

Asian Journal of Plant Sciences

ISSN 1682-3974

ISSN 1682-3974 DOI: 10.3923/ajps.2023.75.81

Research Article

Evaluation of the Antibacterial Activity of Essential Oil of *Dysphania ambrosioides* (L.) Mosyakin and Clemants Against Clinical Multidrug-Resistant Bacteria

^{1,2,3}Ali Azghar, ³Mohammed Dalli, ⁴El Hassania Loukili, ⁵Yousra Belbachir, ¹Maroua Tahri, ^{6,7}Elmostapha Benaissa, ^{6,7}Yassine Ben Lahlou, ^{6,7}Mostafa Elouennass and ^{1,2,3}Adil Maleb

¹Laboratory of Microbiology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University. Ouida. Morocco

²Research Team of Cell Biology and Pharmacology Applied to Health Sciences, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco

³Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Physiology and Ethnopharmacology Team, Faculty of Sciences, Mohammed First University, Oujda, Morocco

⁴Laboratory of Applied and Environmental Chemistry, Faculty of Sciences, Mohammed First University, Oujda, Morocco

⁵Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment,

Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco

⁶Department of Bacteriology, Mohammed V Teaching Military Hospital, Rabat, Morocco

⁷Epidemiology and Bacterial Resistance Research Team/BIO-INOVA Centre, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco

Abstract

Background and Objective: The discovery of new antibacterial agents is of high priority particularly given the global threat of bacterial resistance. A potential source to improve the current antibacterial arsenal may be in exploiting natural compounds such as essential oils (EOs). The present *in vitro* study investigated the chemical composition and the antibacterial activity of EO extracted from *Dysphania ambrosioides*.

Materials and Methods: The EO was obtained by hydrodistillation using a clevenger-type apparatus and analyzed by Gas Chromatographic-Mass Spectrometry (GC-MS). The evaluation of the antibacterial activity was performed by the agar diffusion method and the broth microdilution method on six bacteria. Four clinical multidrug-resistant bacteria encompassing Extended-Spectrum β-Lactamase-Producing *Escherichia coli* (*ESBL-EC*), Carbapenem-Resistant *Acinetobacter baumannii* (*CRAB*), Ceftazidime-Resistant *Pseudomonas aeruginosa* (*CRPA*) and Methicillin-Resistant *Staphylococcus aureus* (*MRSA*) and two sensitive reference bacterial strains (*Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 29213). Results: The EO yield was 0.65%. The chemical analysis revealed the presence of 10 compounds including *p*-cymene (31.72%), 4-carene (27.34%) and α-cyclogeraniol acetate (16.90%). The EO had antimicrobial activity against all the tested bacteria. The minimum inhibitory concentration (MIC) recorded for *E. coli* ATCC was 90 and 120 μg mL⁻¹ for *S. aureus* ATCC 29213, 120 μg mL⁻¹ for *CRPA*, 140 μg mL⁻¹ for *CRAB*, 150 μg mL⁻¹ for *ESBL-EC* and 230 μg mL⁻¹ for *MRSA*. Conclusion: The EO investigated in this study showed an interesting antibacterial activity against the tested bacteria. This might be due to the diversity of its chemical compounds. Promisingly, current results may have potential applications in the drug discovery process of new antibacterial agents. However, further research is needed to depict the mechanisms involved in this observed antibacterial activity.

Key words: Antibiotic resistance, *Dysphania ambrosioides*, essential oil, antimicrobial activity, minimum inhibitory concentration (MIC), inhibition diameter, GC/MS analysis

Citation: Azghar, A., M. Dalli, El Hassania Loukili, Y. Belbachir, M. Tahri and E. Benaissa *et al.*, 2023. Evaluation of the antibacterial activity of essential oil of *Dysphania ambrosioides* (L.) Mosyakin and clemants against clinical multidrug-resistant bacteria. Asian J. Plant Sci., 22: 75-81.

