

Asian Journal of Plant Sciences

ISSN 1682-3974

ISSN 1682-3974 DOI: 10.3923/ajps.2023.104.112

Research Article

Antioxidant, Antimicrobial Activity and Phytochemical Screening of *Syzygium cumini* L. Leaves in Tropical Region from Surabaya, East Java, Indonesia

^{1,2}Junairiah, ^{1,2}Fatimah, ^{1,2}Tri Nurhariyati and ¹Nabilah Istighfari Zuraidassanaaz

Abstract

Background and Objective: *Syzygium cumini* is a plant of the Myrtaceae family. This plant has multifunctionality, due to its utilization as medicine, food, dye and building. This study aimed to determine the activities of antioxidant, antimicrobial, bioactive compounds and secondary metabolites contained in *S. cumini* leaves. **Materials and Methods:** The powder of *S. cumini* leaves was extracted with n-hexane, ethyl acetate and methanol as solvents. Three extracts were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and phytochemical screening to determine the type of bioactive compound and secondary metabolite. Antioxidant activity was tested with the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method and the antimicrobial test by diffusion method. **Results:** The results showed that n-hexane, ethyl acetate and methanol extracts of *S. cumini* contained 69, 57 and 64 bioactive compounds. Phytochemical screening displayed flavonoids, terpenoids and steroids from n-hexane extracts. Ethyl acetate extracts showed only flavonoid and methanol extracts contained flavonoid and saponin. N-hexane extracts of *S. cumini* had very strong antioxidant activity content with 23.79% of IC₅₀ when compared with the other two extracts. **Conclusion:** The results of the diffusion test exhibited three types of extracts that could inhibit the microbial pathogen such as *Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 25923 and *Candida albicans* ATCC 10231.

Key words: Antioxidant, antimicrobial, Indonesia, phytochemical screening, Syzygium cumini

Citation: Junairiah, Fatimah, T. Nurhariyati and N.I. Zuraidassanaaz, 2023. Antioxidant, antimicrobial activity and phytochemical screening of *Syzygium cumini* L. leaves in tropical region from Surabaya, East Java, Indonesia. Asian J. Plant Sci., 21: 104-112.

Corresponding Author: Junairiah, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

Copyright: © 2023 Junairiah *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

²University of CoE-Research Center for Biomolecule Engineering, Universitas Airlangga, Surabaya, Indonesia

INTRODUCTION

Plants have secondary metabolites and bioactive compounds which provide benefits for human health such as antioxidants, antimicrobials, anticancer, anti-inflammatory and antidiuretic¹⁻⁴. Medicinal materials of the plant have the advantage for easy to obtain, cheap, safe, efficient and rarely causing side effects⁵.

One type of plant that has potential as a medicinal ingredient is *Syzygium cumini*. The local name of this plant is Juwet which is also a member of the Myrtaceae family. The presence of this plant in the community is increasingly difficult to find, due to not many cultivating it. The shape of *S. cumini*'s stem is round, branched and rooted. Moreover, its leaves are opposite which are generally oval, the base of the leaves is peg-shaped or round with the tips of the leaves that are blunt, pointed and rounded, then the texture of the leaves is smooth and the colour is green, light green, dark green. The fruit of this plant is buni type, oval in shape, purple in colour, black to dark purple in the skin fruit and purple to whitish purple in flesh. The texture of fruit provides smoothness, sweet taste and sour taste⁶.

People use this plant as a shade plant, fruit producer, building material and medicinal ingredient for antidiabetic, anti-inflammatory, antidiarrheal and wound. However, little information has been revealed about the content of secondary metabolites and bioactive compounds from leaf extract of *S. cumini*. Information about its potential as an antioxidant and antimicrobial has also not been widely reported. Therefore, the objective of this study was to identify the bioactive compounds and secondary metabolites contained in n-hexane, ethyl acetate and methanol extracts of *S. cumini* and evaluate the antioxidant and antimicrobial activities of three extracts.

MATERIALS AND METHODS

Plant collection and extraction preparation: The leaves of *S. cumini* were collected from Surabaya, Indonesia. This plant was identified at the Plant Physiology Laboratory, Department of Biology, Faculty of Science and Technology, Universitas Airlanggga from April to November, 2021. Leaves with healthy ones, free of pests and disease were used as research material. The leaves are washed with tap water, then dried and made into powder. Each leaf powder of *S. cumini* weighing 70 g was extracted with 900 mL of n-hexane (Fulltime, China), ethyl acetate (Fulltime, China) and methanol (Fulltime, China).

