

Asian Journal of Plant Sciences

ISSN 1682-3974

ISSN 1682-3974 DOI: 10.3923/ajps.2024.290.303

Research Article

Growth and Essential Oil Production of Vetiver Plants Under Salinity Condition with Salicylic Acid and Mycorrhiza Application

^{1,3}Aisar Novita, ²Luthfi Aziz Mahmud Siregar, ²Rosmayati and ²Nini Rahmawati

Abstract

Background and Objective: Salinity is a real challenge in agricultural crop production in many regions. Several strategies should be applied to reduce the adverse effects of salinity and increase crop tolerance. Therefore, more than one application can support the mitigation of salinity stress in vetiver plants through the application of salicylic acid and mycorrhiza. This study aims to evaluate the growth and production of vetiver under salinity conditions with the application of salicylic acid and mycorrhiza. **Materials and Methods:** This study used a factorial completely randomized design with 3 factors. The first factor is salinity consisting of 4-5 dS/m salinity and 8-9 dS/m salinity, the second factor is salicylic acid consisting of no salicylic acid, 0.5 mM salicylic acid and 1 mM salicylic acid and the third factor is mycorrhiza consisting of no mycorrhiza, *Glomus* sp. and *Gigaspora* sp., where each treatment is made 3 replications. The recorded parameters are plant height, number of leaves, leaf area, number of tillers, root length, root volume, root fresh weight and production of essential oil. All the recorded data were analyzed by using Analysis of Variance (ANOVA). **Results:** The application of salicylic acid and mycorrhiza had a significant effect on increasing all parameters of vetiver growth and production observed in this study. The results showed that the best of vetiver oil production was obtained with the application of 0.5 mM salicylic acid and *Gigaspora* sp., mycorrhiza. **Conclusion:** The use of mycorrhiza species *Gigaspora* sp., can increase the growth and production of essential oil under salinity conditions. The best essential oil production under salinity condition was obtained with the application of 0.5 mM salicylic acid and *Gigaspora* sp.

Key words: Mycorrhizae, salicylic acid, vetiver, essential oil, Gigaspora sp., salinity

Citation: Novita, A., L.A.M. Siregar, Rosmayati and N. Rahmawati, 2024. Growth and essential oil production of vetiver plants under salinity condition with salicylic acid and mycorrhiza application. Asian J. Plant Sci., 23: 290-303.

Corresponding Author: Luthfi Aziz Mahmud Siregar, Department of Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara, Medan 20155, Indonesia

Copyright: © 2024 Aisar Novita *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Doctoral Program of Agricultural Sciences, Faculty of Agriculture, Universitas Sumatera Utara, Medan 20155, Indonesia

²Department of Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara, Medan 20155, Indonesia

³Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Sumatera Utara, Medan 20238, Indonesia

INTRODUCTION

The vetiver plant is one of the Gramineae family plants originating from India. Vetiver is one of the plants that produce essential oil. The main content of essential oil in vetiver is β -vetivenene, khusimol, vetiselinenol, isovalencenol, vetivenicacid, α -vetivone and β -vetivone¹. These essential oils are products of plant secondary metabolites, where secondary metabolites are produced by plants in certain amounts as a defense in stressful conditions, one of which is salinity.

Salinity is one of the factors limiting plant growth and productivity. Most cultivated plants are sensitive to salinity due to high saline content. Increased salinity in the soil causes osmotic stress, nutrient imbalance, oxidative stress, ion toxicity in the soil in addition to reducing the ability of plants to absorb water and photosynthesize so that metabolic processes are disrupted. Plant growth that decreases is caused by osmotic stress which makes it difficult for plants to absorb water and the influence of excessive Na⁺ and Cl⁻ ions causes cell division and enlargement to be inhibited².

Salinity stress is known to suppress plant growth by affecting vegetative development and net assimilation rate which results in a decrease in yield productivity^{3,4}. The results of research by Novita *et al.*⁵ reported that there was a decrease in vetiver growth at a salinity level of 8 dS/m, where vetiver plants showed decreasing vegetative growth seen from a decrease in plant height, number of leaves specific leaf area and leaf dry weight⁶. Although vetiver grass is widespread in saline-affected areas, few studies have reported that vetiver is moderately saline tolerant⁷ and the mechanisms underlying vetiver's saline tolerance remain unclear.

Some strategies that can be done to reduce the adverse effects of salinity include nutrient application⁸, organic matter application⁹, breeding tolerant cultivars¹⁰ and the use of rhizobacteria¹¹. However, some of the previous applications have limited effects when applied singly. Therefore, more than one application is needed to be able to support abiotic stress mitigation in salinity-sensitive crops¹². In this study, the strategy applied was the application of nutrients in the form of salicylic acid combined with the use of mycorrhiza species.

Salicylic acid has been recognized as an important molecule to contribute to abiotic stress responses¹³. Salicylic acid plays a role in plant tolerance to various abiotic stresses including metals/metalloids¹⁴ and salinity¹⁵. Salicylic acid has the effect of protecting the development of anti-stress programs and accelerating the growth normalization process after removing stress factors¹⁶. When biotic or abiotic stress occurs in cells, tissues, or organs, the salicylic acid signaling process is initiated. To trigger defense signals, SA must

connect to several different receptors. The main SA receptors, SA Methyl Transferase 1 (SAMT1) and SA binding protein 2 (SABP2), regulate the ratio of SA to MeSA17¹⁷.

Besides, arbuscular mycorrhiza fungi (AMF) are regarded as another effective method for bioameliorating salt stress. The AMF uses several physiological and biochemical processes that work together to provide the host plant a higher resistance to salinity. Enhanced nutrient uptake and preservation of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure and intensified antioxidant metabolism are a few of the well-known mechanisms¹⁸. Several studies have highlighted that FMA imparts salinity tolerance to host plants based on higher biomass compared to plants without mycorrhiza¹⁹. The higher biomass further leads to dilution of Na⁺ and Cl⁻ and manifests as better crop yields²⁰.

Based on the description of the problems above, it is necessary to conduct research aimed at evaluating the growth and production of essential oil from vetiver plants grown in salinity conditions with the application of salicylic acid and mycorrhiza.

MATERIALS AND METHODS

Materials: The materials used in this study were Padang ecotype vetiver seedlings obtained from the results of phase I research by Novita *et al.*²¹ as plant material, saline soil, sea water, salicylic acid, mycorrhiza *Glomus* sp., mycorrhiza *Gigaspora* sp. and other materials that support this research.

Research sites: This research was conducted in the Greenhouse, Agricultural Development Polytechnic Medan, North Sumatra, Indonesia from May, 2022 to August, 2022.

Research methods: This study used a factorial Completely Randomized Design (CRD) with 3 factors. The first factor is the best ecotype and salinity consisting of Padang ecotype at 4-5 dS/m salinity and Padang ecotype at 8-9 dS/m salinity, the second factor is salicylic acid consisting of no salicylic acid, 0.5 mM salicylic acid and 1 mM salicylic acid and the third factor is mycorrhiza consisting of no mycorrhiza, *Glomus* sp. and *Gigaspora* sp., where each treatment is made 3 replicates.

Salicylic acid application: Salicylic acid was sprayed using a spraying system in accordance with the concentration of each treatment (none, 0.5 mM and 1 mM) at one and two weeks after planting (WAP).

Mycorrhiza application: Arbuscular mycorrhiza fungi (AMF) were applied once at planting stage II of the research and placed under the roots in the rhizosphere (root zone) according to each treatment type.

Data analysis: The data were recorded on the traits i.e., plant height, number of leaves, leaf area, number of tillers, root length, root volume, root fresh weight and production of essential oil, all these parameters are observed at 8 weeks after planting (WAP).

All the recorded data were analyzed by using Analysis of Variance (ANOVA) and the means were further compared and separated with Duncan's Multiple Range Test (DMRT) at $\alpha \ 5\%^{22}$.

RESULTS AND DISCUSSION

Plant height: Observation data and analysis of variance showed that salinity treatment, salicylic acid application and mycorrhiza had a significant effect on plant height. The interaction between salinity treatment and salicylic acid, salinity and mycorrhiza and the interaction between salinity treatment, salicylic acid and mycorrhiza had a significant effect on plant height. The height of vetiver plants under salinity conditions with the application of salicylic acid and mycorrhiza was presented in Table 1.

