
 OPEN ACCESS Asian Journal of Scientific Research

ISSN 1992-1454
DOI: 10.3923/ajsr.2017.

Research Article
Control and Data Flow Execution of Java Program

Safeeullah Soomro, Zainab Alansari and Mohammad Riyaz Belgaum

College of Computer Studies, AMA International University, Building 829, Road 1213, Block 712, P.O. Box 18041, Salmabad,
Kingdom of Bahrain

Abstract
Background and Objective: Since decades understanding of programs has become a compulsory task for the students as well as for
others who are involved in the process of developing software and providing solutions to open problems. In that aspect showing the
problem in a pictorial presentation in a best manner is a key advantage to better understand it. Materials and Methods: This article
provides model and structure for Java programs to understand the control and data flow analysis of execution. Especially it helps to
understand the static analysis of Java programs, which is an uttermost important phase for software maintenance. This article provided
information and model for visualization of Java programs that may help better understanding of programs for a learning and analysis
purpose. The idea provided for building visualization tool is extracting data and control analysis from execution of Java programs.
Results: Theoretically, this article has shown how to extract source code and provide information of data and control graph. It is helpful
for understanding of programs and may help towards software debugging and maintenance process. Conclusions: This article presented
case studies to prove that our idea is most important for better understanding of Java programs which may help towards static analysis,
software debugging and software maintenance.

Key words: Static analysis, visualization, software maintenance, E-learning, control and data flow analysis

Received: Accepted: Published:

Citation: Safeeullah Soomro, Zainab Alansari, Mohammad Riyaz Belgau, 2017. Control and data flow execution of java program. Asian J. Sci. Res., CC: CC-CC.

Corresponding Author: Safeeullah Soomro, College of Computer Studies, AMA International University, Building 829, Road 1213, Block 712, P.O. Box 18041,
Salmabad, Kingdom of Bahrain Tel: +97333375525

Copyright: © 2017 Safeeullah Soomro et al. This is an open access article distributed under the terms of the creative commons attribution License, which
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

Asian J. Sci. Res., 2017

INTRODUCTION

The Understanding of Programs is most importance factor
of computer science and software engineering students as
well as the developers who are solving open questions. Since
decades’ people were working on program analysis, software
maintenance and software re-engineering to provide some
intelligent tools which were beneficial for everyone. But still
lack of tools and techniques which may provide better
understanding of program visually or pictorial presentation,
which may provide ease to learn programming to students of
current era as well as for the future. A lot of research has been
conducted in this regard but still needs more time and effort
to overcome problems for better understanding of problems
or generally program analysis or software maintenance. Also,
it is extremely key area of research in the field of computer
science and software engineering because manual
understanding of programs is very difficult to understand and
time consuming. It is cost effective and most part of projects
funding is involved since last decade. In this paper, technique
which may provide execution of Java program’s information
in data, program and control dependencies are presented,
which may help to understand the programs and reduce time
and cost for software maintenance and debugging in future.

Program analysis is the process of automatically
understanding and presenting real behavior of programs
which is most important for research community towards
software analysis and maintenance.

Singer and Kirkham1 and Du et al.2 provided program
information in dependencies and visualize the programs.
Luijten3 has presented a viable visualization tool, Coffee Dregs,
for Object oriented programs that supports multi-threaded
Java programs, with standard input and output and
GUI-programs to a limited extent. Some of the research work
has been done4,5 in path conditions and analysis techniques,
they have provided model for the understanding of programs
in static way but not provided application.

Huizing et al.6 and Gestwicki and Jayaraman7 provided
model for object oriented programs together with
visualization but it is a tool which shows relationship between
user and machine. It is a special tool for e-learning purpose
which may help others to understand graphical statements.
Jayaraman and Baltus8 provides execution according to
programs paths and it is done dynamically making the best
way of code executed visually. Our idea is to visualize
programs in terms of data, control and program graphs which
option is not available in both tools8,9 according to our
knowledge.

Future research has to apply this theoretical concept into
practical approach to develop an automatic and intelligent
tool, which is really today’s need in the world. This article has
presented a program analysis of Java programs in terms of
execution. This article has extracted source code from Java
programs and found path execution of programs in terms of
data and control dependences. After that This article have
visualized source code into blocks and nodes so that provides
information flow graphs, allowing the users and learners of
Java programs a better understanding.