Extraction was done by the maceration method. The extraction time for each solvent was 3 days and repeated 3 times.

Phytochemical screening and GC-MS analysis: The extract was treated by a phytochemical screening method to identify the type of secondary metabolites. Moreover, the alkaloid test used Mayer, Wagner and Dragendorff reagents. The terpenoid test utilized acetic anhydride and sulfuric acid. Flavonoid test with hydrochloric acid and magnesium (Mg) band. The saponin test used hot water and hydrochloric acid. Identification of the number and types of bioactive compounds were analyzed by GC-MS (Agilent Technologies 7890A, United States) and software GC-MS D5975C for data analysis.

Antioxidant activity: Antioxidant activity assay using DPPH (1,1-diphenyl-2-picrylhydrazyl) (Himedia, India) method with variant concentration at 6.25, 10, 12.5, 15, 25, 35, 50, 75 and 100 ppm. The percentage of antioxidant activity was calculated using formula⁷:

 $Antioxidant\ activity\ (\%) = \frac{Control\ absorbance\text{-Sample}\ absorbance}{Control\ absorbance\text{-Sample}} \times 100$

Calculation of inhibition concentration 50% (IC_{50}) was the concentration of the extract that inhibited 50% of DPPH free radicals. The IC_{50} value was calculated using the linear regression equation:

$$y = ax + b$$

where, the x-axis was the concentration value (ppm) and the y-axis was the value of antioxidant activity (%).

Antimicrobial activity: This study also used three types of microbes such as *Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 25923 and *Candida albicans* ATCC 10231 each grown on Eosin Methylene Blue (EMB) (Oxoid, United Kingdom), Mannitol Salt Agar (MSA) (Oxoid, United Kingdom) and Potatoes Dextrose Agar (PDA) (Oxoid, United Kingdom) mediums. The paper blank disc (Oxoid, United Kingdom) was used to determine antimicrobial activity with Mueller Hinton Agar (MHA) medium (Oxoid, United Kingdom). The microbial suspension was prepared by determining the turbidity of microbial suspension at optical density (OD) 0.1 with the wavelength of 625 nm for bacteria and OD 0.1 with the wavelength of 600 nm for fungi.

A total of test microbial suspensions was put into the sterile petri dish and then 15 mL of MHA medium was added to the dish to be homogenized. A total of three sterile paper blank discs with a diameter of 6 mm and the same thickness were placed on the agar surface at an equal distance apart. In the paper disc, 25 μ L of each extract was injected with the concentration of 0, 250, 500, 750 and 1000 ppm. Growth inhibition was indicated by the formation of a clear inhibition area (Halo) around the paper disc. The diameter of the inhibition zone was measured with a calliper (LC = 0.05 mm).

RESULTS

Identification of secondary metabolites and bioactive compounds on n-hexane, ethyl acetate and methanol of **S. cumini** leaves extracts: Table 1 showed that the extracts of n-hexane, ethyl acetate and methanol contain flavonoids. Terpenoids were only present in n-hexane extract. Saponins are only present in methanol extract. Meanwhile, Table 2 showed that the n-hexane extract of S. cumini leaves identified 69 compounds with two dominating compounds, namely 3-Buten-1-ol, 3-methyl and Furan, tetrahydro-3methyl. While, Table 3 showed that 57 compounds were identified in the ethyl acetate extract of S. cumini leaves with the two compounds having the highest (%) area being 2E, 4E, 14E-N-Isobutylicosa and squalene. Table 4 shows that the methanol extract of S. cumini leaves has 64 compounds with 3 dominating compounds, namely acetic acid, prolol 92,1,5-cdoindolizine-1-crab and delta tocopherol.