Table 1 presented data on vetiver plant height, where salicylic acid treatment on vetiver plant height was highest at 1 mM salicylic acid application. The application of salicylic acid under salinity has an effect on increasing plant height, where the observation results showed that the height of vetiver plants increases as the concentration of salicylic acid given increases and the highest is obtained at a concentration of 1 mM. This means that the 1mM concentration is the optimal concentration of salicylic acid application. These results were in line with the research of Farouk and Omar²³ which stated that Ocimum basilicum L. plants with the application of salicylic acid concentrations of 0.75 mM and 1 mM are able to maintain growth from stress and maintain the highest growth in plant height. In line with Abdi et al.24 which states that the application of salicylic acid affects the physiological and biochemical processes of plants, increases defense enzymes in counteracting free radicals, prevents membrane peroxidation so that it affects cell elongation and plant height growth.

The use of mycorrhizal type *Glomus* sp., produced the highest vetiver plants. The increase in plant height with the application of mycorrhiza under salinity stress is because mycorrhiza provides several benefits to plants, including increased absorption of nutrients and water, as well as protection against soil pathogens. According to llangumaran

and Smith²⁵, under salinity stress, plants require additional energy to reduce the toxic effects of Na⁺ ions and also face nutrient deficiencies, this has a negative impact on plant growth. Afrinda and Islami²⁶ stated that the application of mycorrhiza can increase P uptake in plants which serves to increase yield, besides being able to produce the highest plant height so as to provide the highest yield. Furthermore, Adetya *et al.*²⁷ stated that the use of mycorrhiza can increase the availability of nutrients, bind toxic substances and make plants resistant to stress.

The interaction of 1 mM salicylic acid treatment and Glomus sp., mycorrhiza species produced the highest plants at 4-5 dS/m salinity, which was significantly different from other treatment interactions. The interaction between salinity with the application of salicylic acid and mycorrhiza had an effect on increasing the growth of vetiver plants, this was seen in the increase in plant height. This finding demonstrated salicylic acid's capacity to lessen soil stress situations. Similar findings were also noted by Ali and Mahmoud²⁸, who found that applying salicylic acid can lessen the detrimental effects of salt stress on plant productivity, growth and physiological and morphological traits. Moreover, El-Taher et al.29 claimed that salicylic acid is a plant hormone that controls a variety of physiological and biochemical processes in plants, particularly when they are stressed. According to Per et al.30, salicylic acid affects various important physiological functions in plants, such as increasing nutrient absorption and decreasing Na⁺ concentration under salinity stress. In addition, Dastogeer et al.31 reported that mycorrhizal application increased plant height and its effect on growth was better under salinity stress conditions than under normal conditions. Shamshiri and Fattahi³² also reported that mycorrhiza application has been shown to increase plant growth under salinity stress conditions. Furthermore, Khalloufi et al.33 stated that the application of mycorrhiza increases nutrient uptake, water uptake, maintains osmotic balance and stimulates antioxidant activity to reduce the harmful effects of salinity on plant growth.

Number of leaves: Observation data and analysis of variance showed that salinity treatment, salicylic acid application and mycorrhiza significantly affected the number of leaves. The interaction between salinity treatment and salicylic acid and the interaction between salinity treatment, salicylic acid and mycorrhiza had a significant effect on the number of leaves. The interaction between salinity treatment and mycorrhiza application had a significant effect on the number of leaves. The number of vetiver leaves under salinity conditions with salicylic acid and mycorrhiza application was presented in Table 2.

Table 1: Vetiver plant height under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (cm)			
	Salicylic acid	No mycorrhiza (C₀)	Glomus sp (C₁)	<i>Gigaspora</i> sp (C₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	150.33 ^e	153.58 ^d	155.58°	144.11°
8-9 dS/m (A ₂)		131.42 ^j	135.33 ⁱ	135.92 ⁱ	
4-5 dS/m (A ₁)	Salicylic acid 0.5 mM (B ₁)	154.67 ^{cd}	158.75 ^b	159.33 ^b	149.10 ^b
8-9 dS/m (A ₂)		137.83 ^h	144.08 ^f	139.92 ⁹	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	159.25 ^b	162.00 ^a	158.00 ^b	152.36ª
8-9 dS/m (A ₂)		140.17 ⁹	150.75 ^e	144.00 ^f	
Mean		145.61°	150.85ª	149.11 ^b	

Table 2: Number of vetiver leaves under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (helai)			
	Salicylic acid	No mycorrhiza (C₀)	<i>Glomus</i> sp. (C₁)	 <i>Gigaspora</i> sp. (C₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	12.92 ⁱ	18.50 ^e	15.67 ⁹	13.93°
8-9 dS/m (A ₂)		10.83 ^j	13.08 ⁱ	12.58 ⁱ	
4-5 dS/m (A ₁)	Salicylic acid 0.5 mM (B ₁)	17.33 ^f	22.50 ^b	20.67°	18.75 ^b
8-9 dS/m (A ₂)		14.50 ^h	19.50 ^d	18.00 ^{ef}	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	18.58e	24.67ª	22.83 ^b	19.82ª
8-9 dS/m (A ₂)		15.92 ⁹	18.67e	18.25 ^e	
Mean		15.01°	19.49ª	18.00 ^b	

Numbers followed by different letters indicate significantly different according to Duncan's Multiple Range Test at the 5% level

Table 2 presented data on the number of vetiver leaves, where salicylic acid treatment on the highest number of vetiver leaves was obtained at 1 mM salicylic acid application. The number of vetiver leaves increased with the addition of salicylic acid concentration given. This result shows a positive effect that the application of salicylic acid can increase plant growth. According to Khan et al.14, leaves are an important organ in plants that function as a transpiration and photosynthesis process. The results of photosynthesis will be distributed to all plant organs for growth and development. The more the number of leaves produced, the more photosynthetic assimilates produced. So that plants will grow and develop faster. According to Leiwakabessy et al.³⁴ salicylic acid given to plants can increase the process of photosynthesis in leaves, the assimilation of carbon dioxide (CO_2) and nutrient uptake by plants.

Growth in the number of leaves is also influenced by the application of mycorrhiza where the highest number of leaves is found in *Glomus* sp. This is evidenced by the results of the study that the number of leaves of vetiver plants with mycorrhiza application is higher than without mycorrhiza. In line with Husna³⁵, mycorrhiza application is significant to plant growth, namely the number of leaves. According to Farida and Chozin³⁶, mycorrhiza application affects the number of leaves because mycorrhiza helps plants in the absorption of water and nutrients that increase biomass production, especially in the stems and leaves. Furthermore, Hartanti *et al.*³⁷ also explained that mycorrhiza in the soil will be symbiotic

with plant roots so that it can increase the uptake of phosphorus (P) and other nutrients such as nitrogen (N) and potassium (K).

The interaction effect of salinity treatment and salicylic acid application on the number of leaves also increased in this study. The interaction of 1 mM salicylic acid treatment and mycorrhiza type Glomus sp. (B2C1) produced the highest number of leaves at 4-5 dS/m salinity, which was significantly different from other treatment interactions. Previous research by Bin-Jumah et al.38 showed that the application of salicylic acid can reduce plant damage due to salinity stress. Salicylic acid is a hormone that regulates plant development and reduces the negative impact of salinity. According to Hasan et al.39, salicylic acid application can control stomatal opening under stress, reduce transpiration and water loss, maintain turgor and control plant growth under stress conditions. In addition, there is a significant increase in plant growth in soil media previously treated with mycorrhiza, where the higher the level of mycorrhiza, the higher the increase in the number of leaves⁴⁰. In order to improve soil fertility over time, mycorrhiza contains a variety of propagules, such as spores, hyphae and rhizomorphs, which are structures that may last in saltwater settings. It has been demonstrated that using mycorrhiza can improve nutrient absorption and preserve plant conditions under stress. Mycorrhiza is a type of fungus that grows on plant roots and aids in nutrient absorption⁴¹.

