

## Asian Journal of Plant Sciences

ISSN 1682-3974





**∂ OPEN ACCESS** 

## **Asian Journal of Plant Sciences**

ISSN 1682-3974 DOI: 10.3923/ajps.2024.22.34



# Research Article Maize Grain Quality in Response to the Timing of Nitrogen Fertilizer Application and Environmental Variation

Mashele Lindiwe and Sebetha Erick

Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2790, South Africa

## **Abstract**

**Background and Objective:** Maize is recognized as one of the locally produced field crops and a staple food for the bulk of the population in South Africa. The timing of nitrogen application is an essential management decision for maize production. The research study was carried out to determine the effect of nitrogen fertilizer timing, cultivar and location on the grain quality of maize. **Materials and Methods:** The study was carried out at Mafikeng and Taung in the North West Province during the 2019/20 and 2020/21 planting seasons. A randomized complete block design and four replications were used for the experimental design. Nitrogen application stages were zero nitrogen, during planting and emergence and during the five and ten leaf stages with two cultivars PAN 4A 111 and PAN 413. **Results:** The study showed a significant effect of nitrogen fertilizer application on protein content in both planting seasons. The PAN 4A 111 and PAN 413 produced higher starch and protein content, respectively. Location also had a significant effect on protein content. Nitrogen application during emergence, five and ten leaf stages produced higher maize protein, fat, crude fiber and ash content. **Conclusion:** Maize grain responded positively to the application of nitrogen fertilizer during planting, emergence and five-leaf stage and resulted in a high-quality grain.

Key words: Timing of nitrogen application, maize, cultivar, growth stages, grain quality, planting season

Citation: Mashele, M. and Sebetha, E., 2024. Maize grain quality in response to the timing of nitrogen fertilizer application and environmental variation. Asian J. Plant Sci., 23: 22-34.

Corresponding Author: Sebetha Erick, Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mahikeng 2790, South Africa

Copyright: © 2024 Mashele Lindiwe and Sebetha Erick. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

### **INTRODUCTION**

The quality of maize grain is heavily impacted by environmental conditions<sup>1</sup>. Drought and heat stress, commonly known as abiotic stressors, are two prevalent conditions associated with environmental conditions that regularly impact the quality of maize grain<sup>2</sup>. Grain quality is affected by heat stress, which affects the physiological and biological properties of maize<sup>3,4</sup>. Grain filling is one of the most essential and critical stages in determining the quality of the grain. Thus, the high temperature associated with heat stress during this period could have a significant impact on maize grain quality<sup>5</sup>. Drastic increases in temperature reduce the starch content of the grain<sup>6,7</sup>. High-temperature stress during the early stages of maize plant development, especially after anthesis, results in limited starch production8. Heat stress before pollination has an even greater impact on grain production and quality than heat stress at later stages in the development of the maize plant9. Drought periods tend to severely reduce starch content and granular size and to proportionately increase protein content<sup>10</sup>.

During the grain-filling period, the maize protein components are extremely susceptible to drought stress<sup>11</sup>. Prolonged drought stress periods reduce the quality of the grain<sup>12</sup>. Under normal climatic conditions, maize relatively contains a high property of starch in the grains. Water shortages tend to reduce grain yields, resulting in a reduction in the quality of the grain<sup>13</sup>. The soil's physico-chemical properties can influence the starch content of the grain<sup>14</sup>. Soils with reduced bulk density and increased total porosity enhance maize plant development in that they promote an adequate uptake of nutrients, thus leading to an increase in the components of the grain that affect its quality<sup>15</sup>. Maize is highly sensitive to soils with high salinity levels. Such soils lead to a reduction in biosynthetic activities that normally promote the protein and starch content levels of the maize grain<sup>16</sup>.

Nitrogen is regarded as a significant component of protein which affects the quality of the maize grain to a large extent. As such, a correct balance of nitrogen fertilizer results in an increase in the quality components of maize such as its protein content<sup>17,18</sup>. According to Subedi and Ma<sup>19</sup>, the application timing of nitrogen fertilizer at later stages (V8) upward reduces yields and thus the protein content of the grain. However, early and appropriate applications of nitrogen result in increased protein content and lead to a reduction in the starch and fat content<sup>20</sup>. The timing of nitrogen application at planting produces higher grain yields, thus resulting in a high-quality maize grain<sup>21</sup>. On the other hand, the inappropriate timing of nitrogen fertilizer applications may greatly reduce the quality of the maize grain<sup>22</sup>.

According to Binder *et al.*<sup>23</sup>, a delay in applying nitrogen fertilizer up to the V6 stage leads to a reduction in yields, thus causing a significant reduction in the quality of the grain. The nitrogen timing application on maize at the early growth stages leads to a significant accumulation of protein and therefore a high protein content<sup>24,25</sup>.

Late application of nitrogen fertilizer normally results in poor grain quality<sup>26</sup>. Heavily textured soils restrict the uptake of water and nutrients in maize plants, thus delaying the grain-filling process and resulting in low grain quality. The objective of the study was to evaluate the effect of nitrogen fertilizer timing and environmental variation on the grain quality of two maize cultivars.

#### **MATERIALS AND METHODS**

**Description of the study area:** The field experiment was carried out at two different locations in the North West Province in South Africa during the 2019/2020 and 2020/2021 planting seasons. The sites were the Department of Agriculture station situated in Taung and the North West University research farm situated in Mafikeng. The NWU (North West University) research farm is at 25°48'S and 45°38'E. The area receives a mean annual rainfall of 571 mm during the summer season<sup>27</sup>. The mean maximum temperature is 34°C while the mean minimum temperature varies between 7-11°C. The soil in the location is classified as sandy loam red soils under the South African Soil Classification and belongs to the Hutton series. The North-West University Research Farm soil is categorized as Ferric luvisol<sup>28</sup>. Taung's Department of Agriculture Experimental Station is located at 27°30'S and 24°30'E. Taung receives an annual rainfall average of 1061 mm, which commences in October. The mean maximum temperature is 37°C while the mean minimum temperature ranges between 2-20°C. According to South Africa's soil classification, the soil at the Taung location belongs to the Hutton series and consists of deep, finely-textured red sandy soils<sup>27</sup>. The climatic data at two locations during the course of the study were different as indicated in Table 1.

