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Abstract
Background and Objectives: The application of implicit fixed point iterative algorithms have been greatly employed in many physical
systems as the implicit algorithms provide better approximation than their corresponding explicit algorithms and are very efficient in
reducing the computational cost of the fixed point problems. The objectives of this study, therefore; were in three folds: (1) To develop
implicit hybrid Jungck-Kirk multistep iterative algorithms in a metrizable locally convex space, (2) Prove its convergence to the unique
common fixed point of a pair of  weakly compatible generalized contractive-type operators (S, T) and (3) Demonstrate the application
of  the convergence results with some examples. Materials and Methods: Analytical method was used to prove the main theorem, while
numerical method  was to demonstrate the application of  the convergence result. Results: Strong convergence analytical and numerical
results constitute  the  main  results  of  this  work. Conclusion: The results obtained from this study showed that the implicit hybrid
Jungck-Kirk multistep iterative algorithms have good potentials for further applications, especially in relation to rate of convergence.
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INTRODUCTION

A locally convex space (X, u) with topology u is a
topological vector space which has a local base of convex
neighborhood  of  zero.  It  is  metrizable  if  it  is   Hausdorff
and has countable zero basis. Consequently, it is  metrizable
if u can be described by a countable family of continuous
seminorms1.  The  X  is  Hausdorff  if  and  only  if  for  each
non-zero x0X, there is some2 p0Q with p(x)>0. To each
absolutely convex absorbent subset U of X corresponds a
seminorm  p,  called  the  gauge  of  U  defined  by  p(x)  = inf
{λ: λ>0, x0λU} and with the property that {x: p(x)<1}fUf{x:
p(x)#1}, U is a neighbourhood of zero if and only if p is
continuous.

Many researchers have worked on the approximation of
fixed point of different classes of operators in literature. For
instance3-5.  The Kirk-Mann, Kirk-Ishikawa and Kirk-Noor
iterative algorithms are the commonly used schemes for
approximating the fixed point of a given operator. Various
authors have written very inspiring papers on Kirk-type
iterative algorithms, worthy to mention  are  the  following:
the explicit  Kirk-Mann,  explicit Kirk-Ishikawa5, Kirk-Noor and
Kirk-multistep6 iterative schemes. The rate of convergence of
Kirk-type schemes for  single  mappings  was proved in
Hussain et al.7.

Akewe et al.6 proved strong convergence and stability
results for explicit Kirk-multistep iterative schemes by
employing a contractive-like operator in a normed linear space
through useful theorems and numerical examples. For explicit
iterative scheme involving pair of maps8,9. Chugh et al.10

proved the convergence of a faster implicit fixed point
iterative scheme and remarked that implicit  iterations have an
advantage over explicit iterations for nonlinear problems as
they provide better approximation of fixed points and are
widely used in many applications when explicit iterations are
inefficient. Apart from its convergence, stability and data
dependence results were also proved. It is observed that while
some convergence results have obtained for implicit Mann,
implicit Ishikawa and implicit Noor iterations compared to
corresponding explicit iterations for a single map (T) in the
literature, little work has been done on the approximation of
implicit iterative algorithms for pair of maps (S, T). Therefore
the objectives of this study were to develop implicit hybrid
Jungck-Kirk multistep iterative algorithms and prove its
convergence to the unique common fixed point of a pair of
weakly   compatible  generalized contractive-type operators
(S, T) and to demonstrate the application of the convergence
results with some examples.

MATERIALS AND METHODS

Relevant materials from reputable journals are used to
identify open  problems  and  possible  ways   of   solving
them8-10.   The   research  methods  employed   in  this  study
are  both   analytical  and   numerical.   The  analytical
approach is used in proving the main theorem, while the
numerical aspect is done in the example. The following
iterative algorithms are useful in proving the main results.
Some contractive  definitions  and  iterative algorithms
defined in a metrizable locally convex space are hereby
presented:

Let X be a metrizable topological space and C be a closed
convex nonempty subset of X and S, T: C6X nonself
commuting maps of C with T(C)fS(C). Then, the implicit
Jungck-Kirk multistep iterative algorithm is a sequence

 defined by: n n 0
Sx




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where  q1,  qj  are fixed integers (for each j) with
q1$q2$q3$...$qk, "n, i$0,  "n, 0…0,   forj j j

n,i n,0 n,i n,i0, 0, , 0, 1        
each j.