Table 3: Number of vetiver tillers under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (anakan)			
	Salicylic acid	No mycorrhiza (C_0)	<i>Glomus</i> sp. (C₁)	 <i>Gigaspora</i> sp. (C ₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	3.75 ^{bc}	3.50°	3.67 ^{bc}	3.54 ^b
8-9 dS/m (A ₂)	•	3.00 ^d	3.83 ^{bc}	3.50 ^c	
4-5 dS/m (A ₁)	Salicylic acid 0.5 mM (B ₁)	3.67 ^{bc}	4.00 ^b	3.67 ^{bc}	3.61 ^b
8-9 dS/m (A ₂)	·	3.42°	3.50 ^c	3.42 ^c	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	3.83 ^{bc}	5.00 ^a	4.67ª	4.13ª
8-9 dS/m (A ₂)	,	3.50 ^c	4.00 ^b	3.75 ^{bc}	
Mean		3.53°	3.97ª	3.78 ^b	

Table 4: Leaf area of vetiver under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (cm²)			
	Salicylic acid	No mycorrhiza (C_0)	Glomus sp. (C₁)	Gigaspora sp. (C₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	5199.88 ⁹	5603.85°	5445.70 ^{ef}	5118.89°
8-9 dS/m (A ₂)		4680.29 ⁱ	4999.38 ^h	4784.22 ⁱ	
4-5 dS/m (A ₁)	Salicylic acid 0,5 mM (B ₁)	5611.66 ^e	6113.83°	5852.05 ^d	5571.32 ^b
8-9 dS/m (A ₂)		5323.04 ^{fg}	5391.87 ^f	5135.47 ^{gh}	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	6300.93 ^b	7371.47ª	7277.05°	6306.52ª
8-9 dS/m (A ₂)		5260.16 ^{fg}	6020.48 ^{cd}	5609.04°	
Mean		5395.99°	5916.81ª	5683.92 ^b	

Numbers followed by different letters indicate significantly different according to Duncan's Multiple Range Test at the 5% level

Number of tillers: Observation data and analysis of variance showed that salinity treatment, salicylic acid application and mycorrhiza singly significantly affected the number of tillers. Almost all treatment interactions significantly affected the number of tillers, except for the interaction between salinity and mycorrhiza. The number of vetiver tillers under salinity conditions with salicylic acid and mycorrhiza application was presented in Table 3.

Table 3 presented data on the number of vetiver tillers, where the salicylic acid treatment on the number of vetiver tillers was highest at 1 mM salicylic acid application. The application of salicylic acid has an effect on increasing the number of vetiver tillers, where the number of tillers increases with the higher the addition of salicylic acid concentration. This was in line with El-Shafey *et al.*⁴² which states that the application of salicylic acid through the leaves significantly increases the number of tillers. The results of Usharani *et al.*⁴³ also reported that spraying salicylic acid had a significant effect on the number of tillers.

The number of tillers of vetiver plants also increased with the application of *Gigaspora* sp., mycorrhiza, this is because mycorrhiza in plants acts as a helper for nutrient absorption so as to increase plant growth. According to Akbar *et al.*⁴⁴ the application of mycorrhiza to plants through leaves increases the number of tillers per plant. Mycorrhiza applications also stimulate higher germination, root system growth and increase the number of tillers and plant weight. In some plants, the effect of mycorrhizal application increases the number of tillers and plant weight⁴⁵.

The interaction of 1 mM salicylic acid treatment and mycorrhiza Glomus sp., produced the highest number of tillers, namely 5.00 tillers at 4-5 dS/m salinity, which was not significantly different from the interaction of 1 mM salicylic acid treatment and mycorrhiza type Gigaspora sp. (B2C2), namely 4.67 tillers at 4-5 dS/m salinity and significantly different from other treatment interactions. The application of salicylic acid and mycorrhiza under salinity stress has a significant effect on increasing the number of vetiver tillers. This was in line with Pirasteh-Anosheh et al.46, which stated that salinity treatment increases the rapid growth phase in the number of tillers and the application of salicylic acid at different concentrations can improve some of the negative impacts on plant growth under salinity stress. Furthermore, Emami et al.47 stated that the number of tillers is considered the most sensitive trait to salinity stress, this will be related to the percentage of root dry weight. The results of research by Zhang et al.48, also reported that there was an increase in the number of tillers in plants treated with mycorrhiza under saline stress. Furthermore, Ansari et al.49 stated that the increase in the number of tillers has an impact on production because mycorrhiza is able to increase the uptake of macro nutrients such as N, especially in saline conditions.

Leaf area: The results of observations of vetiver leaf area and analysis of variance showed that salinity treatment, salicylic acid application, mycorrhiza application both singly and the interaction between treatments had a significant effect on leaf area. Vetiver leaf area under salinity conditions with salicylic acid and mycorrhiza application was presented in Table 4.

Based on Table 4, it can be seen that the salicylic acid treatment on the widest vetiver leaf area was obtained at 1 mM salicylic acid application. Leaf area increases with the addition of salicylic acid concentration. According to Li *et al.*⁵⁰ that the difference in concentration in the application of salicylic acid shows that this compound has an important role in plant growth. Furthermore, Sahar *et al.*⁵¹ explained that the application of salicylic acid is able to increase the content of proteins and sugars that can maintain osmotic pressure in the cell so as to increase tolerance to dehydration in the leaves. Increased tolerance in leaves will trigger leaf growth such as leaf area.

The increase in leaf area of vetiver plants is also influenced by the application of mycorrhiza, this result can be seen that vetiver leaves are wider in the application of *Glomus* sp., mycorrhiza than without mycorrhiza application. According to Roth and Paszkowski⁵², mycorrhiza acts as a source of metabolism so that it affects photosynthesis. In addition, Qi *et al.*⁵³ stated that mycorrhiza can affect growth by increasing leaf area in accordance with plant morphology. These results are in line with some previous research results that mycorrhiza significantly increases leaf area in some plants⁵⁴⁻⁵⁶.

The interaction of 1 mM salicylic acid treatment and mycorrhiza Glomus sp. (B2C1) produced the largest vetiver leaf area of 7371.47 cm² at 4-5 dS/m salinity, which was not significantly different from the interaction of 1 mM salicylic acid treatment and mycorrhiza type Gigaspora sp. (B2C2) which was 7277.05 cm² at 4-5 dS/m salinity, but significantly different from other treatment interactions. The effect of the interaction of salinity with the application of salicylic acid and mycorrhiza on the leaf area of vetiver plants has increased, these results indicate that the application of salicylic acid can increase growth even under salinity stress conditions. Salicylic acid plays an important role in maintaining plants against biotic and abiotic stress conditions, where salicylic acid application affects various plant processes including stomatal closure and photosynthesis rate^{30,57}. In addition, salicylic acid has increased antioxidant enzyme activity and proline content so as to reduce the harmful effects of saline stress and promote growth^{58,59}. The results of research by Abdelaal et al.60, reported that the application of salicylic acid to leaves under salinity conditions can reduce the adverse effects of salt stress on plant growth and improve proline accumulation. On the other hand, the detrimental effect caused by salinity on the area of one leaf per plant can also be reduced by the application of mycorrhiza. According to Çekiç et al.61, salinity-affected mycorrhiza will form root symbiosis in most plant species, this allows plants to

explore a larger volume of soil to absorb more nutrient uptake and water transport, increase the absorption of mineral elements such as phosphorus and improve water use efficiency. Therefore, mycorrhizal application increases leaf area, delays senescence and improves salinity resistance in plants⁶².

Root length: The results of observations of vetiver root length and analysis of variance showed that salinity treatment, salicylic acid application, mycorrhiza application and interaction between treatments had a significant effect on root length, only the treatment interaction between salinity treatment and salicylic acid application had no significant effect on root length. The root length of vetiver under salinity conditions with salicylic acid and mycorrhiza application was presented in Table 5.

Based on Table 5, it can be seen that the longest vetiver was obtained at 0.5 mM salicylic acid application. This shows that the application of salicylic acid on vetiver plants affects the length of the roots. Different concentrations of salicylic acid give different results, where the best results are obtained at a concentration of 0.5 mM, which is the lowest concentration in this study so that it can stimulate root growth, otherwise at higher concentrations it is thought to inhibit root growth. In some other plants also the application of salicylic acid with high concentration differences shows inhibition on root length such as in legumes⁶³. In line with Khan et al.14, who stated that high salicylic acid application can inhibit root growth, this is due to part of the mechanism of plant response to biotic and abiotic stress, so that under these conditions, plants will prioritize the allocation of resources for other functions, such as defense mechanisms rather than root growth. Mahajan and Pal⁶⁴ said that when plants experience stress, salicylic acid levels often increase, triggering defense responses such as the production of antimicrobial and antioxidant compounds. These responses affect several aspects of plant growth including root length.

Mycorrhiza application also affects the increase in root length, where vetiver plants treated with *Gigaspora* sp., mycorrhiza give better results than without mycorrhiza. In order to maximize the roots and enable plants treated with mycorrhiza to absorb more water and nutrients, the mycorrhiza application works by deeply enlarging the nutrient absorption zone⁶⁵. In a symbiotic relationship with plants, mycorrhiza and roots work together to enhance the nourishment of the host plant. This type of symbiosis also serves as a plant growth-promoting hormone, a bioprotectant against root pathogen infections and an increase in plant resilience to drought stress⁶⁶.