Corresponding Author: Ali Azghar, Laboratory of Microbiology, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco Tel: +212670691014

Copyright: © 2023 Ali Azghar et al. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Currently, human health is threatened by the emergence of global antibiotic resistance¹. Multi-drug resistant bacteria (MDR) are responsible for an increased mortality rate with a considerable economic cost to health authorities¹. Indeed, annual deaths from MDR infections are expected to rise from 700,000-10 million by 2050, at a cumulative cost of 100 trillion US\$2. The discovery of novel therapeutics against multi-drug resistant bacteria (MDR) is an urgent need that requires a global action plan³. The exploitation of natural products for medicinal purposes is a promising field as they are considered potential sources for therapeutic properties as they can pharmacologically interact with a wide variety of cell targets⁴. Thus, plant extracts and their active compounds may be effective against MDR and may also have synergistic effects when combined with conventional antibiotics⁴⁻⁸. The EOs exhibit different biological properties such as antimicrobial, anti-inflammatory, antiviral, sedative, digestive, antioxidant and cytotoxic activities⁶⁻⁸. These potential activities are associated with their significant chemical and structural variability⁶⁻⁹. Therefore, EOs can contribute to the development of new therapeutic drugs to combat the issue of MDR¹⁰. Dysphania ambrosioides (*D. ambrosioides*) (previously known as *Chenopodium ambrosioides*), is a plant belonging to the Amaranthaceae family, popularly called in Morocco "Mkhinza"11 and which is characterized by a disagreeable odour¹². Dysphania ambrosioides is native to Central and South America^{12,13}. According to the WHO, this herb has several pharmacological activities such as antibacterial, antirheumatic, anti-inflammatory, antipyretic, anthelmintic, antifungal, anti-ulcer and for wound treatment¹³. These properties are associated with its richness in chemical compounds present in the extracts and EOs¹⁴. The present study aims to investigate the chemical composition of the EO of *D. ambrosioides* using Gas-Chromatography Coupled to Mass Spectroscopy (GC-MS) and its potential antibacterial activity on different MDR clinical strains.

MATERIALS AND METHODS

Study area: This study was conducted in December, 2021 at the Faculty of Medicine and Pharmacy, University Mohammed First Oujda, Morocco.

Plant material: *Dysphania ambrosioides* plant was collected from the Gafaït Region (Eastern Morocco, Coordinates 34°14'24.0"N, 2°24'28.8"W). The plant species were identified by a group of professional botanists and a specimen was

deposited at the herbarium of Mohamed First University, Oujda, Morocco, under voucher number (HUMPOM1055).

Extraction of the essential oil of *D. ambrosioides***:** *Dysphania ambrosioides* samples were deposited in a dark room to be naturally dried until their weight and stabilized for approximately 10 days. After that, 100 g of the aerial parts were subject to hydrodistillation using a Clevenger apparatus for about 2 hrs until the stabilization of the EO level. Finally, the obtained EO were stored in sealed glass bottles at 4°C for further use.

Qualitative analysis using Gas Chromatography-Mass Spectrometry (GC-MS): Gas chromatography (Shimadzu GC-2010, Kyoto, Japan) was used for the analysis of the obtained EOs. The apparatus is characterized by the presence of a capillary column RTX-5 (5% diphenyl, 95% dimethylpolysiloxane, 30×0.25 mm, 0.25 μm film thickness). The GC was linked to a mass spectrometer detector (QP2010-MS). The carrier gas used was helium, which was adjusted to a constant pressure of 100 KPa. After setting the oven temperature at 50°C for about 1 min. A gradient of +10°C until reaching 250°C and then maintained for 1 min. To perform qualitative and semi-quantitative analysis, a solution of 1 μ L of the sample prepared in hexane (50 mg g⁻¹) was injected in split mode (split ratio = 50-80) and the GC-MS system was operated in scan mode. The identification of the chemical composition of samples was assessed based on the comparison process between their mass spectra and the data stored at the level of the National Institute of Standards and Technology (NIST147)¹⁵. Regarding the data collection, the LabSolutions of 2.5 was used.

Antibacterial activity

Bacterial strains: To determine the antibacterial activity of extracted EO, we used two reference bacterial strains including *Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 29213 and four clinical strains were used including Extended-Spectrum β-Lactamase-Producing *Escherichia coli* (*ESBL-EC*), Carbapenem-Resistant *Acinetobacter baumannii* (*CRAB*), Ceftazidime-Resistant *Pseudomonas aeruginosa* (*CRPA*) and Methicillin-Resistant *Staphylococcus aureus* (*MRSA*).