**Experimental design:** The experiment was laid out in a  $5\times2\times2$  arrangement fitted into a Randomized Complete Block Design (RCBD) with four replications. Each replication of 10 combined treatments. Each location had 40 plots. The five nitrogen application timing stages were zero nitrogen application, during planting, during emergence, during five-leaf stages and during the ten-leaf stage. The two cultivars planted were early maturing (PAN 4A 111) and late maturing (PAN 413). The research experiment study was carried out at two locations, namely Mafikeng and Taung.

Table 1: Mean rainfall and temperature at Mafikeng and Taung 2019/2020 and 2020/2021 planting seasons

| Location | Season  | Climate data         | September | October | November | December | January | February | March | April | May  |
|----------|---------|----------------------|-----------|---------|----------|----------|---------|----------|-------|-------|------|
|          |         |                      | <u> </u>  |         |          |          |         |          |       |       |      |
| Mafikeng | 2019/20 | Rainfall (mm)        | 0.6       | 0.6     | 54.6     | 160.4    | 106.4   | 52.2     | 88.0  | 46.8  | 0.0  |
|          |         | Max temperature (°C) | 29.3      | 33.6    | 33.3     | 30.2     | 30.7    | 31.1     | 28.4  | 25.8  | 24.7 |
|          |         | Min temperature (°C) | 9.5       | 15.6    | 17.5     | 18.1     | 17.4    | 17.8     | 14.8  | 11.6  | 5.7  |
| Mafikeng | 2020/21 | Rainfall (mm)        | 0.0       | 17.2    | 132.2    | 17.4     | 0.0     | 0.0      | 0.0   | 0.0   | 4.0  |
|          |         | Max temperature (°C) | 28.3      | 31.5    | 30.2     | 30.5     | 29.7    | 28.5     | 29.1  | 28.6  | 24.1 |
|          |         | Min temperature (°C) | 9.8       | 15.3    | 15.2     | 17.1     | 18.1    | 16.6     | 13.5  | 10.3  | 5.8  |
| Taung    | 2019/20 | Rainfall (mm)        | 0.0       | 0.0     | 9.4      | 76.6     | 57.6    | 128      | 106   | 65.8  | 0.0  |
|          |         | Max temperature (°C) | 30.4      | 34.2    | 36.8     | 33.4     | 34.2    | 31.7     | 30.3  | 26.6  | 25.8 |
|          |         | Min temperature (°C) | 8.6       | 13.2    | 16.5     | 18.5     | 18.9    | 18.6     | 15.6  | 11.3  | 4.1  |
| Taung    | 2020/21 | Rainfall (mm)        | 13.3      | 31.6    | 94.6     | 114.4    | 216     | 140.8    | 62.2  | 0.0   | 1.0  |
|          |         | Max temperature (°C) | 29.4      | 33.3    | 32.3     | 33.4     | 30.9    | 31.4     | 30.9  | 30.5  | 25.4 |
|          |         | Min temperature (°C) | 8.2       | 13.8    | 15.2     | 17.4     | 18.6    | 17.4     | 13.8  | 10.2  | 4.2  |

Table 2: Soil texture, physical and chemical properties from Mafikeng and Taung during 2019/2020 and 2020/2021 planting seasons

|          |                              | 2019/20 |       | 2020/21 |       |
|----------|------------------------------|---------|-------|---------|-------|
| Location | Chemical/physical properties | 0-15    | 15-30 | 0-15    | 15-30 |
| Mafikeng | N-NO <sub>3</sub>            | 1.85    | 0.01  | 9.40    | 17.50 |
|          | N-NO <sub>4</sub>            | 2.45    | 0.90  | 1.60    | 2.50  |
|          | P (Bray-1)                   | 16      | 11    | 40      | 26    |
|          | K                            | 140     | 123   | 245     | 218   |
|          | Sand (%)                     | 86      | 86    | 80      | 80    |
|          | Silt (%)                     | 1       | 1     | 4       | 5     |
|          | Clay (%)                     | 13      | 13    | 16      | 15    |
|          | pH (H <sub>2</sub> O)        | 7.08    | 5.76  | 6.66    | 6.68  |
| Taung    | N-NO <sub>3</sub>            | 5.20    | 4.00  | 5.10    | 5.85  |
|          | N-NO <sub>4</sub>            | 1.10    | 0.50  | 0.75    | 1.00  |
|          | P (Bray-1)                   | 7       | 8     | 2       | 5     |
|          | K                            | 160     | 143   | 158     | 195   |
|          | Sand (%)                     | 90      | 90    | 84      | 84    |
|          | Silt (%)                     | 1       | 1     | 3       | 4     |
|          | Clay (%)                     | 9       | 9     | 13      | 12    |
|          | pH (H <sub>2</sub> O)        | 6.81    | 6.54  | 6.80    | 6.69  |

P: Phosphorus, K: Potassium, N-NO<sub>3</sub>: Nitrate and N-NO<sub>4</sub>: Ammonium