Table 5: Root length of vetiver under salinity conditions with salicylic acid and mycorrhiza application

Salinity	·	Mycorrhiza (cm)			
	Salicylic acid	No mycorrhiza (C₀)	<i>Glomus</i> sp. (C₁)	 <i>Gigaspora</i> sp. (C₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	83.98 ^{gh}	86.07 ^f	92.30 ^{cd}	82.32°
8-9 dS/m (A ₂)		71.37 ^m	79.14 ^k	81.03 ^{ij}	
4-5 dS/m (A ₁)	Salicylic acid 0.5 mM (B ₁)	92.93 ^{cd}	99.09 ^b	104.60ª	92.96ª
8-9 dS/m (A ₂)		80.41 ^{jk}	89.08e	91.65 ^d	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	88.43 ^e	92.74 ^{cd}	93.63°	86.38 ^b
8-9 dS/m (A ₂)		76.28 ¹	82.50 ^{hi}	84.70 ^{fg}	
Mean		82.23 ^c	88.10 ^b	91.32ª	

Table 6: Root volume of vetiver under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (cm³)			
	Salicylic acid	No mycorrhiza (C₀)	Glomus sp. (C₁)	<i>Gigaspora</i> sp. (C₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	212.58 ^g	220.17 ^f	247.92 ^d	199.40°
8-9 dS/m (A ₂)		164.83 ^m	172.08 ^{kl}	178.83 ^{jk}	
4-5 dS/m (A ₁)	Salicylic acid 0.5 mM (B ₁)	241.58 ^{de}	269.25°	292.50ª	237.19a
8-9 dS/m (A ₂)		177.50 ^{jkl}	201.25 ^h	241.08 ^{de}	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	235.92°	247.92 ^d	280.58b	217.58b
8-9 dS/m (A ₂)		170.67 ^{lm}	189.08 ⁱ	181.33 ^j	
Mean		200.51°	216.63 ^b	237.04ª	

Numbers followed by different letters indicate significantly different according to Duncan's Multiple Range Test at the 5% level

The interaction of 0.5 mM salicylic acid treatment and Gigaspora sp., mycorrhiza (B1C2) produced the longest vetiver roots of 104.60 cm at 4-5 dS/m salinity and was significantly different from other treatment interactions. Root length increased with the interaction of salinity treatment with the application of salicylic acid and mycorrhiza, this indicates that the application of salicylic acid and mycorrhiza can prevent the negative effects of salinity stress. This result was in line with Jini and Joseph⁶⁷ who reported that there was an increase in root length due to salicylic acid application under salinity stress. Salicylic acid application protects various plant species against biotic and abiotic stresses including salinity ^{68,69}. Nguyen et al.70 explained that salinity stress reduces the availability of H₂O in various parts of the plant including the roots, but the application of salicylic acid can improve the availability of water under stress. In addition, in salinity stressed soil, osmotic pressure and imbalance in nutrient availability for plants are factors that are detrimental to plant growth.

According to Atamimi and Sugiyarto⁷¹, the application of mycorrhiza to plants contributes to expanding the field of root absorption in taking water and nutrients needed by plants through its hyphae, because it can penetrate small soil pores that cannot be reached by roots so that the area of root absorption of water and soil minerals increases.

Root volume: The observation of vetiver root volume and analysis of variance showed that salinity treatment, salicylic

acid application, mycorrhiza application both singly and the interaction between treatments had a significant effect on root volume. The root volume of vetiver under salinity conditions with salicylic acid and mycorrhiza application is presented in Table 6.

Based on Table 6, it can be seen that the highest vetiver root volume was obtained at 0.5 mM salicylic acid application. Salicylic acid application affects the volume of vetiver roots, where the application of salicylic acid with a concentration of 1 mM has a lower root volume compared to the concentration of 0.5 mM, but higher than without application. According to Motte *et al.*⁷², salicylic acid can affect root shape including branching and root density, changes in root shape can affect root volume by redistributing root biomass in the soil for example, increased branching of lateral roots can lead to a more extensive root system and consequently higher root volume, while decreased branching can result in reduced root volume.

The application of *Gigaspora* sp., mycorrhiza also proved to have a significant effect on increasing the volume of vetiver roots. According to Wahab *et al.*⁷³, one of the main benefits of mycorrhiza is the increase in the surface area of plant roots, mycorrhiza forms specialized structures such as hyphae and arbuscules around plant roots. These hyphae expand the root surface area, thereby increasing the plant's ability to absorb water and nutrients from the soil. In addition, mycorrhiza can also stimulate the growth of plant roots, thus producing certain growth hormones that stimulate the formation of roots

and root branches, this can result in an overall increase in the number as well as volume of roots⁷⁴. The results of this study are in line with llangamudali and Senarathne⁷⁵, who reported that the application of mycorrhiza can increase plant root growth in the form of root volume.

The interaction of 0.5 mM salicylic acid treatment and Gigasporasp., mycorrhiza (B1C2) produced the highest vetiver roots of 292.50 cm³ at 4-5 dS/m salinity and was significantly different from other treatment interactions. The effect of the interaction on root volume increased, this is in line with root growth because the application of salicylic acid and mycorrhiza shows a defense response to salinity stress conditions. According to Bernstein 76, the root is the first organ to come into contact with salt ions, so the toxic effect mainly occurs in this part. Furthermore, Ahmad et al.77 stated that salicylic acid has an impact on root metabolism so that it significantly increases the growth rate of plants under saline conditions. This is in line with Ardebili et al.78, who stated that the role of salicylic acid in the mechanism of plant growth and reduce plant damage due to salinity. In addition, Aroca et al.79 reported that mycorrhiza changes plant hormones and affects plant physiology to better suit salinity conditions. According to Porcel et al.80, the application of mycorrhiza in saline conditions can increase the mineral content of plants, so that plants treated with mycorrhiza have increased root volume than plants without mycorrhiza in saline conditions81.

Root fresh weight: The observation of root fresh weight and analysis of variance showed that salinity treatment, salicylic acid application, mycorrhiza application, interaction between salicylic acid and mycorrhiza application and interaction between the three treatments had a significant effect on root fresh weight, while the interaction between salinity treatment and salicylic acid application and interaction between salinity treatment and mycorrhiza application had no significant effect on root fresh weight. The fresh weight of vetiver roots under salinity conditions with salicylic acid and mycorrhiza application is presented in Table 7.

Based on Table 7, it can be seen that the highest fresh weight of vetiver roots was obtained at 0.5 mM salicylic acid application. Salicylic acid affects the fresh weight of the roots, where applications with various concentrations of salicylic acid show the best results on vetiver plants. In line with the results of research by Lolaei *et al.*⁸², that salicylic acid increases root fresh weight. Pasternak *et al.*⁸³ reported that salicylic acid controls root growth by regulating the activity of the root apical meristem and the application of salicylic acid at a

concentration of 30 mM reduces the number of cells expressed in genes in root meristem cells⁸⁴.

The fresh weight of plant roots increased with the application of *Gigaspora* sp., mycorrhiza compared to without mycorrhiza, this indicates that the application of mycorrhiza has a significant effect on the growth of plant root fresh weight. Increased mycorrhizal growth and development compared to non-mycorrhiza plants has been reported in many plant species^{54,85,86}. According to Chandrasekaran⁸⁷, mycorrhizal inoculation increased root fresh weight significantly. Furthermore, Giovannini *et al.*⁸⁸ explained that mycorrhiza can affect root allocation and translocation so that the growth rate and root fresh weight increase due to higher nutrient absorption and translocation. This may be due to an increase in root absorption surface⁸⁹.

The interaction of 0.5 mM salicylic acid treatment and Gigaspora sp., mycorrhiza (B1C2) produced the highest vetiver roots of 1287.92 g at 4-5 dS/m salinity and was significantly different from other treatment interactions. The application of salicylic acid and mycorrhiza under salinity stress proved to increase the fresh weight of vetiver roots compared to the control treatment. This result was in line with Hundare et al.90, that the application of salicylic acid can reduce the negative impact of salinity and the maximum increase is seen in the fresh weight of the roots. According to Ma et al.91 and Mohammadi et al.92 salicylic acid plays a role in activating the defense system which includes osmoregulation and ion homeostasis which can increase plant growth and defense system from saline conditions. Furthermore, Khoso et al.93 explained that the root system of a plant has many functions, including providing stability by facilitating the absorption of water and ions, storing important nutrients and supporting vegetative growth. Furthermore, Jerbi et al.94 and Klinsukon et al.95 reported that mycorrhiza application significantly increased plant biomass at various salinity levels, where mycorrhiza affected root fresh weight at all levels of salt stress compared to uninoculated plants. Mycorrhizae increase the number of extraradical hyphae and increase the surface area of mycelial tissue, contributing to increased root biomass⁹⁶.

Production of essential oil: The results of observations of essential oil production from vetiver plants and analysis of variance showed that salinity treatment, salicylic acid application, mycorrhiza application both singly and the interaction between treatments had a significant effect on essential oil production. The production of vetiver essential oil under salinity conditions with the application of salicylic acid and mycorrhiza is presented in Table 8.