Antioxidant activity observation: Table 5 shows that n-hexane extract of *S. cumini* leaves has the highest OD value at concentration 6.25 µg mL⁻¹ with 0.333 and the highest IC (%) at 100 μ g mL⁻¹ with 80.65611%. While in the ethyl acetate extract of S. cumini leaves, a concentration of 15 μg mL⁻¹ has the highest OD value (0.439) and in concentration of 100 µg mL⁻¹ has the highest IC (%) with 29.63801% and the lowest OD value with 0.311. The concentration of 100 µg mL⁻¹ in the methanol extract of S. cumini leaves has the highest IC (%) with 59.27602%, while a concentration of 50 µg mL⁻¹ in the methanol extract of S. cumini leaves has the highest OD value (0.283). Table 5 also shows that n-hexane extracts of S. cumini leaves have the highest antioxidant activity with IC₅₀ 23.79 (very strong) compared between ethyl acetate and methanol extracts of S. cumini with IC_{50} 171.53 (weak) and 64.44 (strong), respectively.

Antimicrobial activity evaluation: Table 6 shows that all various extracts of *S. cumini* leaves can inhibit *S. aureus* ATCC 25923 and *C. albicans* ATCC 10231 in all concentrations with an inhibition diameter was 6 mm, except for a concentration 750 ppm in n-hexane extract with an inhibition diameter were 6.7 mm. While the growth of *E. coli* ATCC 25922 can be the best inhibited by n-hexane extracts of *S. cumini* with the highest inhibition diameter being 8.8 mm at a concentration of 250 ppm. Meanwhile, in ethyl acetate extract of *S. cumini* the highest inhibition diameter was 8.1 mm at a concentration of 1000 ppm. The highest inhibition diameter at the methanol extract of *S. cumini* was 7.6 mm at a concentration of 250 ppm.

Table 1: Phytochemical screening test of S. cumini leaves extracts in various solvents

Types of test	n-hexane extract	Ethyl acetate extract	Methanol extract
Alkaloid			
Mayer	-	-	-
Wagner	-	-	-
Dragendorff	-	-	-
Flavonoid	+	+	+
Saponin	-	-	+
Terpenoid	+	-	-

Table 2: Identification compound of n-hexane extract of *S. cumini* leaves

Retention time	Area (%)	Compounds
3.023	0.01	Pentane, 2 methyl
3.126	0.08	Pentane, 2 methyl
3.425	2.58	Furan, tetrahydro-3-methyl
3.469	2.01	Furan, tetrahydro-3-methyl
3.563	2.34	Furan, tetrahydro-3-methyl
3.617	5.87	Furan, tetrahydro-3-methyl
3.663	2.92	Decane, 2,2,3-trimethyl
3.706	4.08	Furan, tetrahydro-3-methyl
3.802	2.36	Furan, tetrahydro-3-methyl
3.884	3.61	Borinic acid, diethyl

Table 2: Continue

Retention time	Area (%)	Compounds
3.891	2.60	Borinic acid, diethyl
3.919	3.88	Borinic acid, diethyl
.970	1.64	Furan, tetrahydro-3-methyl
013	5.76	Furan, tetrahydro-3-methyl
065	2.26	Furan, tetrahydro-3-methyl
100	4.64	Furan, tetrahydro-3-methyl
182	4.08	3-Buten-1-ol, 3-methyl
246	4.18	Borinic acid, diethyl
269	1.43	Furan, tetrahydro-3-methyl
289	2.63	3-Buten-1-ol, 3-methyl
335	2.37	Furan, tetrahydro-3-methyl
355 365	3.76	3-Buten-1-ol, 3-methyl
462	6.19	•
		3-Buten-1-ol, 3-methyl
539	2.06	Cyclopropane, 1-ethyl-1-methyl
071	0.02	Furan, tetrahydro-2,5-dimethyl
205	0.03	Furan, tetrahydro-2,5-dimethyl
200	0.01	Succinic acid
.870	0.03	Acetamide
.317	0.03	1-Octadecene
.084	0.02	Neophytadiene
.758	0.01	Neophytadiene
.414	0.01	Hexadecanoic acid
1.745	0.01	Benzenepropanoic acid
5.315	0.02	Sulfurous acid
.411	0.02	Fumaric acid
.611	0.01	5-oxoheptanoic acid
.597	0.02	1-Octadecanol
5.755	0.02	9,12Octadecadienoic acid
5.844	0.04	9,12,15 Octadecatrienoic acid
7.034	0.61	Phytol
.130	0.03	Octadecanoic acid
7.396	0.03	9-Octadecanoic acid
7.478	0.03	9,12-Octadecanoic acid
7.593	0.02	1-Bromoheptadec-13-yne
7.689	0.04	1-Bromo-3,5,10-pentadecatriene
7.770	0.03	Stigmasterol
7.955	0.06	di-alpha-Tocopherol
.154	0.37	di-alpha-Tocopherol
.969	0.04	Dammaran-3-ol, (3.beta.)
0.022	0.02	9,19-Cycloanost-24-en-3-ol
0.078	0.03	Iron, tricarbonyl
0.123	0.03	5 phenyl-4,5-dihydro
.170	0.04	9.19-Cyclolanost-24-en-3-ol
.221	0.02	9.19Cyclolanost-24-en-3-ol
.302	0.03	Ergosta-8,25-dien-3-one
1.524	0.01	Sesquirosefuran
.920	0.01	Lanosterol
.127	0.02	9.19-Cyclolanost-24-en-3-ol
.236	0.01	9.19-Cyclolanost-24-en-3-ol
.288	0.02	9.19-Cyclolanost-24-en-3-ol
.597	0.07	Squalene
.708	0.08	Tocopherol
.254	0.03	Alpha Tocospiro B
.391	0.03	Eicosyl isopropyl ether
.824	0.28	Gamma-sitosterol
.097	0.01	Adamantane,1-isothiocyanato
.197	0.01	Heptacosane, 1-chloro
2.451	0.01	Ergost-5-en-3.beta,ol
2.478	0.01	Ergost-5-en-3.beta,ol

