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Abstract
Background and Objective: The use of Normalized Difference Vegetation Index (NDVI) with drone technology has proven effective in
crop assessment. However, integration with morphological features is needed. This study aims to explore the interplay between
morphological characters and NDVI in evaluating rice cultivation during the vegetative phase. Materials and Methods: The experiment
conducted across two proximate locations using a nested randomized complete group design, with replications nested in the
environment, the study involved 10 genotypes. The NDVI and morphological data obtained were analyzed using analysis of variance and
principal components. Results: Findings reveal the efficacy of integrating NDVI and principal component-based morphological characters.
This combined approach effectively stratifies varieties into two distinct groups: Six varieties in the first group and three in the second.
Notably, genotypes Inpago 15, IR20 and Way Apo Buru exhibit favorable phenotypes concerning shoot fresh weight, shoot dried weight
and NDVI. Conversely, Inpari 29 showcases a lower vegetative index but demonstrates commendable plant height. Conclusion: These
results underscore the potential of this interaction concept, especially for studies emphasizing vegetative traits.
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INTRODUCTION

Developing rice crops is one of the priorities in many
countries, especially in Asia. This plant is one of the main
staple crops for most of the world’s communities, including
Indonesia1. It can be seen as evidenced by the high per capita
consumption of rice and the increase in population, which is
correlated with the increase in rice commodities2. On the other
hand, the increase in land expertise and climate change
causes rice production not to increase significantly, even
though sometimes it has decreased3-5. Rice development
through the intensification process is the best solution to
overcome the demand gap. One type of rice intensification is
the development of rice varieties.

The development of rice varieties does not escape the
development of technology and data analysis. It aims to
increase the effectiveness and efficiency of the development
process. Several studies have reported using the latest
technology and precise data analysis to increase the
effectiveness of the plant breeding process6, including rice.
One of the technologies  developed  in  the  agricultural  era
4.0 was using drones in crop evaluation7,8. Drones are
unmanned rudders flown to assess plant conditions at certain
heights9. In addition, this tool can also be integrated into the
fertilization process and control of pests and plant diseases10,11.
The effectiveness of using drones in the evaluation process
has been reported by several studies7, particularly in
predicting plant growth6,12,13. The results of drone observations
through vertical shooting were analyzed using image
processing9. One form of image processing analysis is the
Normalized Difference Vegetation Index (NDVI).

The NDVI can be defined as the ratio between the
reflectance of red and Near-Infrared (NIR) light waves used to
monitor plant growth14-17. The NDVI has been used as remote
sensing in distinguishing vegetation and other materials in
satellite photos17-19. Several studies have widely reported the
effectiveness of NDVI results in measuring growth, biomass
and productivity17,20-24. However, the use of NDVI is highly
dependent on the stage of plant development. It is because
NDVI only focuses on green25, so plants that have experienced
senescence will have low NDVI14,26,27. Therefore, the use of
NDVI is very identical to the vegetative phase.

The effectiveness of the NDVI assessment needs to be
combined with other morphological characters, especially
characters related to the vegetative phase. In general,
vegetative characters are characters that play a role in the
process of biomass formation28. This biomass will support their
reproductive processes29, so it is critical to study vegetative
growth in more depth. In addition, some growth

characteristics cannot be observed by NDVI analysis, especially
in conditions of high canopy density30. Based on this, it is
essential to observe several vegetative morphological
characters. The combination of NDVI and these morphological
characters can complement each other to make the
assessment more accurate. The combination of the two
characters   in   the   evaluation   has   also   been   reported   by
Cal et al.31 on rice plants. However, evaluation based on
morphological characters requires precise analysis so that bias
can be minimized in the assessment process1, especially for
multi-characters. The principal component analysis is one of
the multi-character analyzes that can increase the precision of
the analysis.

The principal component analysis is one of the
multivariate analyses used to compress big data’s diversity
into a simpler one while retaining most of the diversity of its
primary data32-34. This analysis will generate a new parameter
called PC. The PC is a combination of the variability between
the   observed   variables32,35,36.   In   addition,   this   PC   has
non-overlapping  diversity  between  these  components1,34,36,
so the assessment becomes more effective. Several studies
have widely reported the effectiveness of this analysis, both in
the field of agronomy in general and in the field of plant
breeding in particular37-42. Based on this, the combination of
vegetative morphological character analysis, principal
component-based analysis and NDVI analysis became
interesting to research in increasing the effectiveness of the
evaluation or selection of lines. Therefore, this study aimed to
identify the interaction between morphological characters
based on principal component analysis and NDVI analysis on
the evaluation of rice cultivation in the vegetative phase.