**Agronomic practices:** The experimental sites were ploughed and harrowed to pulverize the soil and the seedbeds were prepared before planting. A mouldboard and disc plough were used as primary tillage in order to loosen the soil structure (to break up any compacted soil), bury the plant and soil waste and control and remove the weeds. A disc harrow was used to break up the soil clods, harrow the soil and plant waste from the field and level the soil surface. Urea was used as a nitrogen fertilizer source and applied at 120 kg ha<sup>-1</sup>. The nitrogen fertilizer was applied during planting, during emergence, during the five-leaf stages and the ten-leaf stage. Based on the soil analysis, phosphorus was applied as the basal fertilizer. The maize cultivars used, namely PAN 4A 111 (early maturing) and PAN 413 (late maturing), were purchased from PANNAR (SA seed company). After emergence, thinning was carried out in order to remain with one plant per stand. Weeding was done manually and irrigation was done using sprinklers. The chemicals applied to control pests such as aphids, flies and armyworms were Avi-sipermetrin-EC and Bulldock Sc 125. The pre-soil sampling analysis during the planting seasons of the study was indicated in Table 2.

**Data collection:** Dried maize ears were hand-harvested from a harvesting area of 12.6 m<sup>2</sup>. The maize ears harvested from the harvesting area were shelled. The Spectra Star XL Infrared Analyser (NIR) machine was then used to analyse a total of 30 samples per location for starch, fat, protein crude fiber and ash content, the analysed results of which were expressed in percentages.

**Statistical analysis:** The collected data were combined, analysed using the Analysis of Variance (ANOVA) and performed the analysis of variance using Genstat 11th edition. The least significant difference (LSD) at a (5%) level of probability was subjected to separate means. The correlation coefficient method SPSS (version 16) was used to assess the relationship between the grain quality variables.

#### **RESULTS**

Maize grain protein content: The timing of nitrogen fertilizer application significantly had an effect (p<0.05) on maize protein content during the 2019/20 and 2020/21 planting seasons (Fig. 1). During the 2019/20 planting season, nitrogen fertilizer applied during planting, five-leaf and ten leaf stage produced a significantly higher protein content of 10.59, 11.25 and 10.66%, respectively. During the 2020/21 planting season, nitrogen fertilizer applied during the five-leaf and ten-leaf stages produced a significantly higher protein content of 11.95 and 12.19%, respectively. Cultivar had a significant effect (p<0.05) on maize protein content during the 2020/21 planting season (Fig. 2). Maize cultivar PAN 413 produced a significantly higher protein content of 11.91%. During the 2019/20 planting season, cultivars significantly showed no effect on maize protein content. Location significantly had an effect (p<0.001) on maize protein content during the 2019/20

and 2020/21 planting seasons (Fig. 3). Maize planted at Taung produced a significantly higher protein content of 11.68 and 12.55% during the 2019/20 and 2020/21 planting seasons, respectively. The interaction for cultivar  $\times$  location significantly had an effect (p $\le$ 0.05) on maize protein content during the 2019/20 and 2020/21 planting seasons. During the 2020/21 planting season, interaction for cultivar  $\times$  location  $\times$  timing nitrogen application significantly had an effect (p $\le$ 0.05) on maize protein content.

Maize grain starch content: The timing of nitrogen fertilizer application significantly had an effect (p>0.05) on maize starch content during the 2019/20 and 2020/21 planting seasons (Fig. 4). During 2019/20 planting season, even though there was significantly no difference on nitrogen fertilizer application, nitrogen fertilizer applied during planting produced a significantly higher starch content of 63.63%. Cultivar had a significant effect (p≤0.05) on maize starch

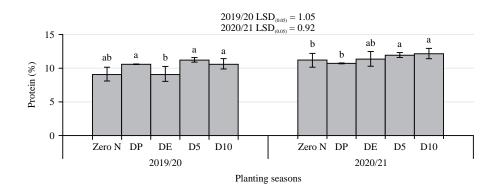



Fig. 1: Effect of timing of nitrogen fertilizer application on maize protein content during the 2019/20 and 2020/21 planting seasons

Zero N: Zero nitrogen, DP: During planting, DE: During emergence, D5: During five leaf stage, D10: During ten leaf stage and different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

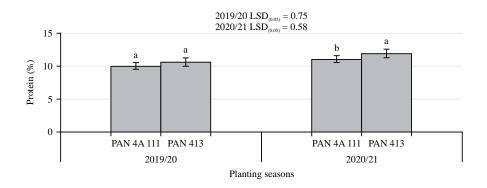



Fig. 2: Effect of cultivar on maize protein content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

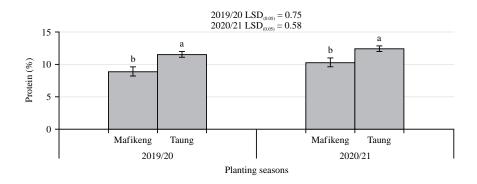



Fig. 3: Effect of location on maize protein content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while the same letters indicate no significant differences according to the Tukey's test

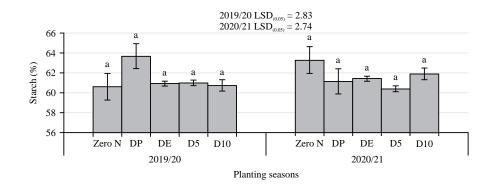



Fig. 4: Effect of timing of nitrogen fertilizer application on maize starch content during 2019/20 and 2020/21 planting seasons Zero N: Zero nitrogen, DP: During planting, DE: During emergence, D5: During five leaf stage, D10: During ten leaf stage and different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

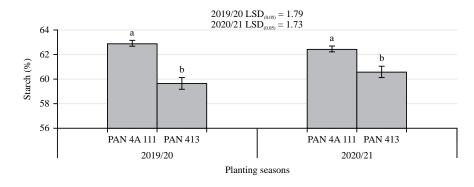



Fig. 5: Effect of cultivar on maize starch content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

content during the 2019/20 and 2020/21 planting seasons (Fig. 5). Maize cultivar PAN 4A 111 significantly produced higher starch content of 63.01 and 62.54% during the 2019/20 and 2020/21 planting seasons, respectively. Location significantly had no effect (p>0.05) on maize starch content during the 2019/20 and 2020/21 planting seasons

(Fig. 6). The interaction for cultivar $\times$ location was significant (p $\le$ 0.05) on maize starch content during the 2019/20 and 2020/21 planting seasons. During the 2019/20 planting season, the interaction of location $\times$ timing nitrogen application significantly had an effect (p $\le$ 0.05) on maize starch content.