Table 3: Identification compound of ethyl acetate extract of *S. cumini* leaves

Retention time	Area (%)	Compounds
.013	0.03	Thiirane
466	0.38	Desulphosinigrin
329	0.46	Propanoic acid
535	0.01	Toluene
596	0.01	Ethylbenzene
778	0.04	Benzene, 1,3 dimethyl
391	0.01	Benzene, 1,3 dimethyl
9.730	0.01	Octadecanoic acid
3.165	0.01	Copaene
	0.01	Caryophyllene
i.210		Humulene
	0.01	
.840	0.02	Benzene1-(1,5 dimethyl-4 hexenyl)
.130	0.01	Pentadecane
5.343	0.01	1,3 Benzodioxole
.530	0.02	Beta.bisabolene
.947	0.01	Piperine
.804	0.01	Benzenemethanol. alpha.phenyl
.827	0.04	5-(2-Thienyl)pentanoic acid
.279	0.06	1-Octadecane
.606	0.01	1,3-Benzenediol,2-methyl
.053	0.09	Neophytadiene
.158	0.01	Benzyl (dideuterated)methylester
.440	0.01	Neophytadiene
3.725	0.04	3,7,11,15 Trimethyl-2-hexadecen
.072	0.01	Hexadeadiene-1-ol acetat
.206	0.01	2-Thiophenemethanethiol
.380	0.03	Hexadecanoic acid
1.714	0.06	Benzenepropanoic acid
5.032	0.01	2-Methyl-Z,z-3,13Octadecadienol
5.281	0.01	1H-indene,5-butyl-6-hexyloctahydr
5.342	0.02	Hexadecanoic acid
.749	0.04	Delta-tocopherol
.937	0.05	Delta-tocopherol
5.068	0.05	Delta-tocopherol
5.563	0.05	3-Octadecene
.720	0.05	Octadecadienoic acid
.788	0.02	1,1-Octadecenoic acid
.989	0.47	Phytol
.227	0.11	2E,4E,14E-N-Isobutylicosa
.448	0.17	2E,4E,14E-N-lsobutylicosa
7.563	0.32	2E,4E,14E-N-Isobutylicosa
.131	0.32	2E,4E,14E-N-Isobutylicosa
.353	0.55	2E,4E,14E N Isobutyiicosa 2E,4E,14E-N-Isobutylicosa
3.549	0.73	2E,4E,14E-N-lsobutylicosa
.713	1.31	2E,4E,14E-N-Isobutylicosa
.537	0.59	Piperidin
.613	0.35	Piperidin
.731	0.15	Piperidin
.885	0.02	(E)-pent-2-en-3-yl hexanoate
.288	0.03	1H-Indene, 5-butyl-6-hexyloctahydı
1.624	1.07	Squalene
1.958	0.01	2(1H)Naphthalenone, octahydro
.042	0.01	Pyridine-3-carboxamide, oxime
.208	0.06	Gamma-tocopherol
.356	0.00	3-Amino-2-methyl-5-nitro-6-pheny
2.138 2.573	0.07 0.03	1-Hexacosene Marrubine