MATERIALS AND METHOD

Control and data flow analysis: Many tools have been
provided for program analysis and software maintenance but
still lacking to understand the programs particularly in regard
of control and data. That means static analysis of programs
which is useful for this area of research where an automatic
and intelligent tool can be made. Also provided is the exact
information of the execution of programs to understand the
data and control flow of source code. There are some tools
provided but about our idea there is no any tool which may
provide better understanding of programs in terms of data
and control flow of programs. The idea is to reduce the cost of
Software Analyst and Coders.

This article provided better model and technique which
may affect better understanding of programs with regards of
data and control graphs particularly, which can be an addition
towards research community for better understanding of code
in visuals or pictorial presentation making it the most
important for learning process in all fields of science and
technology.

In the Fig. 1 this article has presented the steps towards
our idea and do work accordingly. The First step is to extract
source code using AST (Abstract Syntax Tree). Afterwards
information extracted from path execution of programs in
static forms. This article provides an algorithm to make
branches and nodes accordingly, then generated control
graph of the whole path execution in visual form.

To understand the code is essential for testing,
reverse-engineering and maintenance. It is also useful for the
deeply understanding of programs which leads to produce an
error free program. This is also true that researchers have
carried research towards analysis and maintenance of
programs. Since decades many models and techniques are
available for the researchers6-8 but still lacking in particular
tools for visualizing programs in terms of understanding the
control flow, data flow and program flow according to source

2

Asian J. Sci. Res., 2017

Extracting source code from programs

Analysis path executions of programs

To develop branches and nodes of programs

Propose algorithm for control f low graph of whole program according to path

execution

Finally provide comparison with other techniques

Fig. 1: Steps of the model for Java programs visualization

code. Although it’s very time consuming task but its today’s
demand of the market for providing such tools which can lead
to accurate analysis of software. To overcome this problem,
visualization tool for Java programs should be designed,
implemented and tested.

The Goal of this work is to provide better technique to all
researchers in the world to carry source code for the analysis
of control and data flow of Java programs. In Fig. 2, it provides
the model structure of our tool showing how to deal with it
and provide better solution for visualization of programs. It is
presented that how to visualize the source code and extract its
Abstract Syntax Tree (AST). After that code is converted into
graphs (Data, Variable and Program). Our method is to extract
information from AST and calculate the dependencies of
variables like Line 1: a = b, Line 2: b = c, Line 3: c = a+b, count
as Branch B1, B2 and B3 and Node N1. After extracting code
from AST then it may provide nodes and branches of all
program statements according to program execution so that
it cannot ignore any program statement which may affect the
source code of the program.

Finally, this study provides technique or method which
can build plug-in tool in future to add on eclipse for the Java
and provide data, control and program dependence graphs
for better understanding of programs. This presented
technique may help academia, industry and others to get
benefit for the software analysis, maintenance and debugging
as well in future.

RESULTS

This section contains information of the program
execution and representation in control ow graph and data
dependence graph from the source code. This article
presented analysis according to path executions of program

regarding the data and control. There are two kinds of the
execution of programs named as static and dynamic.

Static execution provides whole text of the program for
analysis. Static always provides all information of program
having all control ow possibility according to the source code.
Java program were extracted all possible path executions. In
the example program, it found four path executions according
to true and false values for those conditions. This article has
shown the static path executions of our program 1 as under:

Line Number 3: x > y: FALSE
Line Number 7: y > 5: FALSE
Execution Path 1: 0 1 2 3 5 6 7 9 10
Line Number 3: x > y: TRUE
Line Number 7: y > 5: FALSE
Execution Path 2: 0 1 2 3 4 6 7 9 10
Line Number 3: x > y: FALSE
Line Number 7: y > 5:
TRUE Execution Path 3: 0 1 2 3 5 6 7 8 10
Line Number 3: x > y: TRUE
Line Number 7: y > 5: TRUE
Execution Path 4: 0 1 2 3 4 6 7 8 10

Dynamic execution provides the exact ow control of
program according to source code of program execution. It
depends on compiler to compute and execute program
statements based on the input values and other control ow
statements of the program. This article has presented dynamic
execution path of our program 1 as under:

Line Number 3: x > y: FALSE
Line Number 7: y > 5: FALSE
Execution Path: 0 1 2 3 5 6 7 9 10

In the Fig. 3 an example of Java program is written and
This article have shown the execution passing through all
paths. Our approach is to derive control ow graph and