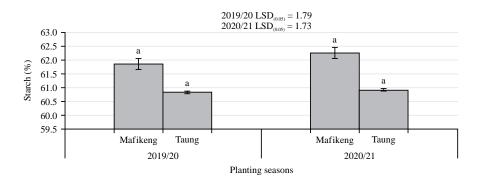



Fig. 6: Effect of location on maize starch content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

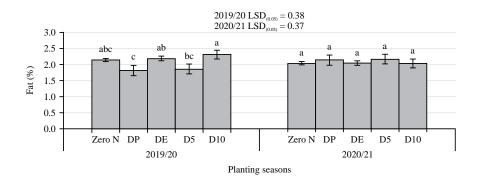



Fig. 7: Effect of timing of nitrogen fertilizer application on maize fat content during the 2019/20 and 2020/21 planting seasons Zero N: Zero nitrogen, DP: During planting, DE: During emergence, D5: During five leaf stage, D10: During 10 leaf stage and different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

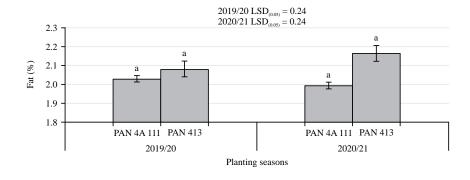



Fig. 8: Effect of cultivar on maize fat content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

**Maize grain fat content:** The timing of nitrogen fertilizer application significantly had effect ( $p \le 0.05$ ) on maize fat content during the 2019/20 planting season (Fig. 7). Nitrogen fertilizer applied during ten leaf stage produced a significantly higher fat content of 2.301%. During the 2020/21 planting season, the timing of nitrogen fertilizer application showed no significant effect on maize fat content. Cultivar significantly had no effect (p > 0.05) on maize fat content during the

2019/20 and 2020/21 planting seasons (Fig. 8). Location significantly had effect (p<0.001) on maize fat content during the 2020/20 planting season (Fig. 9). Maize planted at Mafikeng significantly produced higher fat content of 2.278%. During the 2019/20 planting season, location significantly showed no effect on maize fat content Fig. 10. The interaction for cultivar×location significantly had effect (p<0.05) on maize fat content during 2019/20 planting season.

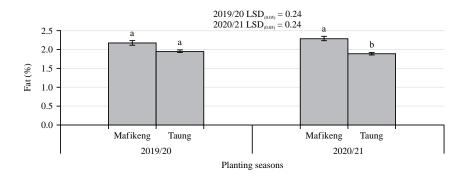



Fig. 9: Effect of location on maize fat content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

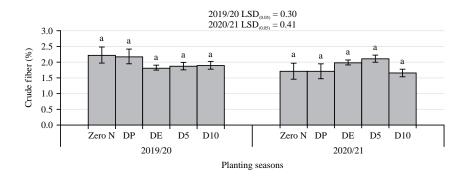



Fig. 10: Effect of timing of nitrogen fertilizer application on maize crude fiber content during the 2019/20 and 2020/21 planting seasons

Zero N: Zero nitrogen, DP: During planting, DE: During emergence, D5: During five leaf stage, D10: During ten leaf stage and different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

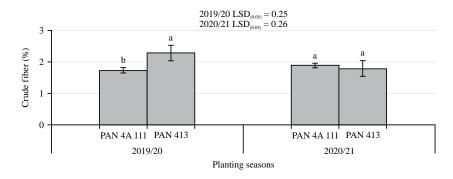



Fig. 11: Effect of cultivar on maize crude fiber content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

**Maize grain crude fibre content:** The timing of nitrogen fertilizer application significantly had no effect (P>0.05) on maize crude fibre content during the 2019/20 and 2020/21 planting (Fig. 10). During the 2020/21 planting season, even though there was significantly no difference on nitrogen fertilizer application, nitrogen fertilizer applied during five leaf stage produced a significantly higher crude fibre content of 2.11%. Cultivar had a significant effect (P=0.05) on maize crude fibre content during the 2019/20 planting season

(Fig. 11). Maize cultivar PAN 413 produced a significantly higher crude fibre content of 2.28%. During the 2020/21 planting season, maize cultivar significantly showed no effect on maize on the crude fibre content. Location significantly had effect (P<0.001) on maize crude fibre content during the 2019/20 and 2020/21 planting seasons (Fig. 12). Maize planted at Taung significantly produced higher crude fibre content of 2.20% and 2.515 during the 2019/20 and 2020/21 planting seasons respectively. The interaction of cultivar × timing

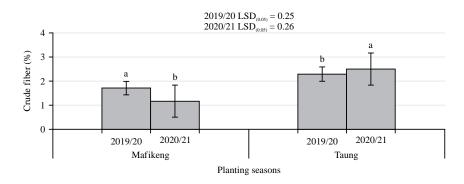



Fig. 12: Effect of location on maize crude fiber content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

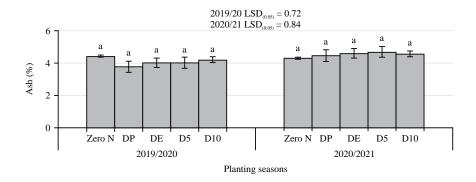



Fig. 13: Effect of timing nitrogen fertilizer application on maize ash content during 2019/20 and 2020/21 planting seasons