Table 4: Identification compound of methanol extract of *S. cumini* leaves

Retention time	Area (%)	Compounds
2.648	0.18	Ethane, 1-bromo-2-chloro
3.265	0.14	Dimethylphosphine
3.395	0.06	2-Hydroxyethyl isobutyl sulfide
3.517	1.62	2-Hydroxyethyl isobutyl sulfide
5.045	2.10	Methanamine
5.478	0.45	Methanamine
5.889	0.11	Hydrazine, 1-1-dimethyl
5.315	0.12	Silanediol, dimethyl
17.039	0.12	2,3 Dihydro-3,5,-dihydroxy-6-methyl
23.210	0.14	Alpha-Cubebene
24.385	0.30	Caryophyllene
25.256	0.21	Humulene
25.890	0.47	Benzene,1-(1,5-dimethyl-4-hexenyl)
26.180	0.23	1,3,5 Benzenetriol
26.354	0.33	Piperidine
26.571	0.45	Beta,-Bisabolene
26.992	0.45	Isonicotinic acid
27.399	0.23	Benzenetriol
28.580	0.14	Santrolinatriene
29.484	0.14	9-Octadecanoic acid
29.725	0.80	Benzenemethanol, alpha phenyl
30.141	0.27	Pentadecanoic acid
30.264	0.25	3-Heptadecene
30.416	0.20	6-Tridecene
30.862	0.15	Cyclohexanepropanoic acid
32.311	0.24	Cyclohexanepropanoic acid
32.608	0.19	Piperidine
33.081	0.70	Neophytadiene
33.189	0.07	2-Methyl-7-nonadecene
33.470	0.21	2-Pentadecylfuran
33.637	0.07	7-Octenal,3,7-dimethyl
33.755	0.38	2-Pentadecylfuran
33.940	0.36	Cyclohexapropanol
		, , ,
34.400	0.80	Hexadecanoic acid
34.524	0.08	Isoaromadendrene epoxide
34.744	0.19	Benzenepropanoic acid
34.999	1.26	N-Hexadecanoic acid
35.312	0.27	Cyclohexane
35.816	7.42	Delta tocopherol
36.009	8.52	Delta tocopherol
36.588	0.70	1-Octadecene
36.750	0.71	9,12 Octadecadienoic acid
36.836	0.78	Hexadecatrienoic acid
36.902	0.34	2-Hexadecen
37.001	4.11	Phytol
37.123	1.02	Heptadecanoic acid
37.408	2.83	2-Cyclohexene-1-carboxylic acid
37.626		Octadecanoic acid
37.020 38.013	0.67 2.89	Di-alpha tocopherol
36.415	0.39	Acetic acid
38.943	0.15	Oleic acid
39.093	0.73	Heptadecane
39.304	0.34	Z,Z-10,12-Hexadecadien-1-ol acetat
39.780	0.78	14, beta-H-pregna
39.908	0.64	Mono(2-ethylhexyl)phthalate
40.321	0.05	Glycidyl (Z)-9-nonadecanoate
40.580	4.30	Squalane
40.688	2.54	Beta-Tocopherol
40.996	0.13	Spathulenol
41.222	4.55	Gamma-Tocopherol
41.706	7.67	1,4-naphthalenediacetonitrile
41.954	11.82	Acetic acid
42.134	17.74	
T4.1J4	17./4	Prolol 92,1,5-cdoindolizine-1-crab

Table 5: Antioxidant activity of n-hexane, ethyl acetate and methanol extracts from *S. cumini* leaves

		n-hexane		Ethyl acetate		Methanol	
Concentration (µg mL ⁻¹)	OD	IC (%)	OD	IC (%)	OD	IC (%)	
100	0.086	80.65611	0.311	29.63801	0.180	59.27602	
75	0.096	78.28054	0.339	23.30317	0.219	50.56561	
50	0.079	82.23982	0.404	8.597285	0.283	35.97285	
35	0.078	82.46606	0.407	8.031674	0.217	50.90498	
25	0.121	72.62443	0.436	1.470588	0.226	48.9819	
15	0.293	33.82353	0.439	0.678733	0.249	43.66516	
12.5	0.273	38.23529	0.425	3.959276	0.264	40.27149	
10	0.324	26.69683	0.421	4.864253	0.267	39.70588	
6.25	0.333	24.77376	0.434	1.923077	0.270	38.91403	
IC ₅₀	23.79		171.53		64.44		
	Very strong		Weak		Strong		