Antimicrobial susceptibility testing: Identification of bacterial strains was performed by the PHOENIX 100 automaton (BD)™. Determination of the resistance profile of the different bacteria was performed according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines.

Agar diffusion method: A standardized inoculum of tested bacteria at a density of 0.5 McFarland was plated into the surface of the Mueller-Hinton agar (MHA) plate. Then sterilized Whatman papers (6 mm) were loaded with 20 μ L of the EO already prepared in 2% DMSO and placed on the surface of the agar plate and left incubated for about 24 hrs at 37°C. After incubation of the different plates, the zone of inhibition around each disc was measured. All the measurements were carried out in triplicates ¹⁶.

Microdilution method: The minimal inhibitory concentration (MIC) was determined by the microdilution method using a 96-well plate was adopted. Different concentrations ranging from 5-1000 μ g mL⁻¹ of the EO of *D. ambrosioides* dissolved in 2% DMSO were prepared in Mueller-Hinton broth (MHB). From each concentration, a 180 µL was pipetted and added to the plate wells. After that 20 µL of the prepared bacterial solution at 0.5 Mcfarland was added to each well. To facilitate the determination of the MIC value, the resazurin was added to each well and the plates were incubated at 37°C for about 24 hrs. The wells with no colour variation were considered MIC. Positive control contains MHB and bacterial suspension and resazurin. Negative control contains MHB, essential oil dissolved in 2% DMSO and resazurin without the microorganism. To facilitate MIC determination, resazurin has been used as a coloured indicator of bacterial growth as previously described by Dalli et al.¹⁷. Resazurin is a non-fluorescent blue/purple coloured marker that turns into pink when reduced to resorufin by the oxidoreductase enzymes of viable bacteria¹⁸. As for the minimal bactericidal concentration (MBC), a 20 µL was taken from each well with no colour and seeded on the agar surface plate and incubated at 37°C for 24 hrs. The plates with no subculture were considered the MBCs.

Statistical analysis: All the experiments were reproduced in triplicates. Values of each were expressed as Mean ± Standard Deviation (SD). The statistical analysis was performed using Excel (Microsoft Office, V16).

RESULTS

Chemical composition and yields of *D. ambrosioides* **essential oil:** The obtained EO was characterized by an unpleasant odour and dark yellow colour. The EO yields obtained in this study were 0.65% (w/w). The chemical analysis using the GC-MS revealed the presence of 10 compounds. A total of 95.17% of global EO composition was identified in the samples. Among these compounds, hydrocarbon monoterpenes constituted the highest level (60.75%), followed by oxygenated monoterpenes (34.42%). As reported in Table 1, current findings showed that the main identified compounds are p-cymene (31.72%), 4-carene (27.34%) and α -cyclogeraniol acetate (16.90%). In addition, D-limonene, eucalyptol, γ -terpinene, 2-undecanone, thymol and carvacrol were also detected. The chromatogram of identified EO by hydrodistillation was presented in Fig. 1.

Determination of the antibacterial activity: The obtained EO was tested to evaluate their antibacterial potential against two reference strains and various pathogenic strains *ESBL-EC*, *CRAB*, *CRPA* and *MRSA*. The *ESBL-EC* was the most sensitive bacteria toward the tested EO with an inhibition zone of $(49.2\pm3.9 \text{ mm})$, followed by the *MRSA* and *CRAB* with an inhibition diameter of (31.5 ± 0.5) and (31 ± 1.63) , respectively, while the tested EO has a weak activity on *CRPA*. Regarding the MIC, all the obtained results indicated that the tested EO demonstrated an important antibacterial activity against all the tested strains. The lowest MIC value was recorded for *EC*

Table 1: Chemical constituents identified in the essential oils of *D. ambrosioides* collected from Gafaït Region of Morocco

