

Asian Journal of Plant Sciences

ISSN 1682-3974

ISSN 1682-3974 DOI: 10.3923/ajps.2023.506.515

Research Article

Plant Use and its Impact on the Evolution of Woody Plant Formations in Diamaré, Far North of Cameroon

¹Kalda Henri, ¹Tchobsala and ²Mvondo Awono Jean Pierre

Abstract

Background and Objective: Against a backdrop of climate change and strong population growth, natural resources are under considerable pressure from human activity. This aims to contribute to the understanding of the use of woody plant species and the perception of the dynamics of the woody stand of the forest massifs of the Diamaré Department in the Far North of Cameroon. **Materials and Methods:** The methodology was based on socio-economic surveys carried out based on questionnaires in previously established forms. As 264 people were interviewed an average of 66 per site. The statistical data collected were analyzed using R software version 4.2.1 and the chi-squared test to compare the means. **Results:** Individual interviews with local populations showed that the majority of actors exploiting natural resources are men (73%) aged between 40 and 50 years, including farmers (87.8%), herders (62.07%) and traders (33.2%). The most exploited woody species were *Balanites aegyptiaca* (96.25%), *Acacia nilotica* (88.37%), *Tamarindus indica* (96.12%), *Azadirachta indica* (82.6%), *Piliostigma thonningii* (69. 9%), *Acacia seyal* (62.75%) were the most used species. These species are used for food, medicines and handicrafts, leading to a reduction in forest area. **Conclusion:** The perception of the vegetation dynamics by the residents showed that 89.3% of the people see that the areas of natural formations have decreased. These species are used for food, medicines and handicrafts, leading to a reduction in forest area.

Key words: Local perception, dynamics, pharmacopeia, woody settlement, Diamaré

Citation: Henri, K., Tchobsala and M.A.J. Pierre, 2023. Plant use and its impact on the evolution of woody plant formations in Diamaré, Far North of Cameroon. Asian J. Plant Sci., 22: 506-515.

Corresponding Author: Kalda Henri, Department of Biological Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon Tel: (+237) 698269999

Copyright: © 2023 Kalda Henri et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Biological Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon

²Department of Plant Biology, Faculty of Science, University of Dschang, Dschang, Cameroun Colline de Foto, Cameroon

INTRODUCTION

The ecologically fragile Far North Region of Cameroon regularly experiences prolonged periods of drought and significant anthropogenic pressure due to exponential population growth¹. Natural resources are facing pronounced anthropogenic pressures leading to dysfunctional ecosystems and biodiversity losses². Resource degradation, particularly in the Sudano-Sahelian Zone of Cameroon, is caused by human activity, bushfires and climate change³⁻⁵. This vulnerability contributes to the degradation of vegetation cover, leading to ecological disruption, lower crop yields, falling farm incomes and food insecurity. Bush fires are an important factor in the destruction of vegetation cover⁶. In the Sahelian Zone of Cameroon in general and in the Far North in particular, fire is used to destroy weeds in the fields or to enlarge the cultivable area. Insecurity in this part of the country, due to its proximity to Nigeria, has caused significant material and human damage⁷. Many villages are expanding and new settlements are being established in an anarchic manner. As populations increase, they need more resources and natural spaces for their various activities (pastoral, agricultural, wood exploitation), which leads to unprecedented anthropic pressure on plant resources. The decrease in forest area is mainly the result of clearing linked to the extension of cropland caused by the practice of slash-and-burn agriculture or cattle ranching8. Many studies have been carried out on the dynamics of the vegetation of the Far North (Diamaré Department), but there has been a lack of local perception of plant resources. Local knowledge provides a better understanding of the nature of environmental processes and is an indispensable complement to science9. It is therefore, important to intensify work at the local level to guide decision-making for sustainable natural resource management. This study aimed to contribute to the local understanding of woody use and stand dynamics in the Diamaré District. The degradation of vegetation can be a threat to the Sahelian ecological balance of economic activities.

MATERIALS AND METHODS

The current study was launched on 02 May, 2022 and completed in March, 2023 on the use of plant resources and their impact on the dynamics of plant cover.

Study sites: The Department of Diamaré is one of the six departments that make up the Far North Region

(10°56' to 10°96' North, 13°54' to 13°58' East) with a surface area of 4665 km². The department of Diamaré is located in the heart of the Far North Region. Its population is around 713,653 inhabitants, representing 22.93% of the population of the Far North¹⁰. Agriculture is the main activity, employing around 60% of the working population, mainly on family farms. It also plays an irreplaceable role in the creation of income in the countryside¹ followed by livestock farming, which represents an essential source of income for 30% of the rural population and for many ethnic groups, livestock is the primary means of wealth accumulation. The vegetation of Diamaré is made up of wooded, shrubby and herbaceous savannahs, forest galleries and a thorny steppe11. The vast grasslands cover the periodically flooded areas and the wooded savannahs and dry open forests in the highland areas¹². The Diamaré plain has a Sudano-Sahelian climate and annual rainfall varies between 435 and 810 mm, characterized by a long dry season from October to June and a short rainy season between July and September.