Table 7: Fresh weight of vetiver roots under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (cm³)			
	Salicylic acid	No mycorrhiza (C₀)	<i>Glomus</i> sp. (C ₁)	 Gigaspora sp. (C₂)	Mean 948.58 ^b
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	944.83 ^{hi}	1001.00 ^{fgh}	1085.58 ^{cde}	948.58 ^b
8-9 dS/m (A ₂)		805.67 ^j	902.42 ⁱ	952.00 ^{ghi}	
4-5 dS/m (A ₁)	Salicylic acid 0,5 mM (B ₁)	1021.58 ^{efg}	1166.33 ^b	1287.92ª	1092.00ª
8-9 dS/m (A ₂)		968.83 ^{ghi}	1022.50 ^{efg}	1084.83 ^{cde}	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	1113.67 ^{bcd}	1146.67 ^{bc}	1134.92 ^{bc}	1062.70a
8-9 dS/m (A ₂)		909.83 ⁱ	1024.42 ^{efg}	1046.67 ^{def}	
Mean		960.74°	1043.89 ^b	1098.65ª	

Table 8: Production of vetiver essential oil under salinity conditions with salicylic acid and mycorrhiza application

Salinity		Mycorrhiza (cm³)			
	Salicylic acid	No mycorrhiza (C₀)	<i>Glomus</i> sp. (C ₁)	 Gigaspora sp. (C₂)	Mean
4-5 dS/m (A ₁)	No salicylic acid (B ₀)	6.12 ^{hi}	6.33 ^{gh}	6.95 ^e	5.99°
8-9 dS/m (A ₂)		4.92 ^k	5.42 ^j	6.19 ^{ghi}	
4-5 dS/m (A ₁)	Salicylic acid 0,5 mM (B ₁)	7.31 ^{cd}	8.50 ^b	8.92ª	7.50a
8-9 dS/m (A ₂)		6.44 ^{fg}	6.66 ^f	7.18 ^{de}	
4-5 dS/m (A ₁)	Salicylic acid 1 mM (B ₂)	6.33 ^{gh}	7.45°	8.36 ^b	6.78 ^b
8-9 dS/m (A ₂)		6.00 ⁱ	6.35 ^{gh}	6.18 ^{ghi}	
Mean		6.19 ^c	6.79 ^b	7.30 ^a	

Numbers followed by different letters indicate significantly different according to Duncan's Multiple Range Test at the 5% level

Table 8 presents data on vetiver essential oil production, salicylic acid treatment on the production of vetiver essential oil is mostly obtained at 0.5 mM salicylic acid application. The application of salicylic acid affects the production of vetiver essential oil under salinity, this is because salicylic acid can stimulate enzyme activity and certain metabolic pathways in plants so as to increase the production of compounds such as essential oils. According to Rebey et al.⁹⁷, environmental stress can lead to the accumulation of essential oils, as antioxidant compounds, to reduce oxidative stress caused by salinity. Furthermore, Akula and Ravishankar98 explained that the increased content of each constituent in essential oils under salinity could be attributed to the effects of this stress on the synthesis of several secondary metabolites and the function of these metabolites as self-defense components against stressful conditions. In addition, salinity may alter essential oil biosynthesis through apparent changes in biochemical and physiological processes⁹⁹. Salicylic acid has triggered roles in secondary metabolites such as glucosinolates¹⁰⁰, alkaloids¹⁰¹ and anthraquinones 102.

The application of mycorrhiza under salinity stress significantly increased vetiver essential oil production compared to without mycorrhiza where the highest production was obtained with the application of *Gigaspora* sp. This is in accordance with the statement stating that mycorrhizal plants usually grow better than non-mycorrhizal ones. One reason is that mycorrhiza can effectively increase the absorption of macro nutrients and some micro nutrients¹⁰³. In addition to helping plant rooting

work, mycorrhiza is also able to increase plant tolerance to unfavorable environmental conditions such as drought and salinity¹⁰⁴.

Salinity stress is a major abiotic stress that inhibits crop and yield production. The interaction of salicylic acid and mycorrhiza plays an important role in eliminating the adverse effects of salinity stress. This is evidenced by the interaction of 0.5 mM salicylic acid treatment and Gigasporasp., mycorrhiza (B1C2) which produced the most essential oil, namely 8.92% at 4-5 dS/m salinity. According to Hao et al. 105, the symbiosis of salicylic acid and mycorrhiza can reduce the adverse effects of salinity stress by modulating ion homeostasis and carbohydrate metabolism in plants. Sugars synthesized through carbohydrate metabolism act as osmotic regulators and signal molecular inactivation of various defense responses to salinity stress¹⁰⁶. Thus, salicylic acid application further enhances sugar export to plant roots thereby favoring mycorrhizal symbiosis¹⁰⁷. According to Talaat and Shawky¹⁰⁸, mycorrhiza can overcome salt stress in plants with effective symbiosis due to its ability to tolerate high salinity conditions. Mycorrhiza species Gigaspora sp. and Glomus sp., showed viability and more stable under saline stress conditions than other types of mycorrhiza¹⁰⁹. The combination of mycorrhiza with high salinity concentrations, especially Gigaspora sp., mycorrhiza, increased growth compared to low salinity concentrations¹¹⁰. Abdel-Rahman et al.¹¹¹ stated that stomatal opening is affected by Gigaspora sp., colonization in high salinity stress, but in low salinity Glomus sp., is better in affecting stomatal opening.

CONCLUSION

The best growth and essential oil production under salinity conditions were obtained with 0.5 mM salicylic acid application. The use of mycorrhiza species *Gigaspora* sp., can increase the growth and production of essential oil under salinity conditions. The best essential oil production under salinity conditions was obtained with the application of 0.5 mM salicylic acid and *Gigaspora* sp. It is hoped that the results of this research can contribute to increasing the potential of saline land.

SIGNIFICANCE STATEMENT

The application of salicylic acid and mycorrhiza simultaneously aims to mitigate salinity stress in vetiver plants. The results showed that there was an increase in growth and essential oil production of vetiver plants under salinity stress with the application of salicylic acid and mycorrhiza compared to without application. The best growth and essential oil production under salinity conditions were obtained with application of 0.5 mM salicylic acid and *Gigaspora* sp. Furthermore, a deeper analysis is needed regarding the mechanism of plants interacting with salicylic acid and mycorrhiza in dealing with salinity stress.

ACKNOWLEDGMENT

The authors gratefully thank the Ministry of Education, Culture, Research and Technology, Directorate General of Higher Education, Research and Technology for supporting the research through the research budget with contract number: 17/UN5.2.3.1/PPM/KP-DRTPM/L/2023.

REFERENCES

- Santos, D.S.D., J.V. Oberger, R. Niero, T. Wagner and F.D. Monache *et al.*, 2014. Seasonal phytochemical study and antimicrobial potential of *Vetiveria zizanioides* roots. Acta Pharm., 64: 495-501.
- Junandi, Mukarlina and R. Linda, 2019. The effect of salinity stress of NaCl salt on the growth of Cowbeans (*Vigna unguiculata* L. Walp) on peat soil [In Indonesian]. J. Protobiont, 8: 101-105.
- 3. Hasanuzzaman, M., K. Nahar and M. Fujita, 2013. Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages. In: Ecophysiology and Responses of Plants under Salt Stress, Ahmad, P., M.M. Azooz and M.N.V. Prasad (Eds.), Springer, New York, United State, ISBN-13: 9781461447467, pp: 25-87.