Compounds ^a	RT ^b (min)	Relative content (%)	Type ^c
4-carene (C ₁₀ H ₁₆)	6.47	27.34	MT
ρ -cymene ($C_{10}H_{14}$)	6.60	31.72	MT
D-limonene (C ₁₀ H ₁₆)	6.67	1.24	MT
Eucalyptol (C ₁₀ H ₁₈ O)	6.74	0.36	OM
γ -terpinene ($C_{10}H_{16}$)	7.17	0.45	MT
α -cyclogeraniol acetate ($C_{12}H_{20}O_2$)	10.12	16.90	OM
2-undecanone (C ₁₁ H ₂₂ O)	10.80	5.04	OM
Thymol $(C_{10}H_{14}O)$	10.83	7.76	OM
Carvacrol (C ₁₀ H ₁₄ O)	10.99	4.36	OM
UC	11.12	4.83	MT
Monoterpenes (%)		60.75	
Oxygenated monoterpenes (%)		34.42	
Unidentified compounds (%)		4.83	
Yield of extract (%)		0.65	

No.: Number of compounds, ^aUC: Unidentified Compound, ^bRT: Retention time, ^cMT: Monoterpenes and ^cOM: Oxygenated monoterpenes

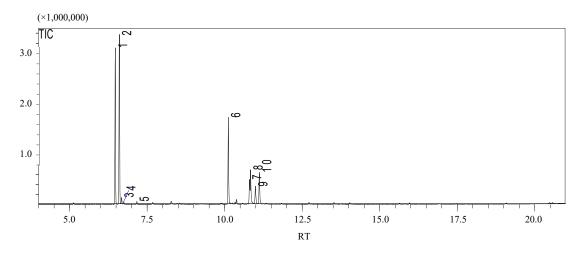


Fig. 1: GC-MS chromatogram of the essential oil of *D. ambrosioides*

Table 2: Antimicrobial activity evaluation of the EO of *D. ambrosioides*

Bacterial strains	<i>EC</i> ATCC 25922	<i>SA</i> ATCC 29213	ESBL-EC	CRPA	CRAB	MRSA
Inhibition diameter (mm)	ND	ND	49.2±3.9	14.3±0.47	31±1.63	31.5±0.5
MIC (μ g mL ⁻¹)	90	120	150	120	140	230
MBC ($\mu g m L^{-1}$)	ND	ND	400	400	400	400

ND: Not determined, MIC: Minimum inhibitory concentration, MBC: Minimum bactericidal concentration, *Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 29213, *ESBL-EC*: Extended-spectrum β-lactamase-producing *Escherichia coli*, *CRAB*: Carbapenem-resistant *Acinetobacter baumannii*, *CRPA*: Ceftazidime-resistant *Pseudomonas aeruginosa* and *MRSA*: Methicillin-resistant *Staphylococcus aureus*

ATCC 25922 (90 μ g mL⁻¹). The *SA* ATCC 29213 and *CRPA'* MIC values were 120 μ g mL⁻¹ followed by *CRAB* which had a MIC value of 140 μ g mL⁻¹ and *ESBL-EC* which had a MIC value of 150 μ g mL⁻¹ and *MRSA* had the highest MIC value of 230 μ g mL⁻¹, while the MBC value was 400 μ g mL⁻¹ for all strains of MDR bacteria tested. The results of the antibacterial activity were reported in Table 2.

DISCUSSION

In this study, *D. ambrosioides* EO yielded 0.65%. Several reports showed that the yields of the hydrodistillation EO ranged from 0.12-1% (w/w) which was in line with current findings of Chekem *et al.*¹⁹ and Ávila-Blanco *et al.*²⁰. The main constituents of *D. ambrosioides* EO were *p*-cymene, 4-carene, α -cyclogeraniol acetate, thymol, carvacrol and 2-undecanone. These compounds were also present in several EOs as reported elsewhere by other authors²⁰⁻²². These compounds were known for their antimicrobial activity ²¹⁻²³. Current results displayed a great variability with the literature. The EOs obtained by hydrodistillation of the leaves showed a richness with α -terpinene followed by thymol and cymene, while another study showed the presence of the ascaridole in the *D. ambrosioides* EO (35%) which was absent in the EO extracted in this study^{24,25}. This variability is principally

associated with the large influence of the climate and the geographical distribution on the chemical composition of EOs⁸.