Methods

Data collection systems: The population's view on the modification and degradation of plant formations will be based on ethnobotanical surveys complemented by direct field observations. These surveys were inspired by Quemin¹³ accelerated participatory research method (MARP). It is carried out based on questionnaires in previously established forms. The guestionnaires are semi-structured with closed (yes/no), open (deliberately answered from one's point of view) and open-ended (answers are proposed to the respondents) questions. The main headings of the questionnaires are the identity of the respondent, the practices of agriculture, wood cutting and the perception of the population on the dynamics of the vegetation cover, the factors of the degradation of vegetation formations. The number of people to be interviewed was defined according to the size of the population and was divided by district. People aged 30 years or more were targeted because they are most likely to give us reasonable information on the evolution and change observed in woody vegetation over the past two decades.

For the sample to be representative of the selected population (at least 30), the sample size must be determined. The sample size is determined using the statistical formula for Lorentz sample estimation¹⁴:

$$n = \frac{t^2 \times p \ (1-p)}{e^2}$$

Where:

n = Sample size

- t = Estimated confidence rate for the proportion (t = 95% corresponds to 1.96 read from the student-fisher centered normal distribution table)
- p = Proportion of the target parent population (at least 30) for our study it is 36.04% (BUCREP, 2010)
- e = Estimated margin of error for the proportion (5% margin of error)

$$n = \frac{(1.96)2 \times 0.3604(1 \text{-} 0.3604)}{0.005^2} \cong 264 \text{ persons}$$

In this study, 264 people will be surveyed, for an average of 66 people per site.

Statistical analysis: The collected data were processed and analyzed using XLSTAT 2007 version and Microsoft Excel 2013 version software. Descriptive statistics and tables were used for data analysis and the χ^2 test was used to test the statistical significance of variations at the 0.05 level of probability.

RESULTS AND DISCUSSION

Socio-economic characterization of stakeholders

Distribution by gender: The distribution of forest resource users at the sites according to gender. It can be seen that the majority of the actors exploiting the forest resources were men (73%), representing, respectively 78.7, 77.2, 71 and 65% in the localities of Ndoukoula, Pétté, Maroua III and Méri as shown in Fig. 1. This can be explained by the fact that the man is the head of the family and therefore answers for all. In addition, the exploitation of timber in the localities is mainly

entrusted to them. In Meri, the culture allows women to fetch firewood, unlike other women who have to stay at home and wait for their husbands, hence the slightly lower percentage compared to other localities. Men were involved in most activities that require strength and energy. The exploitation or search for forest resources is always done by men in different districts. According to customs and religions, the woman is supposed to do the housework. According to Ozer¹⁵, the concentration of people of rural origin in the cities is impressive and creates an almost inescapable pressure around the urban poles. Tchobsala et al.16 reported the same findings in Ngaoundéré in the exploitation of wood where men were actors. The analysis of variances shows a very significant difference $(72.75 \pm 6.02^a, 28.5 \pm 5.32^b, 0.00368 < 0.05)$ between the two sexes. These results were close to those of GIZ¹⁷ in the Far North of Cameroon where men are responsible for timber exploitation.

Age distribution: The operators were distributed according to age in Fig. 2. Individuals aged between 40 and 50 are more present in the whole study area and those between 70 and 80 are less represented. Individuals under 40 years of age are less present because they are mainly active in urban centers. In Pétté (48.4%) and Ndoukoula (45%), there is a high number of individuals between 40 and 50 years of age, this can be explained by the fact that these areas are far from the city and the dominant activities are agriculture and timber trade. These results were similar to those of Jonathan *et al.*¹⁸ in the Ngaoundéré cliff forest landscape. Older people (70-80 years) are poorly represented due to the physical exhaustion they face. The exploitation of firewood is a profitable sector in the locality of Pétté and Ndoukoula, thus constituting a production basin for the urban centers. According to MINFOF,

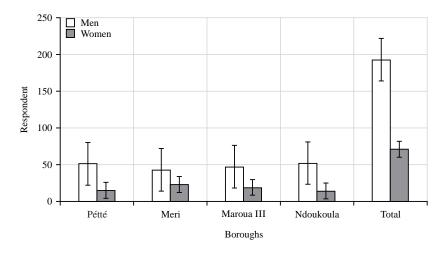


Fig. 1: Distribution of farmers by gender

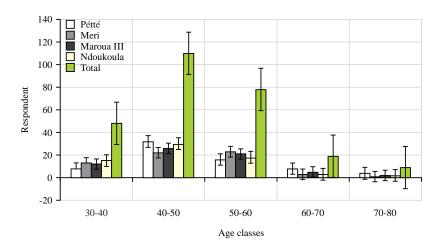


Fig. 2: Age distribution of farmers

Table 1: Distribution of operators according to activities (%)