- Ahanger, M.A., N. Moad-Talab, E.F. Abd-Allah, P. Ahmad and R. Hajiboland, 2016. Plant Growth under Drought Stress: Significance of Mineral Nutrients. In: Water Stress and Crop Plants: A Sustainable Approach, Ahmad, P. (Ed.), John Wiley & Sons, Ltd., Hoboken, New Jersey, ISBN: 9781119054450, pp: 649-668.
- 5. Novita, A., H. Julia and N. Rahmawati, 2019. Response of salinity to the growth of Wangi root (*Vetiveria zizanioides* L.) seedlings [In Indonesian]. J. Agrica Ektensia, 13: 55-58.
- 6. Novita, A., 2020. Respons of early growth vetiver (*Vetiveria zizanioides* L.) seedling on salt stress condition. J. Online Pertanian Tropik, 7: 272-276.
- 7. Cuong, D.C., V. van Minh and P. Truong, 2015. Effects of sea water salinity on the growth of vetiver grass (*Chrysopogon zizanioides* L.). Mod. Environ. Sci. Eng., 1: 185-191.
- 8. Zuccarini, P., 2008. Effects of silicon on photosynthesis, water relations and nutrient uptake of *Phaseolus vulgaris* under NaCl stress. Biol. Plant., 52: 157-160.
- 9. Sun, H., H. Lu, L. Chu, H. Shao and W. Shi, 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH₃ volatilization in a coastal saline soil. Sci. Total Environ., 575: 820-825.
- Smýkal, P., C.J. Coyne, M.J. Ambrose, N. Maxted and H. Schaefer *et al.*, 2015. Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci., 34: 43-104.
- 11. Kumawat, K.C., S. Nagpal and P. Sharma, 2022. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere, 32: 223-245.
- El-Beltagi, H.S., H.H. Al-Otaibi, A. Parmar, K.M.A. Ramadan, A.K. da Silva Lobato and M.M. El-Mogy, 2023. Application of potassium humate and salicylic acid to mitigate salinity stress of common bean. Life, Vol. 13. 10.3390/life13020448.
- Sharma, R., M. Mishra, B. Gupta, C. Parsania, S.L. Singla-Pareek and A. Pareek, 2015. *De Novo* assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of *Brassica juncea*. PLoS ONE, Vol. 10. 10.1371/journal.pone.0126783.
- Khan, M.I.R., M. Fatma, T.S. Per, N.A. Anjum and N.A. Khan, 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci., Vol. 6. 10.3389/fpls.2015.00462.
- 15. Iqbal, N., S. Umar, N.A. Khan and M.I.R. Khan, 2014. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp. Bot., 100: 34-42.
- 16. Novita, A., L.A.M. Siregar and Rosmayati, 2015. Growth response and production of rosella (*Hibiscus sabdariffa* L.) in saline soil with the administration of salicylic acid and Giberellin (GA₃) [In Indonesian]. J. Online PERTANIAN TROPIK, 2: 258-263.

- 17. Jayakannan, M., J. Bose, O. Babourina, Z. Rengel and S. Shabala, 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul., 76: 25-40.
- 18. Evelin, H., B. Giri and R. Kapoor, 2012. Contribution of *Glomus intraradices* inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed *Trigonella foenum-graecum*. Mycorrhiza, 22: 203-217.
- 19. Evelin, H., T.S. Devi, S. Gupta and R. Kapoor, 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front. Plant Sci., Vol. 10. 10.3389/fpls.2019.00470.
- 20. Talaat, N.B. and B.T. Shawky, 2011. Influence of arbuscular mycorrhizae on yield, nutrients, organic solutes, and antioxidant enzymes of two wheat cultivars under salt stress. J. Plant Nutr. Soil Sci., 174: 283-291.
- 21. Novita, A., L. Siregar, Rosmayati and N. Rahmawati, 2023. Vetiver (*Vetiveria zizanioides* L.) ecotypes assessment for salinity tolerance. SABRAO J. Breed. Genet., 55: 1778-1788.
- 22. Nelder, J.A., 1956. Experimental design, theory and application. J. R. Stat. Soc. Ser. A: Gen., 119: 340-341.
- 23. Farouk, S. and M.M. Omar, 2020. Sweet basil growth, physiological and ultrastructural modification, and oxidative defense system under water deficit and silicon forms treatment. J. Plant Growth Regul., 39: 1307-1331.
- 24. Abdi, N., A. van Biljon, C. Steyn and M.T. Labuschagne, 2022. Salicylic acid improves growth and physiological attributes and salt tolerance differentially in two bread wheat cultivars. Plants, Vol. 11. 10.3390/plants11141853
- 25. Ilangumaran, G. and D.L. Smith, 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Front. Plant Sci., Vol. 8. 10.3389/fpls.2017.01768.
- 26. Afrinda, M.S. and T. Islami, 2018. The effect of arbuscular mycoryza and P fertilizer on the growth and yield of peanuts (*Arachis hypogaea* L.) [In Indonesian]. J. Produksi Tanaman, 6: 1465-1472.
- 27. Adetya, V., S. Nurhatika and A. Muhibuddin, 2018. The effect of mycorrhizal fertilizer on the growth of cayenne pepper (*Capsicum frutescens*) in sand soil. J. Sains Seni Its, 7: E75-E79.
- 28. Ali, E.A. and A.M. Mahmoud, 2013. Effect of foliar spray by different salicylic acid and zinc concentrations on seed yield and yield components of mungbean in sandy soil. Asian J. Crop Sci., 5: 33-40.
- 29. El-Taher, A.M., H.S.A. El-Raouf, N.A. Osman, S.N. Azoz, M.A. Omar, A. Elkelish and M.A.M.A. El-Hady, 2022. Effect of salt stress and foliar application of salicylic acid on morphological, biochemical, anatomical, and productivity characteristics of cowpea (*Vigna unguiculata* L.) plants. Plants, Vol. 11. 10.3390/plants11010115.

- Per, T.S., M. Fatma, M. Asgher, S. Javied and N.A. Khan, 2017.
 Salicylic Acid and Nutrients Interplay in Abiotic Stress Tolerance. In: Salicylic Acid: A Multifaceted Hormone, Nazar, R., N. Iqbal and N.A. Khan (Eds.), Springer, Singapore, ISBN: 978-981-10-6068-7, pp: 221-237.
- Dastogeer, K.M.G., M.I. Zahan, M. Tahjib-Ul-Arif, M.A. Akter and S. Okazaki, 2020. Plant salinity tolerance conferred by arbuscular mycorrhizal fungi and associated mechanisms: A meta-analysis. Front. Plant Sci., Vol. 11. 10.3389/fpls.2020.588550.
- 32. Shamshiri, M.H. and M. Fattahi, 2016. Effects of arbuscular mycorrhizal fungi on photosystem II activity of three pistachio rootstocks under salt stress as probed by the OJIP-test. Russ. J. Plant Physiol., 63: 101-110.
- 33. Khalloufi, M., C. Martínez-Andújar, M. Lachaâl, N. Karray-Bouraoui, F. Pérez-Alfocea and A. Albacete, 2017. The interaction between foliar GA₃ application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (*Solanum lycopersicum* L.) plants by modifying the hormonal balance. J. Plant Physiol., 214: 134-144.
- Leiwakabessy, C., M.S. Sinaga, K.H. Mutaqin, Trikoesoemaningtyas and Giyanto, 2017. Salicylic acid as inducers for rice resistance against bacterial leaf blight disease [In Indonesian]. J. Fitopatologi Indones., 13: 207-215.
- 35. Husna, 2015. Growth response of nail wood (*Pericopsis mooniana* (Thw.) Thw) seedlings to local arbuscular mycorrhizal fungi inocculation [In Indonesian]. J. Pemuliaan Tanaman Hutan, 9: 131-148.
- 36. Farida, R. and M.A. Chozin, 2015. The effect of giving arbuscular mycorrhizal fungi (CMA) and chicken manure fertilizer doses on the growth and production of corn (*Zea mays* L.) [In Indonesian]. Buletin Agrohorti, 3: 323-329.
- 37. Hartanti, I., Hapsoh and S. Yoseva, 2014. The effect of providing mycorrhizal biological fertilizer and rock phosphate on the growth and production of sweet corn (*Zea mays saccharata* Sturt) [In Indonesian]. J. Online Mahasiswa, Vol. 1.
- 38. Bin-Jumah, M., A.F.M. Abdel-Fattah, E.M. Saied, H.R. El-Seedi and M.M. Abdel-Daim, 2021. Acrylamide-induced peripheral neuropathy: Manifestations, mechanisms, and potential treatment modalities. Environ. Sci. Pollut. Res., 28: 13031-13046.
- Hasan, M.A., S.K. AL-Taweel, H.A. Alamrani, M.A. AL-Naqeeb, M.H.K. AL-Baldawwi and J.H. Hamza, 2018. Anatomical and physiological traits of broad bean (*Vicia faba* L.) seedling affected by salicylic acid and salt stress. Indian J. Agric. Res., 52: 368-373.
- Rustikawati, E. Suprijono, B.G. Murcitro, C. Herison and S.J. Sitohang, 2022. Amendment of mycorrhizae and its residual effect on growth and yield of maize (*Zea mays*) hybrids in coastal land. Biodiversitas J. Biol. Diversity, 23: 5600-5605.