The EOs are known to exert their antibacterial effect either by inhibiting the synthesis of functional and structural molecules¹. Moreover, they can also increase the membrane permeability of the bacteria because of toxic effects on membrane structure and function² or by damaging the proton pump which induces an interruption of the energy production into the bacterial cell²⁶⁻²⁸. Other EOs possess antibiofilm activity against *Pseudomonas* spp. and *Staphylococcus aureus*²⁹. The current study showed that *D. ambrosioides* EO has a significant antibacterial effect against all tested bacteria. Notably, the antibacterial activity of *D. ambrosioides* against susceptible strains and MDR strains was rarely reported in the literature^{9,30}.

The *p*-cymene is an important monoterpene compound with a substituted methyl and isopropyl group in the benzene ring³¹. It is a precursor of carvacrol and it is present in several plant species, belonging to Lamiaceae, Myrtaceae, Burseraceae and Asteraceae families³². This compound has many biological activities including antimicrobial, antioxidant, antinociceptive, anti-inflammatory, anxiolytic and remarkably anti-biofilm properties³¹. The antimicrobial power of *p*-cymene is due to the fact it distorts the cytoplasmic membrane, thus

facilitating the transport of the active compounds of the essential oil across the lipid bilayer²³. It may also have a synergistic effect on the efficacy of phenolic monoterpenes such as thymol and carvacrol⁸. The p-cymene has also been shown to decrease cell motility through an effect on membrane potential and affected protein synthesis in E. coli bacteria^{33,34}. Thymol and carvacrol are widely studied phenolic monoterpenoids. They have several activities including a remarkable antimicrobial activity³⁵. They alter the structure and function of the cytoplasmic membrane and modify its fatty acid composition³⁶⁻³⁹. They alter membrane fluidity and permeability which in turn is responsible for potassium ions (K+) leakage^{40,41}. They have an action on bacterial metabolism through an intracellular action on the energy generation process by altering the enzymes involved in ATP synthesis and its intracellular depletion²¹. Thymol is involved in the up-regulation of genes coding for outer membrane protein synthesis. It also interacts with membrane proteins which disrupt outer and inner membrane and intracellular targets^{42,43}. Carvacrol is responsible for the inhibition of flagellin which damages bacterial motility³⁴. It was also noticed that the morphology of Gram-negative cells was much more affected by carvacrol than that of Gram-positive cells²³. Promisingly, the activity of carvacrol is potentiated by p-cymene⁴⁴ which further supports their possible synergistic combination for therapeutic use.

Analysis of the chemical composition of the EO of D. ambrosioides showed that α -cyclogeraniol acetate was one of the dominant compounds. Previous studies have deeply investigated the chemical composition of D. ambrosioides EO but none of them has reported the presence of α -cyclogeraniol acetate. This compound is derived from geraniol, a known antibacterial molecule that was widely reported by Maczka et al.⁴⁵.

The chemical structure affects the antibacterial activity. For 4-carene, which is a monoterpene hydrocarbon, its antibacterial activity could be attributed to the methylene group⁴⁵. Likewise, for 2-undecanone, a dialkylated ketone with two alkyl groups, methyl and nonyl may have potential antimicrobial properties⁴⁶. The 2-undecanone has an antibacterial activity against both Gram-negative and Gram-positive bacteria associated with its richness in long-chain methyl ketones^{47,48}. It was found that the hydroxyl group present on the thymol, cymene and carvacrol are responsible for the observed antibacterial effects²⁸. In addition to this, other factors that could influence the antibacterial activity of EOs are the nature and concentration of the compounds, the functional groups, the structural

configuration and the possible interaction between the different compounds⁴⁶. The presence of multiple compounds in EOs may be more potent than the action of a single compound, thereby enhancing and prolonging antimicrobial activity. Some studies have noted a synergy between EO components, which supports the holistic use of EO as anti-infective agents⁴⁷. Current findings revealed that the EOs are promising exploratory new and effective antimicrobials. Further research to understand the mechanisms of action of the essential oil is needed. Bacterial resistance to antibiotics is an ancient and evolutionary phenomenon⁴⁸. Despite the introduction of new antibiotics, they are not without side effects and have a limited spectrum of activity against resistance mechanisms⁴⁹. Therefore, their high cost^{49,50} limits their use, especially in developing countries. Appropriate use of antibiotics is the cornerstone to fighting this issue⁵⁰.