		District				
Actors	Pétté	Ndoukoula	Maroua III	Meri	Mean	
Farmers	89.00	96.40	78.00	87.80	87.8±7.35ª	
Fishers	10.20	0.70	0.00	0.00	2.72±4.99b	
Hunters	7.50	5.90	1.10	0.80	3.82±3.38°	
Traders	35.00	28.60	43.00	26.20	33.2±7.51 ^d	
Breeders	82.50	70.80	62.50	32.50	62.07±21.35e	
Artisans	2.60	1.50	5.60	1.20	2.72 ± 2.00^{f}	
Mean	37.8±38.84ª	33.98±40.57ª	31.7±34.18 ^b	24.75±33.99 ^b	32.05±5.48	

83% of Cameroon's population depends on woody biomass as an energy source and in rural areas, it is often the only available energy source, the potential wood energy supply for the region is estimated at 1.13 million cubic meters per year equivalent to 792,374 tons of wood. The flexibility and corruption of local administrative authorities encourage people to abuse the available plant resources¹⁹. The comparative analysis shows a highly significant difference (p<0.01) between age groups. The youngest are rarely interested in logging in our districts, they limit themselves to gathering or grazing their herds, hence their lower numbers. Kodji *et al.*²⁰ obtained different results in the Minawao locality where plant resource exploitation is practiced by younger individuals.

Distribution according to the activity of the farmers: The different activities practiced in the study area vary according to the individual. Table 1 showed that 87.8% of the actors exploiting natural resources are farmers and cultivate millet, maize, sorghum, beans, onions and some tubers, followed by livestock farmers (62.07%) and traders (33.2%). The main reason for these results was that the main source of income for many families is land cultivation, which is practiced

throughout the year. In the off-season, Karal fields dominate the cultivation of crops, with some market gardening and vegetable gardening. Other activities such as hunting and fishing are not profitable in the four districts because of the lack of game and water for fishing. Trade is a substitute activity for agriculture for most of the local people, but given the economic situation and the lack of security, small local businesses prevail. Handicrafts are poorly practiced in the three districts of Pétté, Ndoukoula and Méri. This is due to the manufacturing techniques that are difficult to acquire and it is practiced from generation to generation in the families. They make shoes, traditional clothes, bracelets and many others. Current results differ from those of Ibrahim et al.21, in a refugee camp in Eastern Niger where livestock farming provides most of the food they need to survive This discrepancy can be explained by the settlement conditions of this population. Trade in these areas is often associated with the sale of timber. The least represented were hunters (3.82%), artisans (2.72%) and fishermen (2.72%). The absence of certain activities in the locality, such as Meri and Maroua III, can be observed. This low representation was because these activities are less lucrative and are practiced seasonally. The analysis of variances shows a non-significant difference between

Table 2: Most popular woody species in the locality (%)

Species	Part used	Pétté	Ndoukoula	Maroua III	Meri	Mean
Balanites aegyptiaca	Leave, wood, fruit	100	100	100	85	96.25±7.5°
Acacia nilotica	Wood, fruit	85	96	94.5	78	88.37±8.4 ^b
Tamarindus indica	Wood, fruit	100	98	100	86.7	96.12±6.48a
Piliostigma thonningii	Bark	62.5	54	78.4	85	69.97±14.23°
Celtis integrifolia	Leave, wood	95	15.2	5.2	1.4	29.20±44.25d
Diospyros mespiliformis	Wood, fruit	52	9.00	37	75	43.25±27.7e
Hyphaene thebaica	Leave, wood	85	28.3	10	5.5	32.20±36.55 ^f
Ziziphus mauritiana	Leave, wood, fruit	65	22	68.2	80	58.80±25.36 ^g
Azadirachta indica	Wood, fruit	95	70.6	95	100	82.65±17.4 ^h
Borassus aethiopium	Fruit	52	24	10.5	5.8	23.07 ± 20.76^{i}
Adansonia digitata	Leave, fruit	32	35	9.5	1.5	19.50 ± 16.53^{j}
Anogeissus leiocarpus	Leave	25	12.5	36	2	18.87 ± 14.78^{k}
Acacia seyal	Wood	84	65	78	24	62.75 ± 27.02^{1}
Ficus sycomorus	Wood, fruit	40	39	22.5	69.5	38.12 ± 11.8^{m}
Vitex doniana	Wood, fruit	29	52	8.5	35	31.12±18 ^f
Mean		67.95±27.54ª	47.98±32.4b	50.22±38.3°	48.62±36.52b	53.69±9.55

activities and localities. These results were similar to those of Seignobos and lyébi-Mandjek¹², who define agriculture and livestock as the main activities of the population. The increase in population leads to the extension of fields or the conquest of new land, which translates into the reduction of forest area²².