Table 6: Diameter of inhibition zone in n-hexane, ethyl acetate and methanol extracts of *S. cumini* leaves

Types of solvent		Diameter of inhibition zone (mm)			
	Concentration (ppm)	<i>S. aureus</i> ATCC 25923	<i>E. coli</i> ATCC 25922	<i>C. albicans</i> ATCC 10231	
Methanol	1000	6.0	7.2	6	
	750	6.0	7.4	6	
	500	6.0	7.3	6	
	250	6.0	7.6	6	
Ethyl acetate	1000	6.0	8.1	6	
	750	6.0	7.5	6	
	500	6.0	7.5	6	
	250	6.0	7.4	6	
n-hexane	1000	6.0	8.1	6	
	750	6.7	8.1	6	
	500	6.0	8.1	6	
	250	6.0	8.8	6	

DISCUSSION

According to the results of phytochemical screening, flavonoids were present in three types of extracts (Table 1). Flavonoids are part of polyphenol compounds that have a benzo-γ-pyran structure and generally were found in plants. These metabolites are synthesized by the phenylpropanoid pathway and have various pharmacological activities^{8,9}. Flavonoids are a group of phenolic compounds found in all parts of plants, especially in photosynthetic plant cells. These flavonoids have various biological activities such as antioxidants, hepatoprotective, antimicrobial, anti-inflammatory, anticancer and antiviral¹⁰⁻¹⁶.

In addition to a phytochemical screening test and bioactive compounds were identified using GC-MS. The identification of n-hexane, ethyl acetate and methanol extracts from *S. cumini* were shown in Table 2-4. The n-hexane extracts of *S. cumini* leave contained 69 compounds. This extract contained 37.39% furan compounds which these compounds are known to have antimicrobial activity¹⁷. The extract also contained 14.27% boronic acid

compounds, which have several biological activities such as anticancer, antibacterial and antiviral¹⁸ (Table 2). The ethyl acetate extracts of *S. cumini* contained 57 compounds. One of the dominant compounds was 2E, 4E,14E-N-Isobutylicosa (3.51%). This compound has the potential of antiinflammatory and anticancer¹⁹. Another compound found quite a lot was piperine. This compound has antibacterial activity against Salmonella typhi²⁰ (Table 3). The methanolic extracts of S. cumini contained 64 compounds. One of the dominant compounds is tocopherol, which is a group of vitamin E. This compound has the potential as an antioxidant²¹. In addition, there are also acetic acid compounds that have the ability as antioxidants and antibacterial agents against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922 and Candida albicans ATCC 10231²² (Table 4).

Antioxidant activity test of n-hexane, ethyl acetate and methanol extracts using the DPPH method. Value of inhibition concentration 50% (IC $_{50}$) using DPPH method (1,1-diphenyl-2-picrylhydrazyl). The IC $_{50}$ is the concentration of substrate or sample solution that can reduce the activity of

DPPH (1,1-diphenyl-2-picrylhydrazyl) by 50% which indicates the concentration of extract (ppm) capable of inhibiting the oxidation process²³. In the DPPH test, antioxidants will react with 1,1-diphenyl-2-picrylhydrazyl (DPPH) which stabilizes free radicals and reduces DPPH. Furthermore, DPPH will react with hydrogen atoms from free radical scavenging compounds to form 1,1-diphenyl-2-picrylhydrazine (DPPH-H) which is more stable. The colour change from purple to yellow will occur due to the reaction of DPPH with antioxidants. The ability of antioxidants will determine the intensity of colour change²³. The results of the antioxidant activity from n-hexane, ethyl acetate and methanol extracts were shown in Table 5. Based on the results, the antioxidant activity of n-hexane extracts of S. cumini was stronger than that of the ethyl acetate and methanol extracts. The IC₅₀ of n-hexane extracts was 23.79 ppm, while IC₅₀ of silymarin solution was 29.63 ppm. The IC value of n-hexane, ethyl acetate and methanol extracts of Syzygium cumini collected from the Bogor Botanical Gardens, Bogor, West Java, Indonesia was 12.58 g mL⁻¹, 48.06 g mL $^{-1}$ and 16.91 μ g mL $^{-1}$ ²⁴. This is also due to the flavonoid content contained in extracts. Flavonoids compound as an antioxidant, the mechanism is to capture reactive oxygen species (ROS) directly, prevent ROS regeneration and indirectly increase the antioxidant activity of cellular antioxidant enzymes²⁵.