- 41. Santoyo, G., E. Gamalero and B.R. Glick, 2021. Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Front. Sustainable Food Syst., Vol. 5. 10.3389/fsufs.2021.672881.
- 42. El-Shafey, A.I., A.M. El-Garhy and M.M.H. Rahhal, 2020. Effect of foliar spraying Faba bean plants with some botanical extracts and salicylic acid on growth, yield and chocolate spot disease severity. Alexandria J. Agric. Sci., 65: 349-369.
- 43. Usharani, G., M. Jayanthi, D. Kanchana, P. Saranraj and D. Sujitha, 2014. Effect of salicylic acid and *Pseudomonas fluorescenson* growth and yield of paddy Ir-50. Int. J. Microbiol. Res., 5: 54-60.
- 44. Akbar, M., S.A. Chohan, N.A. Yasin, A. Ahmad, W. Akram and A. Nazir, 2023. Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties. PeerJ, Vol. 11. 10.7717/peerj.15686.
- 45. Prakash, P., A. Mitra, R. Nag and S. Sunkar, 2018. Effect of seaweed liquid fertilizer and humic acid formulation on the growth and nutritional quality of *Abelmoschus esculentus*. Asian J. Crop Sci., 10: 48-52.
- Pirasteh-Anosheh, H., Y. Emam and A.R. Sepaskhah, 2015. Improving barley performance by proper foliar applied salicylic-acid under saline conditions. Int. J. Plant Prod., 9: 467-486.
- 47. Hoseini, E., N. Rafiei, H.A. Piraste and Y. Emami, 2013. Response of early growth and sodium and potassium ions concentrations in ten barley (*Hordeum vulgare* L.) cultivars in salinity tension conditions. Crop Physiol. J., 5: 5-15.
- 48. Zhang, S., L. Wang, F. Ma, K.J. Bloomfield, J. Yang and O.K. Atkin, 2015. Is resource allocation and grain yield of rice altered by inoculation with arbuscular mycorrhizal fungi? J. Plant Ecol., 8: 436-448.
- 49. Ansari, M.H., D. Hashemabadi, M. Mahdavi and B. Kaviani, 2018. The role of *Pseudomonas* strains and arbuscular mycorrhiza fungi as organic phosphate-solubilizing in the yield and quality improvement of strawberry (*Fragaria* × *ananassa*Duch., cv. Selva) fruit. Acta Sci. Pol. Hortorum Cultus, 17: 93-107.
- 50. Li, A., X. Sun and L. Liu, 2022. Action of salicylic acid on plant growth. Front. Plant Sci., Vol. 13. 10.3389/fpls.2022.878076.
- 51. Sahar, K., B. Amin and N.M. Taher, 2011. The salicylic acid effect on the *Salvia officianlis* L. sugar, protein and proline contents under salinity (NaCl) stress. J. Stress Physiol. Biochem., 7: 80-87.
- 52. Roth, R. and U. Paszkowski, 2017. Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr. Opin. Plant Biol., 39: 50-56.
- 53. Qi, S., J. Wang, L. Wan, Z. Dai and D.M. da Silva Matos *et al.*, 2022. Arbuscular mycorrhizal fungi contribute to phosphorous uptake and allocation strategies of solidago canadensis in a phosphorous-deficient environment. Front. Plant Sci., Vol. 13. 10.3389/fpls.2022.831654.

- 54. Nunes, C.E.P., G.C. Stancato and A.P.D. da Silveira, 2014. Anthurium growth responses to phosphate fertilisation and inoculation with an arbuscular mycorrhizal fungus. J. Hortic. Sci. Biotechnol., 89: 261-267.
- 55. Liang, J.F., J. An, J.Q. Gao, X.Y. Zhang and F.H. Yu, 2018. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of *Phragmites australis* under different drying-rewetting cycles. PLoS ONE, Vol. 13. 10.1371/journal.pone.0191999.
- Adeyemi, N.O., M.O. Atayese, A.A. Olubode and M.E. Akan, 2020. Effect of commercial arbuscular mycorrhizal fungi inoculant on growth and yield of soybean under controlled and natural field conditions. J. Plant Nutr., 43: 487-499.
- 57. Muthulakshmi, S. and K. Lingakumar, 2017. Role of salicylic acid (SA) in plants-A review. Int. J. Appl. Res., 3:33-37.
- 58. Mezanur Rahman, M., M.G. Mostofa, M.A. Rahman, M. Robyul Islam and S.S. Keya *et al.*, 2019. Acetic acid: a cost-effective agent for mitigation of seawater-induced salt toxicity in mung bean. Sci. Rep., Vol. 9. 10.1038/s41598-019-51178-w.
- 59. Dawood, M.F.A., A.A.M. Sohag, M. Tahjib-Ul-Arif and A.A.H. Abdel Latef, 2021. Hydrogen sulfide priming can enhance the tolerance of artichoke seedlings to individual and combined saline-alkaline and aniline stresses. Plant Physiol. Biochem., 159: 347-362.
- 60. Abdelaal, K.A., L.M. EL-Maghraby, H. Elansary, Y.M. Hafez and E.l. Ibrahim *et al.*, 2020. Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, Vol. 10. 10.3390/agronomy10010026.
- 61. Çekiç, F.Ö., S. Ünyayar and İ. Ortaş, 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in *Capsicum annuum* grown under long term salt stress. Turk. J. Bot., 36: 63-72.
- 62. Beltrano, J., M. Ruscitti, M.C. Arango and M. Ronco, 2013. Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. J. Soil Sci. Plant Nutr., 13: 123-141.
- 63. Bouallègue, A., F. Souissi, I. Nouairi, M. Souibgui, Z. Abbes and H. Mhadhbi, 2019. Physiological and biochemicals changes modulated by seeds' priming of lentil (*Lens culinaris* L.) under salt stress at germination stage. Acta Sci. Pol. Hortorum Cultus, 18: 27-38.
- 64. Mahajan, M. and P.K. Pal, 2023. Drought and Salinity Stress in Medicinal and Aromatic Plants: Physiological Response, Adaptive Mechanism, Management/Amelioration Strategies, and an Opportunity for Production of Bioactive Compounds In: Advances in Agronomy, Sparks, D.L. (Ed.), Academic Press, London, United Kingdom, ISBN: 9780443192685, pp: 221-273.

- 65. Zhang, P., S. Gu, Y. Wang, R. Yang and Y. Yan *et al.*, 2021. Morphological and mechanical variables associated with lodging in maize (*Zea mays* L.). Field Crops Res., Vol. 269. 10.1016/j.fcr.2021.108178.
- 66. Haryantini, B.A., Y. Yuwariah, S. Amien, B.N. Fitriatin and M.R. Setiawati *et al.*, 2019. Community of indigenous arbuscular mycorrhizal fungi (Amf) of chili rhizosphere and natural forest ecosystem. Malays. J. Soil Sci., 23: 135-147.
- 67. Jini, D. and B. Joseph, 2017. Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci., 24: 97-108.
- 68. Nie, W., B. Gong, Y. Chen, J. Wang, M. Wei and Q. Shi, 2018. Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci. Hortic., 235: 413-423.
- 69. Kaya, C., D. Higgs, M. Ashraf, M.N. Alyemeni and P. Ahmad, 2020. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (*Capsicum annuum* L.) plants to iron deficiency and salt stress alone or in combination. Physiol. Plant., 168: 256-277.
- 70. Nguyen, K.H., M.G. Mostofa, W. Li, C. van Ha and Y. Watanabe *et al.*, 2018. The soybean transcription factor GmNAC085 enhances drought tolerance in *Arabidopsis*. Environ. Exp. Bot., 151: 12-20.
- 71. Atamimi, I.N. and L. Sugiyarto, 2022. The effect of mycorrhia on the growth of tomato (*Lycopersicum esculentum* Mill. var. Servo) plants in variations of salinity concentration [In Indonesian]. KINGDOM J. Biol. Stud., 8: 56-73.
- 72. Motte, H., S. Vanneste and T. Beeckman, 2019. Molecular and environmental regulation of root development. Annu. Rev. Plant Biol., 70: 465-488.
- 73. Wahab, A., M. Muhammad, A. Munir, G. Abdi and W. Zaman *et al.*, 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, Vol. 12. 10.3390/plants12173102.
- 74. Hacquard, S., B. Kracher, K. Hiruma, P.C. Münch and R. Garrido-Oter *et al.*, 2016. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun., Vol. 7. 10.1038/ncomms11362.
- 75. Ilangamudali, I.M.P.S. and S.H.S. Senarathne, 2016. Effectiveness of arbuscular mycorrhizal fungi based biofertilizer on early growth of coconut seedlings. Cocos, 22: 1-12.
- 76. Bernstein, N., 2019. Plants and Salt: Plant Response and Adaptations to Salinity. In: Model Ecosystems in Extreme Environments: A Volume in Astrobiology Exploring Life on Earth and Beyond, Seckbach, J. and P. Rampelotto (Eds.), Academic Press, Cambridge, Massachusetts, ISBN: 9780128127421, pp: 101-112.