Use of plant resources by residents

Woody species exploited: The list of woody species exploited by residents were presented in Table 2. It emerges that Balanites aegyptiaca (96.25%), Acacia nilotica (88.37%), Tamarindus indica (96.12%), Azadirachta indica (82.6%), Piliostigma thonningii (69.9%), Acacia seyal (62. 75%) were the most used species followed by Ziziphus mauritiana (58.8%), Diospyros mespiliformis (43.25%), Hyphaene thebaica (32.2%), Celtis integrifolia (29.2%) in the area. These species were valued by the population either for their fruits, leaves, or wood. Households appreciate more the wood of Balanites aegyptiaca and Acacia seyal and the fruits of Tamarindus indica and Azadirachta indica. For the less valued woody species, the bark is used in the pharmacopeia. These results were similar to those of Baye-Niwah et al.23 in the peripheral agrosystems of the city of Maroua where local species such as Tamarindus indica, Balanites aegyptiaca, Ziziphus mauritiana are valued for making pestles, mortars, dead hedges and leaves for animal feed. Overall, there is no significant difference in the use of woody species in the Diamaré district. The frequency of use of these species varies according to the importance that local people attach to their use; For example, Celtis integrifolia is used much more in the district of Pétté for its leaves with a frequency of 95%,

Diospyros mespiliformis and Ficus sycomorus were valued in the district of Méri for their sweet fruits with frequencies of 75 and 69.5%, respectively, in the Ndoukoula sector, the species Vitex doniana is valued for its fruits and wood with a frequency of 52%. There were also species exploited but at low frequencies such as Hyphaene thebaica, Piliostigma thonningii, Borassus aethiopium and Anogeissus leiocarpus. For Froumsia et al.²⁴ this exploitation has an impact on economies and flourishing in the Sahelian Zone.

The parts valued from woody plants were similar in the four localities. Wood (73%) is the most valued, followed by fruit (66.7%) and leaves (40%). Wood is the main source of energy for households in rural and even urban areas and for others, it is a source of income to cover family needs.

Woody species used as a food source: Table 3 shows the list of woody species used as a food source in the Diamaré Department, with a total of 12 species providing most of the products for consumption by local people. The list varies according to the district. The most popular species were Ziziphus mauritiana (100%), Tamarindus indica (100%), Balanites aegyptiaca (100%), Celtis integrifolia (95.15%), followed by species such as *Diospyros mespiliformis* (92.87%), Hyphaene thebaica (86%) and Ficus sycomorus (80.5%). Some species such as Borassus aethiopium (52%) are much more consumed in the Districts of Pétté, Ficus thonningii (92%), Sclerocarya birrea (52.60%) and Vitex doniana (62%) in Méri and in Ndoukoula Vitex doniana (65.40%) is the most popular. Of the four districts, Méri consumes more NTFPs on average 76.17%. Kebyei et al.25 reported similar results in the N'Diamena fuelwood supply basin in Chad citing Ziziphus

Table 3: List of species used in feeding (%)

Species	Maroua III	 Pétté	Meri	Ndoukoula	Mean
Balanites aegyptiaca	100	100	100	98	99.50±1°
Borassus aethiopium	5.50	52	3.50	1.50	15.62±24.3 ^b
Celtis integrifolia	100	100	85	95.60	95.15±7.07 ^a
Diospyros mespiliformis	98	75	100	98.50	92.87±11.94°
Ficus sycomorus	70	86	92	74	80.50± 10.24d
Ficus thonningii	15	34	92	24.80	41.45±34.58e
Hyphaene thebaica	86	100	82	76	86.00±10.19 ^f
Sclerocarya birrea	36.50	18	52.60	25.40	33.12±15.04 ^g
Tamarindus indica	100	100	100	100	100.00 ± 0^{a}
Vitex doniana	34.80	42.50	62	65.40	51.17±14.86 ^h
Ximenia americana	12	85	45	64	51.50±30.98 ^h
Ziziphus mauritiana	100	100	100	100	100.00 ± 0^{a}
Mean	63.15±39.29 ^a	74.37±29.93 ^b	76.17±29.99 ^b	68.6±34.19ª	70.57 ± 5.90

Table 4: List of species used in the pharmacopoeia (%)

	District				
Species	Maroua III	Pétté	Meri	Ndoukoula	Mean
Acacia nilotica	68.50	49	65	25	51.82±19.82°
Azadirachta indica	98	100	72	100	92.50±13.69b
Faidherbia albida	44.50	55.20	65.50	70.50	58.92±11.53°
Tamarindus indica	85	67.40	84.20	69.10	76.42±9.47d
Ziziphus mauritiana	46.50	68.50	80.60	59.60	63.80±14.39e
Mean	68.5±23.46 ^a	68.02±19.68 ^a	73.46±8.70 ^b	64.84±26.93°	68.70±3.56