Based on results of antimicrobial activity of n-hexane, ethyl acetate and methanol extracts of S. cumini using diffusion test were performed in Table 6. The three types of extracts inhibited S. aureus, E. coli and C. albicans. In general, the inhibition of *E. coli* was better when compared to other microbes. The antibacterial mechanism of flavonoids is to inhibit nucleic acid synthesis, cytoplasmic membrane function, energy metabolism, attachment and biofilm formation, inhibition of porins in cell membranes, change in membrane permeability and attenuation of pathogenicity²⁶. Factors affecting the diameter of the inhibition zone were extracts concentration, type of pathogenic microbe, the volume of extracts inserted into the paper disc, the thickness of the agar medium and the diffusion rate of antimicrobial substance through agar. The conclusion of this study is n-hexane, ethyl acetate and methanol extracts from S. cumini leaves contain bioactive compounds and secondary metabolites that have antioxidant and antimicrobial activity.

CONCLUSION

It can be concluded that the n-hexane extract of *S. cumini* leaves contains flavonoids and terpenoids with 69 bioactive compounds. The ethyl acetate extract of *S. cumini* leaves only contains flavonoids with 57 bioactive compounds. The

methanol extract of *S. cumini* contains flavonoids and saponins with 64 identified bioactive compounds. The n-hexane extract of *S. cumini* leaves has the strongest antioxidant activity with IC_{50} 23.79, it is also the highest of inhibiting the growth of *E. coli* ATCC 25922 with an inhibitory diameter was 8.8 mm at a concentration of 250 ppm.

SIGNIFICANCE STATEMENT

This study discovered the bioactive compounds, antioxidant and antimicrobial activity of *S. cumini* leaves that can be beneficial for providing information in the form of bioactive compounds that have the potential to be used as an alternative to developing drug-based sources in the pharmaceutical field. This study will help the researchers to uncover the critical areas of biological activities of *S. cumini* from Surabaya, Indonesia that many researchers were not able to explore.

ACKNOWLEDGMENT

The author thanks the Chancellor of Universitas Airlangga who has provided research funding (Faculty RKAT) through the 2021 Faculty Leading Research Grant (212/UN3/2021).

REFERENCES

- Mujeeb, F., P. Bajpai and N. Pathak, 2014. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of *Aegle marmelos*. BioMed Res. Int., Vol. 2014. 10.1155/2014/497606.
- Itam, A., M.S. Wati, V. Agustin, N. Sabri, R.A. Jumanah and M. Efdi, 2021. Comparative study of phytochemical, antioxidant, and cytotoxic activities and phenolic content of *Syzygium aqueum* (Burm. f. Alston f.) extracts growing in West Sumatera Indonesia. Sci. World J., Vol. 2021. 10.1155/ 2021/5537597.
- Khan, S.A., S. Shahid, A. Ayaz, J. Alkahtani, M.S. Elshikh and T. Riaz, 2021. Phytomolecules-coated NiO nanoparticles synthesis using *Abutilon indicum* leaf extract: Antioxidant, antibacterial, and anticancer activities. Int. J. Nanomed., 16: 1757-1773.
- Cao, T.Q., N.V. Phong, J.H. Kim, D. Gao and H.L.T. Anh et al., 2021. Inhibitory effects of cucurbitane-type triterpenoids from *Momordica charantia* fruit on lipopolysaccharidestimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Molecules, Vol. 26. 10.3390/ molecules26154444.

