (p>0.05) of
0.994 and 0.999 times in C. procera’ fruiting phenophase
intensity as a result of a unit increase in soil Mg and Na,
respectively at 20-40 cm soil depth (Table 7).

On the other hand, a unit increase in monthly average
rainfall increased flowering and fruiting phenophase
intensities by 1.014 and 1.012 times, respectively (Table 8).
Contrary, a unit increase in monthly average temperature
significantly reduced flowering and fruiting phenophase
intensities by 0.981 and 0.965 times, respectively (Table 7). A
unit increase in monthly average wind speed decreased
fruiting phenophase intensity by 0.987 (Table 8).

DISCUSSION

Soils from Tharaka and Makueni were deficient in
available P. This concur with Koala?® that over 65.1% of soil
samples from semi-arid regions are acutely deficient in total
phosphorus. This deficiency in total phosphorus is as a result
of imbalance in a number of biological and biochemical
processes that are significantly influenced by soil organic
matter, soil texture, biotic factors and abiotic characteristics of
the region2'2,

The study showed that the highest and lowest average
monthly rainfall recorded was 160.37 mm and 52.55 mm per
month, respectively for Makueni and 143.83 mm and
4527 mm per month for Tharaka. These concur with
Camberlin et a/'®that semi-arid regions of Kenya receive low,
varied and unreliable rainfall. This is not different from other
semi-arid regions which experience greater inter-and intra-
annual rainfall variation®. Average monthly temperature
ranged from 25.78-28.15°C in Tharaka and 24.92-28.74°C in
Makueni. These high temperatures may be attributed to high
solar radiations, low cloud cover and their proximity to the
equator?*. Wind speed variations were as a result of variations
in temperature, cloud cover and earth’s revolution. According
to Wooten?® cloud cover affects temperature which creates
pressure difference between places that eventually affects
wind speed. There was noticeable relationship between
edaphic factors with activity indices, number of flowers and
fruits and phenophase intensities. This noticeable relationship
between edaphic factors with phenological traits indicates
that though C procera can tolerate soils with low nutrient
contentduetoitsintensive root system thatensurereaching



Asian J. Plant Sci,, 20 (2): 183-195, 2027

nutrients and moisture beyond 40 cm depth?, soil conditions
have slight impacts on the shrub’s phenology. Adequate
availability of soil N content, available P, exchangeable Ca
and OC content enhances the development of plant leaves
and increases plant’s tolerance to other environmental
stresses?’28, Exchangeable Ca plays an important role in
reducing the adverse effects of drought stress in plant crops.
A healthy plant with improved photosynthesis ensures
availability of carbohydrates for plants’ flowering and
fruiting®®.

Deficiency of soil nutrients like available P, exchangeable
Ca, available Kand exchangeable Mg leads to stunted growth
as a result of reduced photosynthesis and lower resistance to
diseases®'32. This condition leads to aborted flowers and fruits
in plants by impairing female reproductive organs and
reduces pollen grain formation and viability especially under
high saline and drought conditions**3, Exchangeable Mg is
essential for chlorophyll a and b in light energy and synthesis
of both in plants.

Soil pH and EC were not associated with phenological
traits of C. procera. This was because the shrub has adaptive
avoidance mechanism to salinity and pH stresses3’3%,
According to Fekry eta/*® high salinity inhibit growth of plants
like date palm hence the need to alleviate its effects on
growth and fruiting. Gulzar et a/*® recommends that a
combination of nitrogen and phosphorus fertilizers can
improve growth and productivity of plants that are salt
stressed.

The significant association between phenological traits
with average monthly rainfall and temperature concur with
studies like Moore and Lauenroth™ that temperature and
rainfall influences phenological events especially in ASALs.
This is because phenology development requires optimal
temperature and adequate moisture that is influenced by
rainfall*'. Temperature and precipitation influences pollen and
ovule viability and affects visitation by pollinators**#4. Extreme
temperature and precipitation reduces photosynthetic activity
of C procera as they affect opening and closing of plant’s
stomata, hence reducing availability of flowering and fruiting
energy in plants. In addition, extreme environmental stresses
including high temperature and low rainfall makes plants
susceptible to pathogens and diseases®.

However, the association was weak with low odd ratios
because other factors like plant size especially in terms of
crown diameter and genetic composition influences
phenological traits like number of flowers and fruits*. Large
crowns provide more space for flowers and fruits. In terms
of genetics, though C procera can withstand harsh climatic
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conditions like high temperatures and low rainfall®, the shrub
experiences low fertility rates, high drop of floral buds and
flower abortion after anthesis regardless of prevailing
conditions®.

Wind speed was slightly associated with phenology of
C. procera negatively. High wind speeds causes traumatic
flower and fruit fall before maturity. It also discourages flower
visitation by pollinators by desiccating flower parts, making
them unattractive, hence lowering fertilization rates®,
However, high wind speed increases the chances of
self-pollination assisted by wind*,

Relative humidity affects phenology of plants indirectly by
affecting pollination, photosynthesis and disease occurrence®.
Low relative humidity increases transpiration, leading to water
deficit for photosynthesis®®. However, high relative humidity
impedes dispersal of pollen grains from anthers and increase
disease instances by favouring fungal growth®.

Phenological traits of C. procerapeaked in (June-August,
2018 and troughed in (September-November, 2019) in
Tharaka and Makueni. This concur with Sobrinho'3, Paradiso
and Pascale® and Moustafa and Sarah? that C. procera show
peak and low phenology traits at different times of the year
depending on prevailing environmental conditions like
precipitation and temperature.

CONCLUSION

Semi-arid regions of Tharaka and Makueni in Kenya
experience low monthly rainfalls, medium temperatures and
wind speed that vary from time to time. Soils in Tharaka were
deficient in available P and exchangeable K while those of
Makueni were deficientin available P. Flowering activity index
of C. procera requires adequate supply of soil available P
while an increasing number of flowers per stem requires
optimal supply of soil exchangeable Na, OC content, available
Pand exchangeable Mg. Optimal fruit production of C procera
fruits requires adequate supply of soil exchangeable Na, OC
content, available P, available K, exchangeable Mg and
exchangeable Ca. Enhancing phenological traits of C procera
requires optimal rains, temperatures and wind speed.
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SIGNIFICANCE STATEMENT

This study discovered that phenological traits of
C procera are influenced by both edaphic and climatic
factors. Soil properties such as soil exchangeable Na, OC
content, available P and exchangeable Mg increased the
production of flowers and fruits. Similarly, average monthly
rainfall and temperature are critical factors influencing
phenological traits. This information is important when
introducing the plant from the wild to on farm cultivation. This
study will help the researchers to uncover the critical areas in
determining reproductive successes of the plant in its
environment for the purpose of domestication. Thus a new
theory on the success of C. procera domestication may be
arrived at for a sustainable supply of fiber for the growing
textile industry in Kenya.
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