Zero N: Zero nitrogen, DP: During planting, DE: During emergence, D5: During five leaf stage, D10: During ten leaf stage and different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

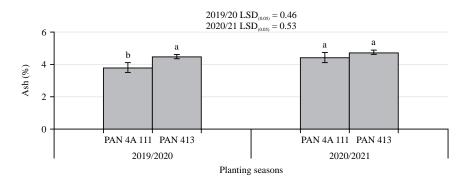



Fig. 14: Effect of cultivar on maize ash content during the 2019/20 and 2020/21 planting seasons

Different letters indicate significant differences while same letters indicate no significant differences according to Tukey's test

nitrogen application was significant (P=0.05) on maize crude fibre content during the 2019/20 planting season. During the 2020/21 planting season, interaction for cultivar  $\times$  location  $\times$  timing nitrogen application significantly had effect (P=0.05) on maize crude fibre content.

**Maize grain ash content:** The timing of nitrogen fertilizer application significantly had no effect (p>0.05) on maize ash

content during the 2019/20 and 2020/21 planting seasons (Fig. 13). During 2020/21 planting season, even though there was significantly no difference on nitrogen fertilizer application, nitrogen fertilizer applied during emergence and five leaf stage produced a significantly higher ash content of 4.63 and 4.73%, respectively. Cultivar had a significant effect (p<0.05) on maize ash content during the 2019/20 planting season (Fig. 14). Maize cultivar PAN 413

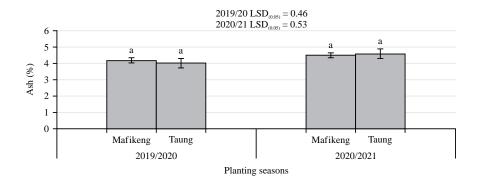



Fig. 15: Effect of location on maize ash content during the 2019/20 and 2020/21 planting season

Different letters indicate significant differences while the same letters indicate no significant differences according to Tukey's test

Table 3: Correlation between maize quality variables during the 2019/20 planting season

| Variables   | Protein | Fat      | Crude fiber | Ash      | Starch   |
|-------------|---------|----------|-------------|----------|----------|
| Protein     | 1       | -0.172   | 0.411**     | -0.112   | -0.163   |
|             | 0.172   | -0.172   |             |          |          |
| Fat         | -0.172  | 1        | 0.151       | 0.518**  | -0.677** |
| Crude fiber | 0.411** | 0.151    | 1           | 0.471**  | -0.332** |
| Ash         | -0.112  | 0.518**  | 0.471**     | 1        | -0.341** |
| Starch      | -0.163  | -0.677** | -0.332**    | -0.341** | 1        |

<sup>\*\*</sup>Correlation is significant at the 0.01 level (2-tailed)

Table 4: Correlation between maize quality variables during the 2020/21 planting season

| Variables   | Protein  | Fat      | Crude fiber | Ash      | Starch   |
|-------------|----------|----------|-------------|----------|----------|
| Protein     | 1        | -0.124   | 0.423**     | 0.334**  | -0.391** |
| Fat         | -0.124   | 1        | -0.216      | 0.519**  | -0.549** |
| Crude fiber | 0.423**  | -0.216   | 1           | -0.049   | -0.407** |
| Ash         | 0.334**  | 0.519**  | -0.049      | 1        | -0.512** |
| Starch      | -0.391** | -0.549** | -0.407**    | -0.512** | 1        |

<sup>\*\*</sup>Correlation is significant at the 0.01 level (2-tailed)

Table 5: Summary of cluster analysis of measured maize grain quality parameters

| Cluster number | Clusters combined | Co-efficient | Included quality parameter |
|----------------|-------------------|--------------|----------------------------|
| 1              | 2 and 4           | 1.445        | Fat and ash                |
| 2              | 1 and 3           | 4.160        | Protein and crude fiber    |
| 3              | 2 and 5           | 7.090        | Fat and starch             |
| 4              | 1 and 2           | 10.625       | Protein and fat            |

produced a significantly higher ash content of 4.45%. During the 2020/21 planting season, cultivar significantly showed no effect on maize ash content. Location significantly had no effect (p>0.05) on maize ash content during the 2019/20 and 2020/21 planting seasons (Fig. 15). The interaction of cultivar  $\times$  location was significant (p $\le$ 0.05) on maize ash content during the 2020/21 planting season.

**Correlation between maize quality variables during the 2019/20 planting season:** Protein showed a positive and medium correlation with crude fiber (r = 0.411) as indicated in Table 3. Protein also showed a negative and weak correlation with fat (r = -0.172), ash (r = -0.112) and starch (r = -0.163). Fat showed a negative and strong correlation with starch

(r = -0.677). Fat also showed a positive and medium correlation with ash (r = 0.518). Crude fiber showed a positive and medium correlation with protein (r = 0.411) and ash (r = 0.471). Furthermore, crude fiber had a negative and weak correlation with starch (r = -0.332). Ash indicated a positive and medium correlation with fat (r = 0.518) and crude fiber (r = 0.471). Ash showed a negative and significant correlation with starch. Starch showed a negative correlation with fat (r = -0.677). Starch showed a negative and significant correlation with crude fiber and ash.