- Sofowora, A., E. Ogunbodede and A. Onayade, 2013. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Traditional Complementary Altern. Med., 10: 210-229.
- 6. Ayyanar, M. and P. Subash-Babu, 2012. *Syzygium cumini* (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed., 2: 240-246.
- Tamuly, C., M. Hazarika, J. Bora and P.R. Gajurel, 2014. Antioxidant activities and phenolic content of *Piper wallichii* (Miq.) Hand.-Mazz. Int. J. Food Prop., 17: 309-320.
- Mahomoodally, M.F., A. Gurib-Fakim and A.H. Subratty, 2005. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharm. Biol., 43: 237-242.
- 9. Kumar, S. and A.K. Pandey, 2013. Chemistry and biological activities of flavonoids: An overview. Sci. World J., Vol. 2013. 10.1155/2013/162750.
- Manurung, H., W. Kustiawan, I.W. Kusuma and Marjenah, 2017. Total flavonoid content and antioxidant activity of tabat barito (*Ficus deltoidea* Jack) on different plant organs and ages. J. Med. Plants Stud., 5: 120-125.
- 11. Nguyen, T.P., D.T. Mai, T.H.T. Do and N.M. Phan, 2017. Flavonoids with hepatoprotective activity from the leaves of *Cleome chelidonii*. Nat. Prod. Commun., 12: 1061-1063.
- 12. Cushnie, T.P.T. and A.J. Lamb, 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 26: 343-356.
- 13. Sarkar, A., V.D. Tripathi, R.K. Sahu and W.M. Aboulthana, 2017. Evaluation of anti-inflammatory and anti-arthritis activity of isolated fractions from *Bauhinia purpurea* leaves extracts in rats. Pharm. Biosci. J., 5: 47-58.
- 14. Rodríguez-García, C., C. Sánchez-Quesada and J.J. Gaforio, 2019. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, Vol. 8. 10.3390/antiox8050137.
- 15. Yahfoufi, N., N. Alsadi, M. Jambi and C. Matar, 2018. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, Vol. 10. 10.3390/nu10111618.
- Tabari, M.A.K., A. Iranpanah, R. Bahramsoltani and R. Rahimi, 2021. Flavonoids as promising antiviral agents against SARS-CoV-2 infection: A mechanistic review. Molecules, Vol. 26. 10.3390/molecules26133900.

- Naz, R., T.H. Roberts, A. Bano, A. Nosheen and H. Yasmin et al., 2020. GC-MS analysis, antimicrobial, antioxidant, antilipoxygenase and cytotoxic activities of *Jacaranda* mimosifolia methanol leaf extracts and fractions. PLoS ONE, Vol. 15. 10.1371/journal.pone.0236319.
- Silva, M.P., L. Saraiva, M. Pinto and M.E. Sousa, 2020. Boronic acids and their derivatives in medicinal chemistry: Synthesis and biological applications. Molecules, Vol. 25. 10.3390/ molecules25184323.
- Rajalekshmi, D.S., F.A. Kabeer, A.R. Madhusoodhanan, A.K. Bahulayan and R. Prathapan *et al.*, 2016. Anticancer activity studies of cubebin isolated from *Piper cubeba* and its synthetic derivatives. Bioorg. Med. Chem. Lett., 26: 1767-1771.
- Zahin, M., N.A. Bokhari, I. Ahmad, F.M. Husain and A.S. Althubiani *et al.*, 2021. Antioxidant, antibacterial, and antimutagenic activity of *Piper nigrum* seeds extracts. Saudi J. Biol. Sci., 28: 5094-5105.
- 21. Selamat, S.N., I.I. Muhamad, Z. Idham and N. Pae, 2018. Retention of alpha tocopherol and antioxidant activity of encapsulated palm mixed vitamin E in formulated blends. MOJ Food Process. Technol., 6: 272-278.
- Antoniewicz, J., K. Jakubczyk, P. Kwiatkowski, D. Maciejewska-Markiewicz, J. Kochman, E. Rębacz-Maron and K. Janda-Milczarek, 2021. Analysis of antioxidant capacity and antimicrobial properties of selected polish grape vinegars obtained by spontaneous fermentation. Molecules, Vol. 26. 10.3390/molecules26164727.
- 23. Molyneux, P., 2004. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26: 211-219.
- 24. Ramadhania, Z.M., M. Insanu, N.S. Gunarti, K.R. Wirasutisna, S. Sukrasno and R. Hartati, 2017. Antioxidant activity from ten species of Myrtaceae. Asian J. Pharm. Clin. Res., 10: 5-7.
- 25. Akhlaghi, M. and B. Bandy, 2009. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J. Mol. Cell. Cardiol., 46: 309-317.
- 26. Xie, Y., W. Yang, F. Tang, X. Chen and L. Ren, 2015. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 22: 132-149.