MATERIALS AND METHODS

This study was conducted in Maros City, South Sulawesi
Province, Indonesia from May-October, 2021. This study was
conducted in two adjacent locations. This is intended to see
the interaction of the environment and genetics on the
morphological characteristics of the vegetative phase.

This study was designed with a nested randomized
complete group design, where the replicates were nested in
the environment. The number of genotypes used consisted of
10 varieties obtained from Indonesian Center of Rice Research
(BB Padi) and Indonesian local variety, namely Inpari 34 Salin
Agritan (V1), Inpari 29 (V2), Mekongga (V3), Inpari 42 (V4),
Inpago  15  (V5),  Pokkali  (V6),  Ciherang  (V7),  Jeliteng  (V8),
IR20  (V9)  and  Way  Apo  Buru  (V10).  The  variety  was
repeated   3   times,  so  there  were  27  experimental  units
per environment.
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Experimental design and procedures: This research was
carried out using the general method of rice cultivation.
Tillage is carried out by inundating and plowing the land to a
depth of 20 cm using a tractor. After the first plowing, the rice
fields were left alone for 2 days and then a second plowing
was carried out to make the fields more suitable for rice with
harrowing for leveling and puddling. Subsequently, 24 plots
were made according to the number of experimental plots.
The size of each plot is 4×4 m (16 m2) with a distance
between plots of 150 cm. Nurseries were carried out side by
side with experimental land separated by rice fields. The
nursery land was processed perfectly and then leveled and
made 8 plots with a size of 2×2 m and a distance between
plots of 30 cm. The seeds are soaked for 3×12 hrs and then
soaked  in  sacks  for  3×12  hrs.  The  day  before  the  seeds
were  sown,  the  land  was  sprayed   with  a  molluscicide with
the  active  ingredient  fentin  acetate  60%  with  a
concentration  of  1  g/L.  After  the  seedlings  are  15  days
old, the seedlings are transplanted into land with a spacing of
25×25 cm. The number of seeds planted in one planting hole
is three seeds. Fertilization  is  done  by  giving urea  fertilizer
200 kg/ha and NPK  fertilizer  400  kg/ha  given  3  times  and 
SP-36  fertilizer 100 kg/ha given 1 time. Maintenance of rice
plants includes embroidery, weeding, fertilization, irrigation,
pest and disease control. Embroidery is done at the age of
seven days after planting when there are dead plants and then
replaced with new plants taken from the rest of the nursery.
Weeding is done after the rice plants are about 30 days after
planting, done by removing weeds that grow in each
experimental plot. The first fertilization was carried out at the
age of seven days after  transplanting  with  100  kg/ha  urea,
200   kg/ha   NPK   fertilizer   and   100   kg/ha   SP-36   fertilizer
and the second fertilization was given 30 days after planting.
Transplanting  with  urea  fertilizer  50  kg/ha  NPK  fertilizer
100 kg/ha.  The  third  fertilization  was  given  at  the  age  of
45 days after planting with urea fertilizer 50 kg/ha, NPK
fertilizer 100 kg/ha. Irrigation was carried out intermittently by
giving water as high as ±10 cm above the soil surface and left
until the soil dries, then watering was carried out under the
same conditions until the plants were 45 DAP. Pest control
was carried out in the morning by spraying insecticide with
the active ingredient fipronil with a concentration of 1 ml/L of
water evenly in each experimental plot  at  the  age  of  72  and
75 DAP. Harvesting is done when 80% of the panicles have
entered the physiological ripe phase (yellowing of the straw)
and the rice grains at the base of the panicles have hardened.
Harvesting is carried out according to the harvest criteria for
each variety.

Observation and data analysis: Observations were made on
the character of plant height, number of tillers, number of
panicles, flag leaf length, shoot fresh weight and shoot dry
weight.  In  addition,  the  NDVI  parameters  are  carried out
using the Inspire 2 UAV (Unmanned Aerial Vehicle) drone
which is equipped with an RGB camera with a 20-megapixel
resolution with a 4/3 in sensor, 20 mm focal length and a
capture  speed  of  1/16  sec.  Each  flight  will  contain  about
1000 images or 3000-4000 images for mapping an area of  
100 ha. The shooting height is 50 m above ground level.
Flights are carried out at 11.00-12.00 am in clear weather
conditions.