Dysphania ambrosioides (L.) is commonly used in Moroccan traditional medicine for its different properties. This study demonstrated the antibacterial property of Dysphania ambrosioides (L.) EO on multidrug-resistant strains. However, there are some limitations, such as in vivo study on a murine model, toxicity study and exploration of the antibacterial activity mechanism. The study recommended further research to evaluate the in vivo antibacterial activity of this EO, its safety and the isolation of the different chemical compounds to understand the mechanisms of action of antibacterial activity. This will promote the use of Dysphania ambrosioides (L.) EO is an innovative source in the pharmaceutical and medical industries.

CONCLUSION

The EO of *D. ambrosioides* demonstrated interesting antibacterial activity against the MDR bacteria tested. This might be due to the diversity of its chemical compounds and it will be promising for the development of innovative antibiotics. However, further research is needed to understand the mechanisms involved in the EO of *D. ambrosioides*.

SIGNIFICANCE STATEMENT

This study discovered the antibacterial effect of EO of *D. ambrosioides* against clinical MDR bacteria. It could be promising for the development of new antibiotics. Through our study, we will encourage researchers to explore other plants and participate in the efforts to control bacterial resistance.

REFERENCES

- Michael, C.A., D. Dominey-Howes and M. Labbate, 2014. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, Vol. 2. 10.3389/fpubh.2014.00145.
- 2. Davies, S.C., T. Fowler, J. Watson, D.M. Livermore and D. Walker, 2013. Annual Report of the Chief Medical Officer: Infection and the rise of antimicrobial resistance. Lancet, 381: 1606-1609.
- 3. Hoffman, S.J., G.M. Caleo, N. Daulaire, S. Elbe and P. Matsoso *et al.*, 2015. Strategies for achieving global collective action on antimicrobial resistance. Bull. World Health Organ., 93: 867-876.
- Dzobo, K., 2022. The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. In: Comprehensive Pharmacology, Kenakin, T. (Ed.), Elsevier, Amsterdam, Netherlands, ISBN: 9780128208762, pp: 408-422.
- 5. Livermore, D.M., 2004. The need for new antibiotics. Clin. Microbiol. Infect., 10: 1-9.
- Bakkali, F., S. Averbeck, D. Averbeck and M. Idaomar, 2008.
 Biological effects of essential oils-A review. Food Chem. Toxicol., 46: 446-475.
- 7. El-Tarabily, K.A., M.T. El-Saadony, M. Alagawany, M. Arif and G.E. Batiha *et al.*, 2021. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J. Biol. Sci., 28: 5145-5156.
- 8. Burt, S., 2004. Essential oils: Their antibacterial properties and potential applications in foods-A review. Int. J. Food Microbiol., 94: 223-253.
- de Morais Oliveira-Tintino, C.D., S.R. Tintino, P.W. Limaverde, F.G. Figueredo and F.F. Campina *et al.*, 2018. Inhibition of the essential oil from *Chenopodium ambrosioides* L. and α-terpinene on the NorA efflux-pump of *Staphylococcus aureus*. Food Chem., 262: 72-77.
- 10. Yap, P.S.X., B.C. Yiap, H.C. Ping and S.H.E. Lim, 2014. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J., 8: 6-14.
- 11. Jamila, F. and E. Mostafa, 2014. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol., 154: 76-87.
- Jesus, R.S., M. Piana, R.B. Freitas, T.F. Brum and C.F.S. Alves et al., 2018. In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L. Braz. J. Microbiol., 49: 296-302.
- 13. Rios, C.E.P., A.G. Abreu, J.A.F.B. Filho, J.R. Nascimento and R.N.M. Guerra *et al.*, 2017. *Chenopodium ambrosioides* L. improves phagocytic activity and decreases bacterial growth and the systemic inflammatory response in sepsis induced by cecal ligation and puncture. Front. Microbiol., Vol. 8. 10.3389/fmicb.2017.00148.