Means followed by the same letter are not statistically different at the 5% level

mauritiana, Balanites aegyptiaca, Tamarindus indica and Diospyros mespiliformis as the most used woody species in human food. These results can be explained by the fact that the majority of households in rural areas depend on NTFPs to meet their family needs due to poverty. The food species are mostly accessible to the population, with empirical knowledge, some families consume these forest resources as an alternative to the lack of nutrients or vitamins in the cultivated food. The fruits of Sclerocarya birrea and the leaves of Ziziphus mauritiana are also used in the domestic breeding of small ruminants. Current results were in agreement with those of Baye-Niwah et al.²³ in the peripheral agrosystems of the city of Maroua in Cameroon where several of the above species are used by the population. Similarly, Froumsia et al.²⁴ reported similar results in the Kalfou reserved in Cameroon. In sum, the value, significance and importance of the species used in consumption depends on the localities.

Woody species used in the pharmacopeia: In the different districts, several species were used for treatment. Table 4 shows the five species used in the traditional pharmacopoeia. *Azadirachta indica* (92.5%), *Tamarindus indica* (76.42%) and

Ziziphus mauritiana (63.5%) are the most used to treat various light tropical diseases, followed by Faidherbia albida (58.92%) and Acacia nilotica (51.82%). Many people use Azadirachta indica to treat stomach aches, allergies, colic in infants and many other diseases. The district of Méri (73.46%) uses more woody plants in the pharmacopoeia followed by Maroua III (68.55%), Pétté (68.02%) and Ndoukoula (64.84%). The use of plants in health care has been inherited from their ancestors, given the costly modern medicine many people fall back on plants making some species vulnerable. Current results were close to those of Kebyei et al.25, in the N'Djamena fuelwood supply basin in Chad who reported almost the same woody species in disease treatments. The importance given to species in the pharmacopeia comes from the initiation that is done at the grassroots level. It is difficult to know the therapeutic virtues of woody species because it is still held as a secret. The analysis of variance shows a non-significant difference (p<0.05) in the use of forest resources in the district to treat diseases. Some respondents find it difficult to confide in the virtues of these species but given its complementarity to modern medicine, this gives confidence in the use.

Table 5: List of species used as fuelwood (%)

Species	Maroua III	Pétté	Meri	Ndoukoula	Mean
Acacia gerrardii	35	39.7	52.4	32	39.77±8.99ª
Acacia hockey	98	74	82	98	88.00±12 ^b
Acacia nilotica	100	94	65	70.2	82.30±17.28°
Acacia senegal	2.9	5.8	75	45.8	32.37±34.50 ^d
Acacia seyal	100	96	100	97	98.25±2.06 ^e
Acacia sieberiana	37.2	52.4	54.8	46	47.60±7.86 ^f
Anogeissus leiocarpus	75.8	72	62.5	58	66.92±8.03 ^g
Azadirachta indica	69	64	36	47.9	54.22±15.12 ^h
Balanites aegyptiaca	100	100	76	98	93.50±11.70 ⁱ
Khaya senegalensis	2.8	3.6	2.4	1.4	2.55 ± 0.91^{j}
Tamarindus indica	12	19	27	35	23.25 ± 9.94^{k}
Terminalia glaucescens	0	12	1.2	4.1	4.32±5.39
Ziziphus mauritiana	18.6	46	67	84.7	54.07±28.45 ^h
Mean	50.1±41.42°	52.19±34.62ª	53.94±29.85 ^a	56.00±34.50b	53.05±2.51

Table 6: List of species used in handicrafts (%)

Species	Maroua III	Pétté	Meri	Ndoukoula	Mean
Daniellia oliveri	14.60	32	42.50	12.40	25.37±14.39a
Diospyros mespiliformis	75	66.40	79.80	59.80	70.25±8.90 ^b
Hyphaene thebaica	55	27	14	48	36.00±18.88 ^c
Piliostigma thonningii	79	64	75.40	82.70	75.27±8.08 ^d
Sterculia setigera	58.30	18.50	21.50	54.60	38.22±21.13°
Tamarindus indica	98	76.40	63	70.40	76.29 ± 15.06^{d}
Mean	63.31±28.47°	47.38±24.35 ^b	49.36±27.80 ^b	54.65±24.04°	53.67±7.11

Means followed by the same letter are not statistically different at the 5% level