The implicit Jungck-Kirk Noor iterative algorithm is
defined thus:
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where, q1, q2  are random fixed integers with q1$q2$q3,
and  are sequences in [0, 1] satisfying   1

n,i n,in 1 n 1
,


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
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The implicit Jungck-Kirk Ishikawa iterative algorithm is
defined thus:
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(3)
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The implicit Jungck-Kirk Mann iterative algorithm is
defined thus:

(4)1 1
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where, q1 is a random fixed integer,  is a sequence in n,i n 1






[0, 1] satisfying  "n, i$0,  "n, 0…0  and:

 n,0
n 1

1




   

Remark 2.1:   The  implicit   Jungck-Kirk-multistep   iteration
(Eq.  1)  is   an   important   generalization   of     implicit
Jungck-Kirk-Noor (Eq. 2), implicit Jungck-Kirk-Ishikawa (Eq. 3),
implicit Jungck-Kirk-Mann iterative algorithms because one
can recover Eq. 2, 3 and 4 from (Eq. 1). In fact, if k = 3 in (Eq. 1),
it   get   implicit   Jungck-Kirk-Ishikawa   iterative   algorithm
(Eq.  3)  and  if k = 2 and q2 = 0 in (Eq. 1), we get implicit
Jungck-Kirk-Mann iterative algorithm (Eq. 4).

Definition 2.2: Let (E, 2.2) be a Banach space and Y be a
nonempty set such that T(Y)fS(Y) and S, T: Y6E, for x, y0E, with
δ0[0, 1] and n: R+6R+ be a sublinear, monotone increasing
function with n(0) = 0, such that11:

(5) Tx Ty Sx Sy Sx Ty      

Definition 2.2 can be written in a metrizable topological
space in the following form:

Definition 2.3: Let X be a metrizable topological  space  and
C  be  a  closed  convex  nonempty  subset  of  X  and  S,  T: C6X

nonself commuting maps of C with T(C)fS(C) for x, y0C, with
δ0[0, 1] and n: R+6R+ be a sublinear, monotone increasing
function with n(0) = 0, such that:

(6)      c c cf Tx Ty f Sx Sy f Sx Ty      

Definition 2.4: Let X be a metrizable topological space and C
be a closed convex nonempty subset of X. A point p0C is
called a coincident point of a pair of self-maps S, T if there
exists a point  q (called a point of coincidence) in C such that
q = Sp = Tp. Self-maps S and T are said to be weakly
compatible if they commute at their coincidence points that
is, if  Sp = Tp for some p0C, then Stp = TSp.

Example 2.5 (Djoudi and Aliouche12): Let (X, d) = ([0, 10], |.|).
Define S and T  by:

 
  

3 if x 0, 2
Sx

0 if x 0 2, 10

      

and:

0 if x 0

Tx x 8 if x (0,2]

x 2 if x (2,10]


  
  

In example 2.5, weakly compatible maps are
demonstrated to be more general than those with
compatibility of type (A), type (B), type (P) and type (C). That is,
if S and T are compatible, compatible of type (A), compatible
of type (B), compatible of type (P) and compatible of type (C).

Lemma 2.6: Let X be a metrizable topological space and C be
a closed convex nonempty subset of X and S, T: C6X nonself
commuting maps satisfying (6) such that T(C)fS(C):

         S S x T S x S x T x  

and:

         S S x T S y S x S y  

Let  n: R+6R+  be a sublinear, monotone increasing
function such that n(0) = 0 with n(u) = (1-δ) u for all 0#δ<1,
u0R+. Then for every i0N and x, y0C, we have:
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(7)      
i

i i i i j j
c c c

j 1

i
f T x T y f Sx Sy f Sx Tx

j




 
         

 


Proof: It can be proved that if n' is subadditive then each of
the nj of n is subadditive. Since it is assumed that n is
subadditive, then n(x+y)#n(x)+n(y), for every x, y0C. Thus, the
subadditivity of n2 yields the following:

          2 x y x y x y         

Similarly, the subadditivity of n3 yields the following:

       
         