- 14. Barros, L., E. Pereira, R.C. Calhelha, M. Dueñas and A.M. Carvalho *et al.*, 2013. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of *Chenopodium ambrosioides* L.J. Funct. Foods, 5:1732-1740.
- Loukili, E.H., F. Abrigach, M. Bouhrim, M. Bnouham, M.L. Fauconnier and M. Ramdani, 2021. Chemical composition and physicochemical analysis of *Opuntia* dillenii extracts grown in Morocco. J. Chem., Vol. 2021. 10.1155/2021/8858929.
- 16. Balouiri, M., M. Sadiki and S.K. Ibnsouda, 2016. Methods for *in vitro* evaluating antimicrobial activity: A review. J. Pharm. Anal., 6: 71-79.
- Dalli, M., S.E. Azizi, H. Benouda, A. Azghar and M. Tahri et al., 2021. Molecular composition and antibacterial effect of five essential oils extracted from *Nigella sativa* L. seeds against multidrug-resistant bacteria: A comparative study. Evidence-Based Complementary Altern. Med., Vol. 2021. 10.1155/2021/6643765.
- 18. Sarker, S.D., L. Nahar and Y. Kumarasamy, 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth and its application in the *in vitro* antibacterial screening of phytochemicals. Methods, 42: 321-324.
- 19. Chekem, M.S.G., P.K. Lunga, J. de Dieu Tamokou, J.R. Kuiate, P. Tane, G. Vilarem and M. Cerny, 2010. Antifungal properties of *Chenopodium ambrosioides* essential oil against *Candida* species. Pharmaceuticals, 3: 2900-2909.
- Ávila-Blanco, M.E., M.G. Rodríguez, J.L.M. Duque, M. Muñoz-Ortega and J. Ventura-Juárez, 2014. Amoebicidal activity of essential oil of *Dysphania ambrosioides* (L.) mosyakin & clemants in an amoebic liver abscess hamster model. Evidence-Based Complementary Altern. Med., Vol. 2014. 10.1155/2014/930208.
- Chouhan, S., K. Sharma and S. Guleria, 2017. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, Vol. 4. 10.3390/medicines4030058.
- Swamy, M.K., M.S. Akhtar and U.R. Sinniah, 2016. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evidence-Based Complementary Altern. Med., Vol. 2016. 10.1155/2016/3012462.
- 23. Nazzaro, F., F. Fratianni, L. de Martino, R. Coppola and V. de Feo, 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 6: 1451-1474.
- 24. de Lacerda Neto, L.J., A.G.B. Ramos, R.E.R. da Silva, L. Pereira-de-Morais and F.M. Silva *et al.*, 2021. Myorelaxant effect of the *Dysphania ambrosioides* essential oil on *Sus scrofa domesticus* coronary artery and its toxicity in the *Drosophila melanogaster* model. Molecules, Vol. 26. 10.3390/molecules26072041.

- 25. Dougnon, G. and M. Ito, 2021. Role of ascaridole and *p*-cymene in the sleep-promoting effects of *Dysphania ambrosioides* essential oil via the GABAergic system in a ddY mouse inhalation model. J. Nat. Prod., 84: 91-100.
- 26. Patterson, J.E., L. McElmeel and N.P. Wiederhold, 2019. *In vitro* activity of essential oils against gram-positive and gram-negative clinical isolates, including carbapenemresistant *Enterobacteriaceae*. Open Forum Infect. Dis., Vol. 6. 10.1093/ofid/ofz502.
- 27. Oussalah, M., S. Caillet and M. Lacroix, 2006. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of *Escherichia coli* O157:H7 and *Listeria monocytogenes*. J. Food Prot., 69: 1046-1055.
- 28. Saad, N.Y., C.D. Muller and A. Lobstein, 2013. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragrance J., 28: 269-279.
- 29. Kavanaugh, N.L. and K. Ribbeck, 2012. Selected antimicrobial essential oils eradicate *Pseudomonas* spp. and *Staphylococcus aureus* biofilms. Appl. Environ. Microbiol., 78: 4057-4061.
- 30. Limaverde, P.W., F.F. Campina, F.A.B. da Cunha, F.D. Crispim and F.G. Figueredo *et al.*, 2017. Inhibition of the tetK efflux-pump by the essential oil of *Chenopodium ambrosioides* L. and α-terpinene against *Staphylococcus aureus* IS-58. Food Chem. Toxicol., 109: 957-961.
- 31. Marchese, A., C.R. Arciola, R. Barbieri, A.S. Silva and S.F. Nabavi *et al.*, 2017. Update on monoterpenes as antimicrobial agents: A particular focus on p-Cymene. Materials, Vol. 10. 10.3390/ma10080947.
- 32. Philis, J.G., 2005. The S₁ ← S₀ spectrum of jet-cooled *p*-cymene. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 61: 1239-1241.
- 33. Burt, S.A., R. van der Zee, A.P. Koets, A.M. de Graaff and F. van Knapen *et al.*, 2007. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in *Escherichia coli* O157:H7. Appl. Environ. Microbiol., 73: 4484-4490.
- 34. Gabel, C.V. and H.C. Berg, 2003. The speed of the flagellar rotary motor of *Escherichia coli* varies linearly with protonmotive force. Proc. Nat. Acad. Sci., 100: 8748-8751.
- 35. Magi, G., E. Marini and B. Facinelli, 2015. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant group A Streptococci. Front. Microbiol., Vol. 6. 10.3389/fmicb.2015.00165.
- Pasqua, R.D., G. Betts, N. Hoskins, M. Edwards, D. Ercolini and G. Mauriello, 2007. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem., 55: 4863-4870.
- 37. la Storia, A., D. Ercolini, F. Marinello, R. di Pasqua, F. Villani and G. Mauriello, 2011. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res. Microbiol., 162: 164-172.