Woody species used as fuel wood: The various woody species in Diamaré that are valued for their wood in the production of domestic energy were presented in Table 5, a total of 13 species were identified. Acacia seyal (98.25%), Balanites aegyptiaca (93.5%), Acacia hockii (88%) are the most used, followed by *Acacia nilotica* (82.3%) and *Anogeissus leiocarpus* (66.92%). The wood is used 50% on average in the whole study area. Acacia nilotica, Anogeissus leiocarpus, Azadirachta indica are more prized for their wood in Maroua III District with frequencies of 100, 75.8 and 69%, respectively, in Pétté Terminalia glaucescens is added to those mentioned above in the Méri district, the use of *Acacia senegal* as firewood with a high frequency makes the difference with the other districts, the frequency of use of Ziziphus mauritiana is very high in the Ndoukoula sector. The use of these different woody species reflects the anthropic pressure on these trees in the Diamaré Department. The use of fuelwood depends on the availability and dominance of these woody species in the locality. Current results were not far from those of Sani et al.26 in the Mozogo-gokoro National Park of northern Cameroon where these species are cited among those used for energy production. The analysis of variance shows a significant difference between the uses of woody species in the four

districts. Jonathan *et al.*¹⁸ reported different findings to our results in the Ngaoundéré cliff forest landscapes where *Isoberlinia doka, Anogeissus leiocarpus* and *Daniellia oliveri* are presented as the plant species commonly used for fuel wood.

Woody species used in handicrafts: Handicrafts are a source of income for families, but they require appropriate knowledge and techniques. Table 6 shows the species used as raw material after the surveys. A total of five woody species constitute the raw material of artisans in the Diamaré department. Tamarindus indica (76.29%), Piliostigma thonningii (75.27%) and Diospyros mespiliformis (70.25%) are used in the manufacture of mortars, pestles, Koranic slate, etc., followed by Sterculia setigera (38.22%) and Hyphaene thebaica (36%), which were used to make traditional mats and brooms in Maroua III and Ndoukoula Districts. Maroua III (63.31%) uses more wood in handicrafts followed by Ndoukoula (54.65%), Pétté and Méri use less. These results can be explained by the fact that farmers in different districts can find easily accessible raw materials for manufacturing in the plant resource. The same observation was reported by Konsala et al.27 in Mbam and Djerem in Cameroon where

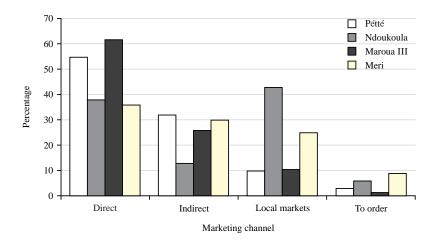


Fig. 3: Marketing channels in the study area

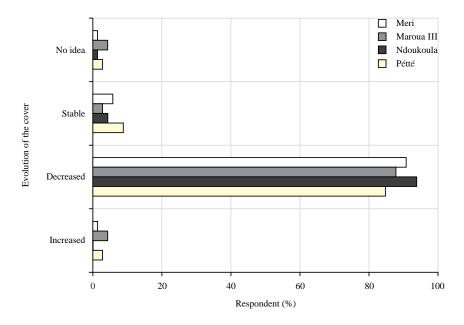


Fig. 4: Variation in vegetation cover

several woody species are used to make objects such as masks, mortars, statutes and many others. Baye-Niwah $et \, al.^{23}$ in the town of Maroua found similar results in the use of some of the species mentioned in handicrafts. Analysis of variance shows a significant difference (p<0.05) between the districts in the use of woody plants in handicrafts.

Forest product marketing circuit: Timber is marketed in all districts directly, i.e., from the collector to the consumer without intermediaries. Figure 3 shows the marketing circuit. It can be seen that operators in Pétté (55%), Maroua III (62%) and Méri (36%) sell their products directly to consumers, on the other hand, in Ndoukoula (48%) it is sold much more on

local markets. The collectors are often people living on the outskirts of the urban centers, who come to deliver their wood directly using bicycles, motorbikes or even cars for the better off. Delivery can be made in markets or at home. For NTFPs (leaves or fruit), marketing is indirect, as the flow of these products is slower, collectors deliver to residents, who then resell to consumers.

Farmers' perception of the dynamics of vegetation formations: The perception of the extent of vegetation cover in the department was shown in Fig. 4. It shows that 89.3% on average consider that the area of natural formations has decreased, 5.7% think that it has remained stable, while a few

people (2.2%) see an increase. The increase in population is putting significant pressure on ecosystems. Overgrazing and certain agricultural practices are responsible for the degradation of savannahs and even forests. As far as woody species are concerned, the same observations were made in the four study sites. The decrease in plant formations observed by the majority of the population can be explained by the demographic boom that the department experienced following the insecurity observed in the border zone with Nigeria. The reduction in the majority of plant cover is accelerated by the anthropisation of the environment through the extension of fields and housing, plus an increased demand for firewood by households. The species that have increased according to the vulnerability index are Balanites aegyptiaca, Azadirachta indica and Acacia seyal on the other hand species such as Celtis integrifolia, Ximenia americana, Vitellaria paradoxa tend to decrease over time. The same observation was made by Hiernaux et al.²² in the Burkinabe Sahel where the majority of surveys (81) mention a regressive trend in plant cover. This was in line with and confirms the statistical data from the mapping which shows a considerable reduction of natural formations in favor of anthropogenic formations. The Diamaré department is an ecologically fragile area, with increasing aridification of the environment and mortality of woody species leading to a decrease in biodiversity²⁸. Natural formations (forest galleries, savannahs) are increasingly being replaced by housing and fields²⁹.