Correlation between maize quality variables during the **2020/21 planting season:** Protein showed a positive and medium correlation with crude fiber (r = 0.423) as indicated in

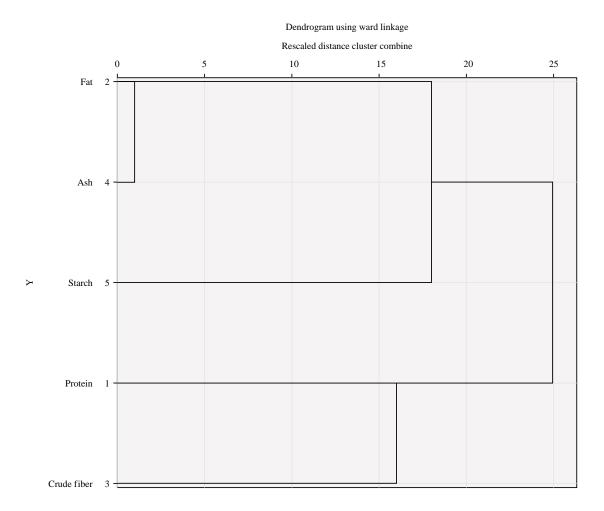



Fig. 16: Dendrogram showing the distance among measured maize grain quality parameters

Table 4. Protein also showed a positive and weak correlation with ash (r = 0.334). Furthermore, protein showed a negative and significant correlation with starch (r = -0.391). Fat showed a positive and medium correlation with ash (r = 0.519). Fat also showed a negative and medium correlation with starch (r = -0.549). Crude fiber indicated a positive and medium correlation with protein (r = 0.423). Crude fiber also showed a negative correlation with starch (r = -0.407). Ash showed a positive and medium correlation with fat (r = 0.519). Ash also showed a positive and weak correlation with protein (r = 0.334). Furthermore, ash showed a negative and significant correlation with starch (r = -0.512). Starch showed a negative correlation with fat (r = -0.549), crude fiber (r = -0.407) and ash (r = -0.512), respectively. Starch showed a negative correlation with protein (r = -0.391).

**Cluster analysis:** In this study based on the measured maize grain quality parameters, the distance was achieved as

revealed in the dendrogram graph (Fig. 16). The measured maize grain quality parameters were presented in groups based on the results of the cluster analysis to conclude relationships between parameters (Table 5). Cluster 1 contained quality parameters (fat and ash) showing a similar effect among the two parameters. Cluster 2 shows a similar effect between grain protein and crude fiber while cluster 3 shows a similar effect between grain fat and starch. Cluster 4 indicates a similar effect between grain protein and fat.

### DISCUSSION

The higher maize protein, fat and ash content observed when nitrogen fertilizer was applied during emergence and at five-leaf and ten-leaf stages might be attributed to the early application of nitrogen that would later be remobilized to reach the maize grains for the grain-filling process. This observation agreed with findings by Amanullah and Shah<sup>29</sup>,

who reported that there was an increase in maize grain protein with early application of nitrogen. This observation agreed with the findings by Bartzialis *et al.*<sup>30</sup>, who reported an increase in protein in sorghum with the application of nitrogen fertilizer two weeks from the sowing of the sorghum. The higher seed protein content obtained at Taung location in this study correlates with findings by Sebetha *et al.*<sup>31</sup>, who reported higher maize seed protein harvested from Taung.

The higher maize starch and crude fiber content observed when nitrogen fertilizer was applied during planting and five leaf stage might be attributed to the availability of nutrients for the plant to uptake during the early stages of maize development, which would eventually be translocated for the grain formation and grain filling processes and promote biosynthetic activities in the maize grain. This observation agreed with findings by Bartzialis *et al.*<sup>30</sup>, who reported the highest crude fiber levels when nitrogen fertilizer was applied at the sowing of the sorghum. These results also agreed with similar findings by Luo *et al.*<sup>32</sup>, who observed that the proper timing in applying nitrogen fertilizer promotes the accumulation of dry matter and increases the starch content.

The higher maize starch content observed under maize cultivar PAN 4A 111 might be attributed to variations in its genetic composition, its rapid adaptability due to favourable climatic factors and its short development period. This observation agreed with the findings by Zhang *et al.*<sup>33</sup>, who reported the different starch content among bean varieties.

The higher maize protein, fat, crude fiber and ash content observed in maize cultivar PAN 413 might be attributed to the genetic characteristics of the cultivar and the prolonged period for growth and development, which would tend to increase grain filling. This result corroborated with findings by Ayub *et al.*<sup>34</sup>, who observed a distinction in terms of the protein and ash content of maize cultivars. This observation also agreed with the findings by Hunsigi *et al.*<sup>35</sup>, who reported variations in the crude fiber content of various sorghum cultivars.

The higher maize protein, crude fiber and ash content observed under maize planted at Taung might be attributed to favorable climatic factors (rainfall and temperature) and a better soil structure. This result corroborated with findings by Queiroz *et al.*<sup>36</sup>, who observed a difference in sorghum crude fiber grown under varying temperatures and rainfall conditions. This observation agreed with findings by Uribelarrea *et al.*<sup>37</sup> and Haberle *et al.*<sup>38</sup>, who reported that environmental conditions such as temperature influence the protein content of wheat. This observation also agreed with findings by lhekoronye and Ngoddy<sup>39</sup>, Jimoh and Abdullahi<sup>40</sup>,

who reported that the type of soil and the availability of nutrients in the soil influence the ash content of sorghum.

The higher maize starch and fat content observed in maize planted at Mafikeng might be attributed to preferable prevailing temperatures and rainfall and the sufficiency of nutrients. This result agreed with similar findings by de Geus *et al.*<sup>41</sup>, who observed that environmental factors have an impact on fat content. This observation also agreed with the findings by Labuschagne *et al.*<sup>42</sup>, who reported that wheat starch is affected by climatic and environmental conditions.