3 2

2 3 3

x y x y x y

x y x y

         

         

Therefore, in general,  nn (n = 1, 2, 3,...) is subadditive and
it can be written as:

           n n 1 n 1 n nx y x y x y            

The remaining part of the proof of Lemma 2.6 will be
done by mathematical induction on i as follows:

Let i = 1, the contractive condition Eq. 7 becomes:

(8)      
n

n j j
c c c

j 1

n
f Tx Ty f Sx Sy f Tx Ty

j




 
         

 


It is shown that the statement is true for i = n+1 as
follows:

(9)

      
    

     
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n 1 n 1 n n
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n
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n
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n
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n
n j j
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f T x T y f T Tx T Ty

f S Tx S Ty

n
f T Sx T Tx

j

f T Sx T Sy

n
f T Sx T Tx

j
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


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

  

  

 
     

 
  

 
     

 





 (10)               c c cf T Sx T Sy f S Sx S Sy f S Sx T Sx      

 (11)               c c cf T Sx T Ty f S Sx S Ty f S Sx T Sx      

Substituting Eq. 10 and 11 into Eq. 9, the following is
obtained:

            
          

n 1 n 1 n
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n j j

c c
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f T x T y f S Sx S Sy f S Sx T Sx
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f S Sx S Sy f S Sx T Sx
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 





          
                


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n n j j

c c
j 1

n
f T Sx T Sy f T Sx T Tx

j




 
        

 


          n 1 n
c cf S Sx S Sy f S Sx T Sx      
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n j j

c
j 1

n
f S Sx S Sy

j




 
     

 


     n
n j j

c
j 1

n
f S Sx T Sx

j




 
     

 


          
  

n 1 n
c c

n
n 1 j j

c
j 1

f S Sx S Sy f T Sx T Sx

n
f Sx Sx

j



 



      

 
     

 


  
n

n j j 1
c

j 1

n
f Sx Tx

j
 



 
     

 


          n 1 n
c cf S Sx S Sy f T Sx T Sx      

     n n 1 2
c c

n n
f Sx Tx f Sx Tx

1 2
   

             
   

     n 2 3 n n
c c

n n
f Sx Tx f Sx Tx

3 n
   

              
   



     n 1 2 n 2 3
c c

n n
f Sx Tx f Sx Tx

1 2
    

             
   

     n 3 4 n 1
c c

n n
f Sx Tx f Sx Tx

3 n
    

             
   



          n 1 n
c cf S Sx S Sy f S Sx T Sx      

     n n 1 2
c c

n n
f Sx Tx f Sx Tx

1 2
   

             
   

     n 2 3 n
c c

n n
f Sx Tx f Sx Tx

3 n
   

             
   



     n 1 2 n 2 3
c c

n n
f Sx Tx f Sx Tx

1 2
    

             
   

     n 3 4 n 1 2
c c

n n
f Sx Tx f Sx Tx

3 n
    

              
   



     n n 1 2
c c

n n n n
f Sx Tx f Sx Tx

1 0 2 1


          
                                      

     n 2 3 n
c c

n n n n
f Sx Tx f Sx Tx

3 2 n n 1


          
                                       



        n 1 n 1
c cf Sx Tx i f S Sx S Sy     

4
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  n n 1 2 n 2 3 n 1
c

n 1 n 1 n 1
f Sx Tx

1 2 3
  

        
                              



    n 1
cf S Sx S Sy 

(12)       
n 1

n 1 n 1 j j
c c

j 0

n 1
f S Sx S Sy f Sx Tx

j


  



 
        

 


         
n 1

n 1 n 1 n 1 n 1 j j
c c c

j 0

n 1
f T x T y f S Sx S Sy f Sx Tx

j


    



 
         

 


(13)

In view of Eq. 8 and 13, it results that:

(14)         n 1 n 1 n 1 n 1
c c cf T x T y f S Sx S Sy f Sx Tx         

RESULTS AND DISCUSSION

Convergence results in metrizable locally convex space: In
Theorem 1 of Olaleru and Akewe11, the authors proved strong
convergence of explicit Jungck-multistep iterative schemes for
generalized contractive-like operators in a Banach space. In
the following theorem, it established approximation results for
random implicit Jungck-Kirk-multistep iteration in a complete
metrizable topological space.