Limitations and implication: In the Sahelian Zone, particularly Diamaré, local people depend mainly on forest resources, so it was relatively difficult to obtain information on the use of woody species and their impact on the dynamics of the vegetation cover. The methodology based on surveys of local people was not easy because they considered us to be agents of the state. Some of the people we interviewed gave hasty answers to get rid of us. This delayed our work on the land and prevented us from developing normally.

CONCLUSION

The people who exploit forest resources are mainly men in the four districts. These different species of woody plants are valued for their fruit, leaves, or wood. This phenomenon has led to a reduction in the vegetation cover in Diamaré. The residents draw most of their resources from the vegetation formations, this dependence should push the public authorities to set up rational and sustainable management systems to preserve the ecosystems.

SIGNIFICANCE STATEMENT

The objective of this study was to contribute to the understanding of the use of woody species and the perception of the impact on the dynamics of woody formations. The socio-economic surveys showed that the actors exploiting the natural resources were mostly men and farmers. The most exploited woody species are *Balanites aegyptiaca*, *Acacia nilotica*, *Tamarindus indica*, *Azadirachta indica*, *Piliostigma thonningii* and *Acacia seyal* are the most used species. The perception of the impact on vegetation dynamics by the residents showed a decrease in the vegetation cover areas. As a bioclimatic regulating system, plant formations are subject to both demographic and climatic pressures, which can have a perceptible impact on the state of the plant cover. This study could guide decision-making for sustainable resource management.

ACKNOWLEDGMENTS

The authors would like to thank the University of Maroua in Cameroon for making this work possible. We are grateful to all the people in the four districts of the study area who gave their time to ensure that the inventories were carried out.

REFERENCES

- Donfack, P. and C. Seignobos, 1996. Indicator plants in an agrosystem including fallow: The examples of the Fulani and the Giziga of Northern Cameroon [In French]. J. Agric. Traditionnelle Botanique Appl., 38: 231-250.
- FAO, 2018. The State of the World's Forests 2018: Forest Pathways to Sustainable Development. Food and Agriculture Organization, Rome, Italy, ISBN: 9789251305614, Pages: 139.
- 3. Jiagho, E.R., L. Zapfack, L.P.R.K. Banoho, M. Tsayem-Demaze, J. Corbonnois and P. Tchawa, 2016. Diversity of woody flora on the periphery of Waza National Park (Cameroon) [In French]. Vertigo, Vol. 16. 10.4000/vertigo.17249.
- 4. Ouoba, P.A., E.C. da Dapola and S. Paré, 2014. Local perception of the dynamics of the woody population of the last twenty years in the Burkinabe Sahel [In French]. Vertigo, Vol. 14. 10.4000/vertigo.15131.
- Gansaonré, R.N., B.J.B. Zoungrana and P.I. Yanogo, 2020. Dynamics of the vegetation cover on the outskirts of Parc W in Burkina Faso [In French]. Belgeo, Vol. 1. 10.4000/belgeo.40786.
- Sambiéni, K.R., M.S. Toyi and A. Mama, 2015. Peasant perception on the fragmentation of the landscape of the Ouémé Supérieur Classified Forest in Northern Benin [In french]. VertigO-la Rev. Electr. Sci. l'environ., Vol. 15.