The observed data were analyzed by analysis of variance.
Then, the parameters that are significant to the variety and
interactions are continued in the principal component
analysis.   Principal   component   analysis   was   carried   out
on   each   environment   and   the   interaction   between   the
2 environments. The appropriate PC proceeds to the
conversion stage of the varietal growth character values   into
PC parameters. The analysis of variance and principal
component analysis using STAR 2.01 software. Then the
selected PCs (PC1 and PC2) are combined with standardized
NDVI to form a 3D plot. The 3D plot formation using R-Studio
3.6 software.

RESULTS

The results of the ANOVA showed that the effect of the
research location was insignificant for almost all characters
except for the flag leaf length (Table 1). The effect of varieties
significantly affected all vegetative characters, including NDVI.
Meanwhile, the interaction effect between location and
variety significantly affected almost all characters except for
NDVI.

The PCA analyzed all vegetative characters. The analysis
was carried out independently per environment and
interactions between environments. All environments have
reached an 80% cumulative proportion on PC2. As for the
interaction analysis, PC2 has a cumulative proportion of 75%.
However, the two are selected PCs with an eigenvalue of more
than 1. Based on the results of PCA in environment 1 (Table 2),
the number of tillers (0.5285), number of panicles (0.4796),
shoot fresh weight (0.4026) and shoot dry weight (0.4037)
have high positive eigenvectors on PC1 and shoot fresh
weight (0.5122) and shoot dry weight (0.4934) have high
positive eigenvectors on PC2. On the other hand, the character
of plant eight (-0.3139) and flag leaf length (-0.62) are
characters  with  the  highest  negative  eigenvector  values  on
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Table 1: Analysis of variance on the vegetative character of rice
Pr (<F)

-----------------------------------------------------------------------------------------------------------------
Character E V E×V CV
PH 0.2617 0.0000 0.0339 3.55
SFW 0.2538 0.0017 0.0002 19.18
SDW 0.2736 0.0027 0.0009 21.14
NT 0.6417 0.0000 0.0050 16.92
NP 0.9207 0.0000 0.0514 18.92
FLL 0.0000 0.0000 0.0000 8.47
NDVI 0.3527 0.0002 0.275 14.01tr

E: Environment, V: Variety, CV: Coefficient of variation, PH: Plant height, SFW: Shoot fresh weight, SDW: Shoot dry weight, NT: Number of tillers, NP: Number of particles,
FLL: Flag leaf length and NDVI: Normalized Difference Vegetation Index

Table 2: Principal component analysis in each planting environment and the interactions between the environments
E1 E2 Interaction

---------------------------------------- ---------------------------------------- -------------------------------------------------
Character PC1 PC2 PC1 PC2 PC1 PC2
PH -0.3139 0.1611 -0.0345 0.7089 -0.1451 0.5521
SFW 0.4026 0.5122 -0.4933 0.1659 0.3909 0.5188
SDW 0.4037 0.4934 -0.4596 0.2747 0.4206 0.3976
NT 0.5285 -0.1352 -0.5031 -0.1524 0.5457 -0.1371
NP 0.4796 -0.2559 -0.5111 -0.1014 0.5243 -0.1611
FLL 0.2591 -0.6200 0.173 0.6008 0.2765 -0.4725
Proportion of variance 0.5589 0.2414 0.591 0.2807 0.5137 0.2424
Cumulative proportion 0.5589 0.8004 0.591 0.8718 0.5137 0.7561
Eigenvalues 3.3537 1.4486 3.5462 1.6843 3.0821 1.4547
E: Environment, PC: Principal component, PH: Plant height, SFW:  Shoot  fresh  weight,  SDW:  Shoot  dry  weight,  NT:  Number  of  tillers,  NP:  Number  of  particles 
and FLL: Flag leaf length

PC1 and PC2, respectively. Meanwhile, shoot fresh weight and
shoot dry weight characters consistently have high and
positive eigenvectors on both PCs.

The PCA results in the 2nd environment show that flag
leaf length is the only character with a positive eigenvector
value, 0.173, on PC1 (Table 2). On PC2, the characters with
high eigenvector values are plant height (0.7089) and flag leaf
length (0.6008). On the other hand, characters with high
negative eigenvectors on PC1 are fresh shoot weight (-0.4933),
shoot dry weight (-0.4596), number of tillers (-0.5031) and
number of panicles (-0.5111). Characters with high negative
eigenvectors on PC2 are the number of tillers (-0.1524) and
panicles (-0.1014). The characters with consistent eigenvectors
on both PCs are the number of tillers, panicles and flag leaf
length.