- 38. di Pasqua, R., N., Hoskins, G. Betts and G. Mauriello, 2006. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. J. Agric. Food Chem., 54: 2745-2749.
- 39. ben Arfa, A., S. Combes, L. Preziosi-Belloy, N. Gontard and P. Chalier, 2006. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol., 43: 149-154.
- 40. Lambert, R.J.W., P.N. Skandamis, P.J. Coote and G.J.E. Nychas, 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol., 91: 453-462.
- 41. Nowotarska, S., K. Nowotarski, I. Grant, C. Elliott, M. Friedman and C. Situ, 2017. Mechanisms of antimicrobial action of cinnamon and oregano oils, cinnamaldehyde, carvacrol, 2,5-dihydroxybenzaldehyde, and 2-hydroxy-5-methoxybenzaldehyde against *Mycobacterium avium* subsp. *paratuberculosis (Map)*. Foods, Vol. 6. 10.3390/foods6090072.
- Yin, L., C. Liang, W. Wei, S. Huang and Y. Ren *et al.*, 2022. The antibacterial activity of thymol against drug-resistant *Streptococcus iniae* and its protective effect on channel catfish (*Lctalurus punctatus*). Front. Microbiol., Vol. 13. 10.3389/fmicb.2022.914868.
- 43. di Pasqua, R., G. Mamone, P. Ferranti, D. Ercolini and G. Mauriello, 2010. Changes in the proteome of *Salmonella enterica* serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics, 10: 1040-1049.
- Rattanachaikunsopon, P. and P. Phumkhachorn, 2010.
 Assessment of factors influencing antimicrobial activity of carvacrol and cymene against *Vibrio cholerae* in food.
 J. Biosci. Bioeng, 110: 614-619.
- 45. Mączka, W., K. Wińska and M. Grabarczyk, 2020. One hundred faces of geraniol. Molecules, Vol. 25. 10.3390/molecules25143303
- Chang, S.T., P.F. Chen and S.C. Chang, 2001. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmacol., 77: 123-127.
- 47. Langeveld, W.T., E.J.A. Veldhuizen and S.A. Burt, 2014. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol., 40: 76-94.
- Merker, M., L. Tueffers, M. Vallier, E.E. Groth and L. Sonnenkalb *et al.*, 2020. Evolutionary approaches to combat antibiotic resistance: Opportunities and challenges for precision medicine. Front. Immunol., Vol. 11. 10.3389/fimmu.2020.01938.
- 49. Boisson, M. and O. Mimoz, 2018. New antibiotics: Do they bring additional value? (French). Le Praticien en Anesthésie Réanimation, 22: 289-295.
- 50. Dadgostar, P., 2019. Antimicrobial resistance: Implications and costs. Infect. Drug Resist., 12: 3903-3910.