3

Asian J. Sci. Res., 2017

Abstract syntax tree

Java source

Dependences graphs

Visualize tool

D

A

T

A

Variable Program

Fig. 2: Block diagram of the model for Java programs visualization

PublicclassTest Pr ogram{
publicstatic void main (string[]args) {

0 : int x 3;
0 : int x 3;
1: int y 4;
2 : int z 0;
3 : if (x y);
4 : z y 2;
5 : else z y 2;
6 : z z y;
7 : if (y 5)
8 : z z 5;
9 : else z z 2;
10 : z z 3;

} }







 
 

 


 
 

 



Fig. 3: Simple Java example

dependence graph from its source code. All statements were
extracted from the source code and have made blocks and
nodes of all statements. The program has been compiled and
analysed source code.

DISCUSSION

Java tool9,10 called as Insight which presented runtime
behaviour of programs and helps for debugging purpose.
However, it helps the execution of Java programs dynamically
but cannot provide information statically which may help
research community towards software analysis and
maintenance.

This study suggests tool which may provide program
execution in terms of program, data and variable
dependencies in visual forms. This article assumed to present
visualization of all statements of Java programming language
like method calling, object creation, calling object, parameters
passing through methods and objects, polymorphism and

others in object oriented program. visual presentation in this
study provides full details for the basic lines of code, multiple
lines, loops, nested structures of code and fully support to
object oriented programs.

This article has discussed our approach and provided an
example regarding execution so that it may be easy to extract
data and control flow of programs accordingly. Theoretically,
this article has shown how to extract source code and provide
information of data and control graph using a simple example.
In future, tool can be developed for more results analysis and
discussion which may be helpful for the research community
and as well as students to learn Java program in an efficient
way.

CONCLUSION

This article has presented data and control information of
Java programs using static and dynamic execution. It is helpful
for understanding of programs and may help towards

4

Asian J. Sci. Res., 2017

software debugging and maintenance process. Moreover, this
study presented a theoretical idea towards visualization of the
source code information of programs which is an essential for
students as well as developers to understand the programs.
Presented case studies may help readers towards enhanced
better understanding capabilities of programs.

SIGNIFICANT STATEMENT

This research work discovered that the idea provided for
building visualization tool is extracting data and control
analysis from execution of Java programs.

REFERENCES

1. Singer, J. and C. Kirkham, 2008. Dynamic analysis of Java
program concepts for visualization and profiling. Sci. Comput.
Progr., 70: 111-126.

2. Du, L., G. Xiao and D. Li, 2012. A novel approach to construct
object-oriented system dependence graph and algorithm
design. J. Software, 7: 133-140.

3. Luijten, C.A., 2003. Interactive visualization of the execution
of object-oriented programs. Master's Thesis, Eindhoven
University of Technology, Netherlands.

4. Linos, P.K. and V. Courtois, 1994. A tool for understanding
object-oriented program dependencies. Proceedings of the
IEEE 3rd Workshop on Program Comprehension, November
14-15, 1994, Washington, DC., USA.

5. Soomro, S., Z. Hussain and A. Keerio, 2013. Path conditions
help to locate and localize faults from programs. Sindh Univ.
Res. J.

6. Huizing, C., R. Kuiper, C. Luijten and V. Vandalon, 2012.
Visualization of object-oriented (Java) programs. Proceedings
of the 4th International Conference on Computer Supported
Education, April 16-18, 2012, Porto, pp: 65-72.

7. Gestwicki, P.V. and B. Jayaraman, 2004. Jive: Java interactive
visualization environment. Proceedings of the Companion
to the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications, October 24-28, 2004, New York, USA.,
pp: 226-228.

8. Jayaraman, B. and C.M. Baltus, 1996. Visualizing program
execution. Proceedings of the IEEE Symposium on Visual
Languages, September 3-6, 1996, Boulder, CO., USA.,
pp: 30-37.

9. De Pauw, W., E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides and
J. Yang, 2002. Visualizing the execution of Java programs.
Proceeding of the International Seminar Dagstuhl Castle,
May 20-25, 2001, Germany, pp: 151-162.

10. Asnina, E. and V. Ovchinnikova, 2015. Specification of
decision-making and control flow branching in Topological
Functioning Models of systems. Proceedings of the
International Conference on Evaluation of Novel Approaches
to Software Engineering, April 29-30, 2015, Barcelona, Spain,
pp: 364-373.

5