The study will provide farmers with relevant knowledge as to how to reduce the risk of losing nitrogen fertilizer in the soil before the plant can utilize the applied nitrogen to achieve high maize grain quality. Maize cultivars have different climatic conditions and are affected differently. Therefore, the study will educate farmers on which type of environment is suitable or desirable for different types of cultivars. Farmers will learn how to avoid the adverse impacts caused by the application of nitrogen fertilizer to the environment when not applied correctly.

The study recommends that, if grain quality is preferred by maize farmers, applications of nitrogen fertilizer should be during planting, emergence and five leaf stages. However, maize cultivar PAN 4A 111 is recommended for its high starch content. The study recommends climatic and environmental locations similar to the Taung site for higher maize protein content.

## **CONCLUSION**

The timing of nitrogen fertilizer application during planting, five-leaf and ten-leaf stages affected maize grain quality positively. Maize grain responded positively to the application of nitrogen fertilizer during planting, emergence and five-leaf stages and resulting in a high-quality grain. The study concludes that the timing of nitrogen fertilizer application at the correct and early stages of maize growth increases the grain-filling process. The study recommends climatic and environmental locations similar to the Taung site for higher maize protein content.

#### SIGNIFICANCE STATEMENT

The purpose of the study was to evaluate the timing of nitrogen fertilizer application on the maize grain quality parameters under different environmental conditions. The results of this study indicated that, when nitrogen fertilizer is applied during emergence, five and ten leaf stages, it affects the maize quality parameters such as protein, fat, crude fiber

and ash content. The results of this study also indicated that maize quality parameters vary across different locations.

#### **ACKNOWLEDGMENTS**

The author would like to thank the National Research Foundation (NRF Grand Number: 117374) and North-West University (NWU) Bursary for funding the research study. The NWU Department of Crop Science and The Agriculture Research Station in Taung for allowing the research study to take place.

#### **REFERENCES**

- 1. Butts-Wilmsmeyer, C.J., J.R. Seebauer, L. Singleton and F.E. Below, 2019. Weather during key growth stages explains grain quality and yield of maize. Agronomy, Vol. 9. 10.3390/agronomy9010016.
- 2. Sehgal, A., K. Sita, K.H.M. Siddique, R. Kumar and S. Bhogireddy *et al.*, 2018. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci., Vol. 9. 10.3389/fpls.2018.01705.
- Prasad, P.V.V., S.A. Staggenborg and Z. Ristic, 2008. Impacts of Drought and/or Heat Stress on Physiological, Developmental, Growth, and Yield Processes of Crop Plants. In: Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes, Ahuja, L.R., V.R. Reddy, S.A. Saseendran and Q. Yu (Eds.), American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin, ISBN: 9780891181675, pp: 301-355.
- Cairns, J.E., K. Sonder, P.H. Zaidi, N. Verhulst and G. Mahuku, 2012. Maize Production in a Changing Climate: Impacts, Adaptation, and Mitigation Strategies. In: Advances in Agronomy, Sparks, D.L. (Ed.), Academic Press, Washington, DC, ISBN: 9780123942753, pp: 1-58.
- Hasanuzzaman, M., K. Nahar, M.M. Alam, R. Roychowdhury and M. Fujita, 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci., 14: 9643-9684.
- Lu, T.J., J.L. Jane, P.L. Keeling and G.W. Singletary, 1996.
   Maize starch fine structures affected by ear developmental temperature. Carbohydr. Res., 282: 157-170.
- Liu, P., W. Guo, Z. Jiang, H. Pu and C. Feng et al., 2011. Effects
  of high temperature after anthesis on starch granules in
  grains of wheat (*Triticum aestivum* L.). J. Agric. Sci.,
  149: 159-169.
- Niu, S., X. Du, D. Wei, S. Liu and Q. Tang et al., 2021. Heat stress after pollination reduces kernel number in maize by insufficient assimilates. Front. Genet., Vol. 12. 10.3389/fgene.2021.728166.

- 9. Lu, D., X. Sun, F. Yan, X. Wang, R. Xu and W. Lu, 2013. Effects of high temperature during grain filling under control conditions on the physicochemical properties of waxy maize flour. Carbohydr. Polym., 98: 302-310.
- Balla, K., M. Rakszegi, Z. Li, F. Békés, S. Bencze and O. Veisz, 2011. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci., 29: 117-128.
- 11. Chang-Xing, Z., H. Ming-Rong, W. Zhen-Lin, W. Yue-Fu and L. Qi, 2009. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. C. R. Biol., 332: 759-764.
- 12. Gooding, M.J., R.H. Ellis, P.R. Shewry and J.D. Schofield, 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J. Cereal Sci., 37: 295-309.
- 13. Sah, R.P., M. Chakraborty, K. Prasad, M. Pandit and V.K. Tudu *et al.*, 2020. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep., Vol. 10. 10.1038/s41598-020-59689-7.
- 14. Brennan, C.S., J. Samaan and G.H. El-Khayat, 2012. The effect of genotype and environmental conditions on grain physiochemical properties of Syrian durum wheat cultivars. Int. J. Food Sci. Technol., 47: 2627-2635.
- 15. So, H.B., A. Grabski and P. Desborough, 2009. The impact of 14 years of conventional and no-till cultivation on the physical properties and crop yields of a loam soil at Grafton NSW, Australia. Soil Tillage Res., 104: 180-184.
- 16. Almodares, A., M.R. Hadi and B. Dosti, 2008. The effects of salt stress on growth parameters and carbohydrates contents in sweet sorghum. Res. J. Environ. Sci., 2: 298-304.
- 17. Breteler, H., 1976. Nitrogen fertilization, yield and protein quality of a normal and a high-lysine maize variety. J. Sci. Food Agric., 27: 978-982.
- 18. da Silva, P.R.F., M.L. Strieder, R.P. da Silva Coser, L. Rambo and L. Sangoi *et al.*, 2005. Grain yield and kernel crude protein content increases of maize hybrids with late nitrogen side-dressing. Sci. Agric., 62: 487-492.
- 19. Subedi, K.D. and B.L. Ma, 2005. Nitrogen uptake and partitioning in stay-green and leafy maize hybrids. Crop Sci., 45: 740-747.
- 20. Miao, Y., D.J. Mulla, P.C. Robert and J.A. Hernandez, 2006. Within-field variation in corn yield and grain quality responses to nitrogen fertilization and hybrid selection. Agron. J., 98: 129-140.
- Drury, C.F., W.D. Reynolds, X.M. Yang, N.B. McLaughlin, T.W. Welacky, W. Calder and C.A. Grant, 2012. Nitrogen source, application time, and tillage effects on soil nitrous oxide emissions and corn grain yields. Soil Sci. Soc. Am. J., 76: 1268-1279.
- Yue, K., L. Li, J. Xie, Y. Liu, J. Xie, S. Anwar and S.K. Fudjoe, 2021. Nitrogen supply affects yield and grain filling of maize by regulating starch metabolizing enzyme activities and endogenous hormone contents. Front. Plant Sci., Vol. 12. 10.3389/fpls.2021.798119.