- 77. Ahmad, F., A. Singh and A. Kamal, 2019. Salicylic Acid-Mediated Defense Mechanisms to Abiotic Stress Tolerance. In: Model Ecosystems in Extreme Environments: A Volume in Astrobiology Exploring Life on Earth and Beyond, Seckbach, J. and P. Rampelotto (Eds.), Woodhead Publishing, Cambridge, England, ISBN: 9780128164518, pp: 355-369.
- 78. Ardebili, N.O., S. Saadatmand, V. Niknam and R.A. Khavari-Nejad, 2014. The alleviating effects of selenium and salicylic acid in salinity exposed soybean. Acta Physiol. Plant., 36: 3199-3205.
- 79. Aroca, R., J.M. Ruiz-Lozano, Á.M. Zamarreño, J.A. Paz, J.M. García-Mina, J.M. Pozo and J.A. Lopez-Raez, 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol., 170: 47-55.
- 80. Porcel, R., R. Aroca and J.M. Ruiz-Lozano, 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi: A review. Agron. Sustainable Dev., 32: 181-200.
- 81. Malhi, G.S., M. Kaur, P. Kaushik, M.N. Alyemeni, A.A. Alsahli and P. Ahmad, 2021. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J. Biol. Sci., 28: 1465-1476.
- 82. Lolaei, A., B. Kaviani, M.A. Rezaei, M.K. Raad and R. Mohammadipour, 2012. Effect of pre- and postharvest treatment of salicylic acid on ripening of fruit and overall quality of strawberry (*Fragaria ananasa* Duch cv. Camarosa) fruit. Ann. Biol. Res., 3: 4680-4684.
- 83. Pasternak, T., E.P. Groot, F.V. Kazantsev, W. Teale and N. Omelyanchuk *et al.*, 2019. Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiol., 180: 1725-1739.
- 84. Xu, L., H. Zhao, W. Ruan, M. Deng and F. Wang *et al.*, 2017. Abnormal inflorescence meristem1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. Plant Cell, 29: 560-574.
- 85. Vosnjak, M., M. Likar and G. Osterc, 2021. The effect of mycorrhizal inoculum and phosphorus treatment on growth and flowering of Ajania (*Ajania pacifica* (Nakai) bremer et humphries) plant. Horticulturae, Vol. 7. 10.3390/horticulturae7070178.
- 86. Tarigan, D.M., S. Utami, A.R. Selian, A. Lestami, W.A. Barus and A. Munar, 2023. Effect of dried decanter solid and arbuscular mycorrhizal fungi on growth and production of mung bean in acid lands. Asian J. Plant Sci., 22: 382-393.
- 87. Chandrasekaran, M., 2022. Arbuscular mycorrhizal fungi mediated enhanced biomass, root morphological traits and nutrient uptake under drought stress: A meta-analysis. J. Fungi, Vol. 8. 10.3390/jof8070660.
- 88. Giovannini, L., M. Palla, M. Agnolucci, L. Avio, C. Sbrana, A. Turrini and M. Giovannetti, 2020. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy, Vol. 10. 10.3390/agronomy10010106.

- 89. Basyal, B. and S.M. Emery, 2021. An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient. Mycorrhiza, 31: 251-258.
- 90. Hundare, A., V. Joshi and N. Joshi, 2022. Salicylic acid attenuates salinity-induced growth inhibition in *in vitro* raised ginger (*Zingiber officinale* Roscoe) plantlets by regulating ionic balance and antioxidative system. Plant Stress, Vol. 4. 10.1016/j.stress.2022.100070.
- 91. Ma, X., J. Zheng, X. Zhang, Q. Hu and R. Qian, 2017. Salicylic acid alleviates the adverse effects of salt stress on *Dianthus superbus* (caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci., Vol. 8. 10.3389/fpls.2017.00600.
- Mohammadi, H., B. Rahimpour, H. Pirasteh-Anosheh and M. Race, 2022. Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in *Chenopodium quinoa*. Int. J. Environ. Res. Public Health, Vol. 19. 10.3390/ijerph19031576.
- 93. Khoso, M.A., S. Wagan, I. Alam, A. Hussain and Q. Ali *et al.*, 2024. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: Current perspective. Plant Stress, Vol. 11. 10.1016/j.stress.2023.100341.
- 94. Jerbi, M., S. Labidi, F. Laruelle, B. Tisserant, Y. Dalpé, A.L.H. Sahraoui and F.B. Jeddi, 2022. Contribution of native and exotic arbuscular mycorrhizal fungi in improving the physiological and biochemical response of hulless barley (*Hordeum vulgare* ssp. *Nudum* L.) to drought. J. Soil Sci. Plant Nutr., 22: 2187-2204.
- 95. Klinsukon, C., S. Lumyong, T.W. Kuyper and S. Boonlue, 2021. Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (*Eucalyptus camaldulensis*) seedlings. Sci. Rep., Vol. 11. 10.1038/s41598-021-84002-5.
- da Silva, H.F.O., O.C.H. Tavares, L. de Souza da Silva, E. Zonta and E.M.R. da Silva *et al.*, 2022. Arbuscular mycorrhizal fungi and humic substances increased the salinity tolerance of rice plants. Biocatal. Agric. Biotechnol., Vol. 44. 10.1016/i.bcab.2022.102472.
- 97. Rebey, I.B., S. Bourgou, F.Z. Rahali, K. Msaada, R. Ksouri and B. Marzouk, 2017. Relation between salt tolerance and biochemical changes in cumin (*Cuminum cyminum* L.) seeds. J. Food Drug Anal., 25: 391-402.
- 98. Akula, R. and G.A. Ravishankar, 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling Behav., 6: 1720-1731.
- 99. Sangwan, N.S., A.H.A. Farooqi, F. Shabih and R.S. Sangwan, 2001. Regulation of essential oil production in plants. Plant Growth Regul., 34: 3-21.

- 100. Kiddle, G.A., K.J. Doughty and R.M. Wallsgrove, 1994. Salicylic acid-induced accumulation of glucosinolates in oilseed rape (*Brassica napus* L.) leaves. J. Exp. Bot., 45: 1343-1346.
- 101. Pitta-Alvarez, S.I., T.C. Spollansky and A.M. Giulietti, 2000. The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of *Brugmansia candida*. Enzyme Microb. Technol., 26: 252-258.
- 102. Bulgakov, V.P., G.K. Tchernoded, N.P. Mischenko, M.V. Khodakovskaya and V.P. Glazunov *et al.*, 2002. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by *Rubia cordifolia* callus cultures transformed with the *rolB* and *rolC* genes. J. Biotechnol., 97: 213-221.
- 103. Aslanpour, M., H.D. Baneh, A. Tehranifar and M. Shoor, 2019. Effect of mycorrhizal fungi on macronutrients and micronutrients in the white seedless grape roots under the drought conditions. Int. Trans. J. Eng. Manage. Appl. Sci. Technol., 10: 397-408.
- 104. Berger, F. and C. Gutjahr, 2021. Factors affecting plant responsiveness to arbuscular mycorrhiza. Curr. Opin. Plant Biol., Vol. 59. 10.1016/j.pbi.2020.101994.
- 105. Hao, J.H., C.J. Dong, Z.G. Zhang, X.L. Wang and Q.M. Shang, 2012. Insights into salicylic acid responses in cucumber (*Cucumis sativus* L.) cotyledons based on a comparative proteomic analysis. Plant Sci., 187: 69-82.
- 106. Kapoor, R., H. Evelin, P. Mathur and B. Giri, 2013. Arbuscular Mycorrhiza: Approaches for Abiotic Stress Tolerance in Crop Plants for Sustainable Agriculture. In: Plant Acclimation to Environmental Stress, Tuteja, N. and S.S. Gill (Eds.), Springer, New York, ISBN: 978-1-4614-5001-6, pp: 359-401.
- 107. Garg, N. and A. Bharti, 2018. Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza, 28: 727-746.
- 108. Talaat, N.B. and B.T. Shawky, 2014. Protective effects of arbuscular mycorrhizal fungi on wheat (*Triticum aestivum* L.) plants exposed to salinity. Environ. Exp. Bot., 98: 20-31.
- 109. Becerra, A., N. Bartoloni, N. Cofré, F. Soteras and M. Cabello, 2014. Arbuscular mycorrhizal fungi in saline soils: Vertical distribution at different soil depth. Braz. J. Microbiol., 45: 585-594.
- 110. Peng, J., Y. Li, P. Shi, X. Chen, H. Lin and B. Zhao, 2011. The differential behavior of arbuscular mycorrhizal fungi in interaction with *Astragalus sinicus* L. under salt stress. Mycorrhiza, 21: 27-33.
- 111. Abdel-Rahman, S.S.A., A.A.S. Abdel-Kader and S.E. Khalil, 2011. Response of three sweet basil cultivars to inoculation with *Bacillus subtilis* and arbuscular mycorrhizal fungi under salt stress conditions. Nat. Sci., 9: 93-111.