- 7. Mahamat, A., 2021. Displaced persons and refugees in Cameroon: Profiles, routes and experiences from the Nigerian and Central African crises. Can. J. Afr. Stud., 55: 585-607.
- 8. Zapfack, L., N.V. Noiha, K.P.J. Dziedjou, L. Zemagho and N.T. Fomete, 2013. Deforestation and carbon stocks in the surroundings of Lobéké National Park (Cameroon) in the Congo Basin. Environ. Nat. Resour. Res., 3: 78-86.
- 9. West, C.T., C. Roncoli and F. Ouattara, 2008. Local perceptions and regional climate trends on the Central Plateau of Burkina Faso. Land Degrad. Dev., 19: 289-304.
- Zieba, F.W., 2011. Muskuwaari, immigration and spatio-agricultural mutations in Guiziga country (Far North Cameroon) [In French]. Carnets Soutenances, Vol. 2. 10.4000/cdg.2969.
- 11. Jiagho, E.R., L. Zapfack and A.U.C.K. Jumo, 2019. Distribution and dynamics of woody flora on the outskirts of Waza National Park (Cameroon) [In French]. Vertigo, Vol. 19. 10.4000/vertigo.27121.
- 12. Seignobos, C. and O. Iyébi-Mandjek, 2005. Cameroon Far North Province Atlas [In French]. IRD Editions, Marseilles, ISBN: 9782709915595, Pages: 171.
- 13. Quemin, A., 1999. Field survey guide by Stéphane Beaud, Florence Weber; Methods in sociology, observation Henri Peretz [In French]. Rev. Française Sociologie, 40: 430-433.
- 14. Charan, J. and T. Biswas, 2013. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med., 35: 121-126.
- 15. Ozer, P., 2002. Dust variability and land degradation in the Sahel. Belgeo, 2: 195-210.
- Tchobsala, A. Akoa and M. Marie, 2010. Impact of wood cuts on the structure and floristic diversity of vegetation in the peri-urban zone of Ngaoundere, Cameroon. J. Ecol. Nat. Environ., 2: 235-258.
- 17. Saha, F., 2019. Adaptation to natural hazards and climatic uncertainties in the Sudano-Sahelian environment in Cameroon. Afr. J. Clim. Change Renewable Energy, 1:157-173.
- Jonathan, N., Tchobsala, D.N. Delphine and I. Adamou, 2018.
 Impact of anthropization on the spatio-temporal dynamics of the forest landscapes of the Ngaoundéré Cliff, Adamawa-Cameroon. Int. J. Adv. Res. Biol. Sci., 5: 60-74.
- 19. Mey, G.A., S.A. Doua, S. Chouto and A. Tessoubo, 2019. Spatio-temporal dynamics of grasslands and pastoralism in the logone floodplain (Far North-Cameroon) [In French]. Eur. Sci. J., 15: 158-180.

- Kodji, P., Tchobsala and A. Ibrahima, 2020. Space-time dynamics of the Minawao plant cover and surrounding area (Far North, Cameroon). World J. Adv. Res. Rev., 8:102-115.
- Ibrahim, O., S. Kabirou, A.B. Amadou and Y. Boubacar, 2023. Environmental effects related to the settlement of refugees in Eastern Niger (Diffa Region). Int. J. Innovation Appl. Stud., 39: 1584-1600.
- 22. Hiernaux, P., L. Diarra, V. Trichon, E. Mougin, N. Soumaguel and F. Baup, 2009. Woody plant population dynamics in response to climate changes from 1984 to 2006 in Sahel (Gourma, Mali). J. Hydrol., 375: 103-113.
- Baye-Niwah, C., G. Todou, K. Souare, A. Abdoulaye, S. Bay and E.E. Atem, 2020. Diversity and uses of woody plants from peripheral agro-systems in the city of Maroua (Far North, Cameroon) [In French]. Int. J. Biol. Chem. Sci., 14: 966-982.
- 24. Froumsia, M., L. Zapfack, P.M. Mapongmetsem and B.A. Nkongmeneck, 2012. Woody species composition, structure and diversity of vegetation of Kalfou Forest Reserve, Cameroon, J. Ecol. Nat. Environ., 4: 333-343.
- Kebyei, N., F.T. Ngaryo, B. Mbaï-Asbe, A. Doudjindingao and A.M. Chahad, 2022. Socio-economic contributions of exploited timber in the Sahel: Case of the wood-energy supply basin of N'Djamena in Chad. Int. J. Biol. Chem. Sci., 16: 1691-1704.
- Sani, R.C.S., M. Ntoupka, A. Ibrahima and T. Vroumsia, 2013.
 Attempt to analyze the peasant conception of the evolution, management and usefulness of the Mozogo-Gokoro National Park (Cameroon) with a view to its development. Int. J. Biol. Chem. Sci., 7: 2490-2503.
- Konsala, S., A. Akoa, B. Elvire-Hortense and F. Roger-Corneille, 2012. Long-term ecological impacts of harvesting non-timber forest products on tree species diversity at the periphery of Mbam and Djerem National Park, Cameroon. J. Ecol. Nat. Environ., 4: 290-302.
- Smektala, G., R. Peltier, N. Sibelet, M. Leroy and R. Manlay *et al.*, 2005. Sahelian agroforestry parks: From conservation to development [In French]. Vertigo, Vol. 6. 10.4000/vertigo.4410.
- 29. Bigma, B., Y.A. Woegan, D. Koumantiga, H. Pereki, M. Dourma, K. Wala and K. Akpagana, 2021. Mapping and diachronic analysis of village green belts in the ave prefecture in Togo (West Africa) [In French]. Dynenviron, 48: 1-22.