The PCA results show that the number of tillers and the
number of panicles have the most significant eigenvector
values above 0.5 on PC1. In contrast, TTV is the only character
with negative eigenvectors (-0.1451). On PC2, the characters’
plant height, shoot fresh weight and shoot dry weight have
positive and relatively high eigenvectors, namely 0.5521,
0.5188 and 0.3976. On the other hand, the characters’ number
of tillers, number of panicles and flag leaf length have
negative eigenvectors, namely -0.1371, -0.1611 and -0.4725,
respectively. The characters with stable eigenvectors are fresh
shoot weight and shoot dry weight characters.

The results of the analysis of the conversion of vegetative
characters into PC values and normalization of NDVI values for
both environments and their  interactions  were  shown  in
Table 3. Based on the table, genotypes V8, V10 and V9 are
genotypes that have the most significant index values for the
parameters PC1 (1.50), PC2 (0.45) and NDVI (1.36), respectively,
in the   first   environment.   On  the  other  hand,  genotypes
5 (0.47), 3 (-0.41) and 1 (0.82) were genotypes that had the
most significant negative index values on PC1, PC2 and NDVI,
respectively. In environment 2, genotype V2 was the genotype
with the most considerable positive index value for PC1 (0.95)
and genotype V5 for PC2 (0.53) and NDVI (1.21). On the other
hand, genotype V8 is the genotype with the highest negative
index value on PC1 (0.77) and PC2 (-0.57) and genotype V2 on
NDVI characters (0.82). As for the interactions, genotypes V7,
V10 and V9 are the genotypes that have the most significant
positive index values for the parameters PC1 (1.71), PC2 (0.42)
and NDVI (1.25), respectively. On the other hand, genotypes
V5, V3 and V2 were the genotypes that had the most
significant    negative    index    values    for    the    parameters
PC1 (0.27), PC2 (-0.46) and NDVI (0.51).

The results of the combination of the three parameters
are shown in the form of a vegetative index (Fig. 1). The group
division is based on a value of 0. Based on Fig. 1a, genotypes
with an index above 0 are genotypes V3, V5, V7, V4, V10 and
V9. On the other hand, genotypes V2, V1 and V8 are genotypes
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Fig. 1(a-c): Vegetative index based on 3D plot analysis, (a) Index value above 0, (b) Index value below 0 and (c) Positive index value

Table 3: PC and NDVI values in each environment and interactions between environments
E1 E2 Interaction

---------------------------------------------------- --------------------------------------------------- ----------------------------------------------------------
Genotype PC1 PC2 NDVI PC1 PC2 NDVI PC1 PC2 NDVI
V1 -1.06 -0.20 -1.82 -1.93 0.51 -0.68 0.55 0.27 -1.37
V2 -0.63 -0.07 -0.78 0.95 -0.08 -1.82 -0.88 -0.21 -1.51
V3 -0.61 -0.41 0.47 0.30 -0.14 0.51 -0.53 -0.46 0.53
V4 0.38 0.05 0.58 -0.08 0.26 -0.80 0.48 -0.01 0.06
V5 -1.47 0.38 0.45 0.75 0.53 1.21 -1.27 0.36 0.86
V7 -0.06 0.06 0.27 0.81 -0.10 0.01 -0.51 -0.10 0.13
V8 1.50 -0.32 -1.05 -1.77 -0.57 -0.31 1.71 -0.18 -0.75
V9 0.96 0.07 1.36 0.90 -0.21 0.95 0.12 -0.08 1.25
V10 0.99 0.45 0.51 0.06 -0.21 0.93 0.34 0.42 0.81
E: Environment, PC: Principal component and NDVI: Normalized Difference Vegetation Index

that have an index value below 0. In Fig. 1b, genotypes with
positive index values are genotypes V7, V3, V10, V9 and V5,
while  genotypes  V8,  V1,  V4  and  V2  have  negative  index
values. Meanwhile, based on Fig. 1c, the genotypes with a
positive index value are V4, V7, V3, V5, V10 and V9. On the
other hand, the genotypes in the negative index area are V2,
V1 and V8.