Theorem 3.1: Let (x, fc) be a complete metrizable topological
space and C be a closed convex nonempty subset of X and S,
T: C6X be nonself commuting mappings satisfying the
generalized contractive-type condition:

(15)      
i

i i i i j j
c c c

j 0

i
f T x T y f Sx Sy f Sx Tx

j




 
         

 


such that T(C)fS(C), where *i 0[0, 1], nj a sublinear,
monotone  increasing function such that nj (0) = 0. Let q be
the coincidence  point  of  S,  T,  Si,  Ti  (i.e.,  Sw  = Tw = p and
Siq = Tiw = p), for x00C, the implicit Jungck-Kirk multistep
hybrid iterative algorithm (Eq. 1) converges strongly to p.

Furthermore, if C = X and S, T commute at p (that is S and
T are weakly compatible), then p is the unique common fixed
point of (S, T).

Proof: It is shown in the following proof that the implicit
Jungck-Kirk multistep hybrid iterative algorithm (1) converges
strongly to p. Using contractive condition Eq. 15 in Eq. 1, gives:

(16)

     

   

  

 

1

1

1

1

q
1 i i

c n 1 n,0 c n n, i c n 1
i 1

q
1 i

n,0 c n n,i c n 1
i 1

q i
i j j

n, i c
i 1 j 0

n,0
c nq

i
n,i

i 1

f Sx p f Sx p f T x T w

f Sx p f Sx Sw

i
f Sw Tw

j

f Sx p
1

 







 



      

 
        

 
  
          


 

  





 



Also, using contractive condition Eq. 15 in Eq. 1, gives:

(17)

     

   

  
  

2

2

2

2

q
1 2 1 i 1 i

c n 1 n,0 c n n,i c n
i 1

q
1 2 1 i 1
n,0 c n n,i c n

i 1

q i
i j j

n, i c
i 1 j 0

1
2n,0

c nq
1 i
n,i

i 1

f Sx p f Sx p f T x T w

f Sx p f Sx Sw

i
f Sw Tw

j

f Sx p
1








 



      

 
        

 
  
          


 

  





 



Following similar method as in Eq. 17, one obtains:

(18)   
3

2
n,02 3

c n c nq
2 i
n,i

i 1

f Sx p f Sx p
1




  

  

(19)   
3

3
n,03 4

c n c nq
3 i
n,i

i 1

f Sx p f Sx p
1




  

  

(20)   
k 1

k 2
n,0k 2 k 1

c n c nq
k 2 i
n,i

i 1

f Sx p f Sx p
1




 






  

  

Finally using contractive condition Eq. 15 in Eq. 1 for (k-1),
gives:

(21)

     

   

  
 

k

k

k

k

q
k 1 k 1 k 1 i k 1 i

c n n,0 c n n, i c n
i 1

q
k 1 k 1 i k 1
n,0 c n n,i c n

i 1

q i
k 1 i j j k 1
n, i c n

i 1 j 0

k 1
n,0

c nq
k 1 i
n,i

i 1

f Sx p f Sx p f T x T w

f Sx p f Sx Sw

i
f Sx Sw

j

f Sx p
1

   



  



  

 






      

 
        

 
  
          


 

  





 


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Substituting Eq. 17-21 in Eq. 16, gives:

(22)

 

 

1 2 3

k 1 k

1 2
n,0 n,0 n,0

c n 1 q q q
i 1 i 2 i

n, i n,i n,i
i 1 i 1 i 1

k 2 k 1
n,0 n,0

c nq q
k 2 i k 1 i
n,i n,i

i 1 i 1

f Sx p
1 1 1

f Sx p
1 1





  

 

 

 

    
                

            
          

   
           
        

      

  

 



Note that:

1

1

1 1

q

n,i i n,0 q
i 1n,0

n,i i n,0q q
i 1

n,i i n,i i
i 1 i 1

1

1 1
1 1





 

 
     

            
       




 

Hence:

1

1

q
n,0

n,i i n,0q
i 1

n,i i
i 1

1 




    

  




Let δi<δ<1, then:

 
1q

n,i i n,0 n,0 n,0
i 1

1


        

That is:

(23) 
1

n,0
n,0 n,0q

n,i i
i 1

1
1




    

  

Therefore:

          

     
    

2 21 1
c n 1 n,0 n,0 n,0 n,0 n,0 n,0

k 2 k 2 k 1 k 1
n,0 n,0 n,0 n,0 c n

n,0 c n

f Sx p 1 1 1

1 1 f Sx p

1 1 1 f Sx p .