- 23. Binder, D.L., D.H. Sander and D.T. Walters, 2000. Maize response to time of nitrogen application as affected by level of nitrogen deficiency. Agron. J., 92: 1228-1236.
- 24. McCullough, D.E., A. Aguilera and M. Tollenaar, 1994. N uptake, N partitioning, and photosynthetic N-use efficiency of an old and a new maize hybrid. Can. J. Plant Sci., 74: 479-484.
- 25. Ma, B.L., M.J. Morrison and L.M. Dwyer, 1996. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agron. J., 88: 915-920.
- Walsh, O.S. and W.L. Walsh, 2020. Nitrogen fertilizer rate and time effect on dryland no-till hard red spring wheat production. Agrosyst. Geosci. Environ., Vol. 3. 10.1002/agg2.20093.
- Kasirivu, J.B.K., S.A. Materechera and M.M. Dire, 2011. Composting ruminant animal manure reduces emergence and species diversity of weed seedlings in a semi-arid environment of South Africa. S. Afr. J. Plant Soil., 28: 228-235.
- 28. Adebayo, A.R. and E.T. Sebetha, 2022. Effect of nitrogen fertilizer and soil moisture levels on the performance of drought-tolerant maize on ferric luvisol and rhodic ferralsol soils. J. Agric. Crops, 8: 138-151.
- 29. Amanullah and P. Shah, 2010. Timing and rate of nitrogen application influence grain quality and yield in maize planted at high and low densities. J. Sci. Food Agric., 90: 21-29.
- Bartzialis, D., K.D. Giannoulis, I. Gintsioudis and N.G. Danalatos, 2023. Assessing the efficiency of different nitrogen fertilization levels on sorghum yield and quality characteristics. Agriculture, Vol. 13. 10.3390/agriculture13061253.
- 31. Sebetha, E.T., A.T. Modi and L.G. Owoeye, 2015. Maize seed quality in response to different management practices and sites. J. Agric. Sci., 7: 215-223.
- 32. Luo, Y., Y. Tang, X. Zhang, W. Li and Y. Chang *et al.*, 2018. Interactions between cytokinin and nitrogen contribute to grain mass in wheat cultivars by regulating the flag leaf senescence process. Crop J., 6: 538-551.
- 33. Zhang, L., W. Dong, Y. Yao, C. Chen and X. Li *et al.*, 2022. Analysis and research on starch content and its processing, structure and quality of 12 adzuki bean varieties. Foods, Vol. 11. 10.3390/foods11213381.

- 34. Ayub, M., R. Ahmad, M.A. Nadeem, B. Ahmad and R.M.A. Khan, 2003. Effect of different levels of nitrogen and seed rates on growth, yield and quality of maize fodder. Pak. J. Agric. Sci., 40: 140-143.
- 35. Hunsigi, G., N.R. Yekkeli and B.Y. Kongawad, 2010. Sweet stalk sorghum: An alternative sugar crop for ethanol production. Sugar Tech, 12: 79-80.
- Queiroz, V.A.V., C.S. da Silva, C.B. de Menezes, R.E. Schaffert and F.F.M. Guimarães *et al.*, 2015. Nutritional composition of sorghum [Sorghum bicolor (L.) Moench] genotypes cultivated without and with water stress. J. Cereal Sci., 65: 103-111.
- 37. Uribelarrea, M., F.E. Below and S.P. Moose, 2004. Grain composition and productivity of maize hybrids derived from the illinois protein strains in response to variable nitrogen supply. Crop Sci., 44: 1593-1600.
- 38. Haberle, J., P. Svoboda and I. Raimanová, 2008. The effect of post-anthesis water supply on grain nitrogen concentration and grain nitrogen Šeld of winter wheat. Plant Soil Environ., 54: 304-312.
- 39. Ihekoronye, A.I. and P.O. Ngoddy, 1985. Integrated Food Science and Technology for the Tropics. Macmillian Publisher, London, United Kingdom, ISBN: 9780333388839, Pages: 386.
- 40. Jimoh, W.L.O. and M.S. Abdullahi, 2017. Proximate analysis of selected sorghum cultivars. Bayero J. Pure Appl. Sci., 10: 285-288.
- 41. de Geus, Y.N., A.S. Goggi and L.M. Pollak, 2008. Seed quality of high protein corn lines in low input and conventional farming systems. Agron. Sustainable Dev., 28: 541-550.
- 42. Labuschagne, M.T., N. Geleta and G. Osthoff, 2007. The influence of environment on starch content and amylose to amylopectin ratio in wheat. Starch, 59: 234-238.