DISCUSSION

The interaction test is divided into two concepts:
Vegetative morphology and NDVI. The NDVI analysis
represents the chlorophyll  potential  analyzed  vertically  via 
drone25,43,44. Based on the ANOVA results (Table 1), the diversity
of   varieties   and   their   interactions   with   the   environment
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significantly  affect  the  productivity  character.  It  indicates
that the evaluation assessment based on morphological
vegetative  characters is practical. The use of this concept was
also reported  by Farid et al.36,45 on wheat, Abduh et al.46 on
maize  and  Laraswati  et  al.47  on  rice.  In  contrast,  the   use
of  NDVI  is  only  influenced  by  the  influence  of  varieties18,21.
This indicates that the appearance of vertical photos is
relatively  the  same  between  the  two   optimal
environments, so the use of NDVI is independent of its
morphological character in assessing the effectiveness of
genotype evaluation. Further, morphological characters were
analyzed in-depth with multivariate analysis, such as principal
component analysis.

Assessment of PC effectiveness in principal component
analysis depends on the total variance collected for each
PC36,45. The optimal PC assessment is based on cumulative
proportions and eigenvalues32,33,40,48,49. According to Jolliffe and
Cadima32 and Farid et al.36, the optimal cumulative proportion
value is 0.8, so the optimal number of PCs is the PC that
reaches the value of 0.8 the first time. In addition, according to
Anshori et al.1 and Jolliffe and Cadima32, the optimal PC
assessment can be based on an eigenvalue of more than 1.
Based on this, the PC used in this study only focused on PC1
and PC2, independent of each environment and the
interaction between these environments.

Based on the PCA analysis in environment 1 (Table 2), the
higher the PC1 value in a genotype, the higher the diversity of
fresh shoot weight, shoot dry weight, number of tillers and
number of panicles characters. On the other hand, the lower
the PC1 value, the lower the four characters and the higher
the plant height. The concept is also the same as PC2, where
the higher the PC2 value, the correlation with the fresh shoot
weight and shoot dry weight values, while the lower the PC2
value, the correlation with the high diversity of flag leaf length
and the number of panicles. Based on this, the combination of
interactions between the two PCs is positive. It is determined
by the diversity of fresh shoot weight and shoot dry weight,
which is dominant compared to other characters. Yang et al.33

further supported this notion, highlighting the positive
interactions between PCs, specifically providing a foundation
for understanding the dynamics of diversity within genotypes
based on PCA outcome.

The results of the PCA analysis in environment 2 (Table 2)
also show a pattern of grouping the diversity of characters
relatively the same as in environment 1. However, these
characters’ positive and negative directions are different from
environment  1.  According  to  Jollife  and  Cadima32  and 
Fadhli et al.50, positive and negative directions only show the
position of the director in a variety and not absolute. Based on

this analysis, the higher PC1 value indicates the high diversity
of flag leaf length and plant height and the low diversity of
other characters. The lower PC1 value indicates the high
diversity of fresh shoot weight, shoot dry weight, number of
tillers and number of panicles. As for PC2, the higher PC value
indicates high diversity in flag leaf length and plant height,
while the lower PC value indicates high diversity in the
number of tillers and panicle characters. Based on the
combination of PC1 and PC2, the character of flag leaf length
in environment 2 is the dominant character of positive
diversity. On the other hand, the characters’ number of tillers
and the number of panicles are the characters that dominate
the negative diversity in PC2.

The results of PCA analysis on environmental interactions
have the same pattern and direction of diversity as the first
environment. In general, the diversity between environments
1 and 2 is relatively the same. This was also supported by
environmental diversity, which does not significantly affect
almost all characters51,52. However, based on this interaction
analysis, the pattern and direction of diversity refer more to
the first environment. Meanwhile, the contribution of the
second environment is not too enormous in influencing the
eigenvector values on PC1 and PC2 in the interaction of the
two environments. Therefore, PCA can be focused on the first
environment and its interaction in the second  environment.
In addition, shoot fresh and dry-weight characters are
dominant characters in controlling genotype diversity.
However, further analysis of the index of the combination of
PC and NDVI is also an essential reference in the assessment.

The results of PC1, PC2 and NDVI were used to form the
vegetative index. This index is an unweighted combination of
the three parameters that have been normalized. The concept
of using the index in an evaluation assessment was also
reported by Anshori et al.1, Laraswati et al.47, Okasa et al.53 and
Farid et al.54 on rice. The index interaction assessment can be
visualized  as  graphs  and  plots.  This  was  also  reported  by
Okasa et al.53 and Farid et al.54 on rice, Fadhli et al.38 on maize
and Farid et al.36 on wheat. Based on the research concept, the
results of this study use a 3D plot. This 3D plot analysis was
directed towards grouping genotypes based on a threshold 0. 
This   concept   was   also  reported  by  Peternelli  et  al.55,
Fadhli et al.38 and Anshori et al.1. Based on threshold 0,
environment 1 and the interaction between the environments
have genotype diversity which is distributed between 3D plot
spaces. In contrast, environment 2 has a data distribution
centred on the positive quadrant of the combination of all
parameters. This confirms that the assessment of interactions
in the vegetative phase should focus on environment 1 and
the interaction between the two environments.
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Based on 3D plots in both environmental approaches,
genotype grouping against the threshold is more strongly
determined by NDVI. Consistent with findings from previous
studies1,55, the strong influence of NDVI serves as a powerful
indicator for characterizing and discriminating genotypes in
3D plots under different environments. This is because NDVI
has a large diversity in this study. Moreover, the diversity of
PCs, especially PC1, divides the pattern of subgroups in each
group.

Based on the division of genotype groups, genotypes V5,
V9 and V10 are consistently high or have a value above 0.5.
This indicates that these three genotypes have a relatively
high diversity of fresh shoot weight, shoot dry weight and
NDVI characters. It aligns with Schaefer et al.19 who showed
that increased NDVI values often correspond to increased
diversity in shoot characters. On the other hand, genotype V2
is a genotype that consistently has a negative vegetative
index. Negative NDVI values can be indicative of specific
phenotypic traits45, such as reduced biomass and lower overall
plant vigor. This means that genotype V2 has a relatively low
phenotype for the four characters but a high phenotype for
the plant height characters.

Based on the index character grouping, the NDVI
parameter has a direction of diversity that is relatively positive
about shoot fresh and dry weight. The relationship between
NDVI parameters on biomass was also reported by Jin et al.21

and   Prabhakara   et   al.22   on   grassland   or   cover   crops,
Marín et al.56 on turfgrass and Ryu et al.23, Choudhury et al.24 on
rice. On the other hand, NDVI has a consistent negative
direction on rice plant height. Although according to
Choudhury et al.24, there is a significant plant height on NDVI.
However, the NDVI measurement of rice plants in this study
was carried out when the plants had passed the heading
phase so that there were overlapping leaves and began to
experience a greenish decline. This causes the measurement
of NDVI is not optimal or has a low correlation to some
vegetative characters14,26,57. Therefore, based on the overall
results, the use of NDVI in this study is in line with the
development of fresh shoot weight and shoot dry weight
characters.

CONCLUSION

The interaction of the Normalized Difference Vegetation
Index (NDVI) and the principal component-based
morphological characters in this study was considered
adequate. These interactions can describe the distribution of

diversity and group the varieties combined into a vegetative
index. Environment 1 and the interaction of the two
environments is an approach with an excellent varietal
vegetative index distribution. Meanwhile, the grouping of
varieties in this study was divided into two main groups, which
were dominated by NDVI diversity. In contrast, the diversity of
PCs, particularly PC1, determines the subgroups of the leading
group. The first group consisted of varieties Inpari 42 (V4),
Ciherang (V7), Mekongga (V3), Inpago 15 (V5), Way Apo Buru
(V10) and IR20 (V9), while  the  second  group  consisted  of 
Inpari 34 Salin Agritan (V1), Inpari 29 (V2) and Jeliteng (V8).
Based   on   the  subgrouping, genotypes  Inpago  15  (V5),
IR20 (V9) and Way Apo Buru (V10) were genotypes that
consistently had an excellent vegetative index or were
explicitly related to the shoot  fresh  weight,  shoot   dry
weight  and   NDVI   characters.   On  the  other  hand,  Inpari
29 (V2) is a genotype with a low vegetative index but has a
good plant height phenotype. Based on the results of this
study, interaction analysis of morphological characters based
on principal component analysis and NDVI can select
genotypes with good vegetative characters so that this
concept can be recommended for research focused on
vegetative characters.

SIGNIFICANCE STATEMENT

Rice crops in a vegetative phase were observed to identify
the interaction between morphological characters based on
PCA and NDVI. It was found that this approach was effective
in stratifying varieties into two different groups: Six varieties in
first group and three varieties in second group. In particular,
the genotypes Inpago 15, IR20 and Way Apo Buru show
favorable phenotypes in terms of fresh shoot weight, dry
shoot weight and NDVI. Conversely, Inpari 29 shows a lower
vegetative index but a good height. Therefore, this approach
can describe the distribution of diversity and group the
varieties combined into one vegetative index, which is useful
for selecting genotypes with good vegetative traits, so this
concept can be recommended for research focused on
vegetative traits.
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