   

                      
               
       



(24)

Next, it will be shown that p is the unique common fixed
point of (S, T).

Suppose there exists another coincidence point p*, then
there is a w*0C such that Tw* = Sw* = p*. Hence, using
contractive condition of Eq. 15,  one obtains:

     

  

    

   
 
 

i i i
c c c

i
i j j

c
j 0

i
i i j j

c c
j 0

i
i i j j

c
j 0

i
c

i i i
c

f w w * f T w T w * f Sw Sw *

i
f Sw Tw

j
i

f p p * f p p
j
i

f p p * 0
j

f p p * 0

f T w T w *













     

 
     

 
 

        
 
 

       
 

   

  







Y (1-δi) fc. (T
iw-Tiw*) # 0 (25)

(1-δi)>0 because  δi 0 [0, 1]

Y fc (T
iw-Tiw*) # 0

But, a norm is always non-negative and thus:

fc (T
iw-Tiw*) $ 0 (26)

Combining Eq. 25  and  26,  then  it   is   concluded    that
fc (Tiw-Tiw*) = 0:

Y fc (w-w*) = 0

Thus, w = w* and so, p is unique.
Since S and T are weakly compatible, then TSw = STw and

so Tp = Sp.  Hence,  p  is  the  coincidence  point of (S, T) and
since the coincidence point is unique, then p = w and hence
Sp = Tp = p and therefore, p is the unique common fixed point
of (S, T). This ends the proof.

Theorem 3.1 and Remark 2.1 lead to the following
corollary:

Corollary 3.2: Let (X, fc) be a complete metrizable topological
space and C be a closed convex nonempty subset of X and S,
T: C6X be oneself commuting mappings satisfying the
generalized contractive-type condition:

(27)      
i

i i i i j j
c c

j 0

i
f T x T y Sx Sy f Sx Tx

j




 
         

 


such that T(C)fS(C), where δi 0 [0, 1), nj a sublinear,
monotone increasing function such that nj (0) = 0. Let w be
the coincidence  point  of  S,  T,  Si,  Ti  (i.e.,  Sw = Tw = p and
Siw = Tiw = p) for x0 0 C, then the: 

C Implicit Jungck-Kirk Noor iterative algorithm (Eq. 2)
converges strongly to p

6
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C Implicit Jungck-Kirk Ishikawa iterative algorithm (Eq. 3)
converges strongly to p

C Implicit Jungck-Kirk Mann iterative algorithm (Eq. 4)
converges strongly to p

Furthermore, if C = X and S, T commute at p (that is S and
T are weakly compatible), then p is the unique common fixed
point of (S, T).

Remark 3.3: Theorem  3.1. is also an improvement on
Theorem 2.2. of Akewe et al.6 in the sense that  in  Eke  et  al.4

the result was proved for a single map, while in this work the
result was proved for pair of maps. 

NUMERICAL EXAMPLE

In this section, a numerical example is constructed to
demonstrate the applicability of convergence of the implicit
Jungck-Kirk multistep iterative algorithm.

Example 4.1: Let (X, fc) be a complete metrizable topological
space,  C  be  a  closed  convex  nonempty  subset  of X and
g(x) = 0, where g is the real function defined on the interval 

by:20,   

     22
2g x x cos x 

g can be decomposed as:

 2g S T 

where, the maps S and T  are the self-mappings in 20,   
defined by:

  22S x : x

and:

   2T x : cos x

Clearly, S(x) and T(x) satisfy contractive condition (Eq. 2). S and
T coincides at ω.1.0792 and p = S ω = Tω.0.7415. Thus, ω is a
solution to g(x) = 0. From Theorem 2.1, the modified implicit
hybrid  Jungck-Kirk multistep hybrid scheme {Sxn} given by
(Eq. 1) converges to p = Sw. Using MATLAB, R2017b, we have
the following Table 1:

Table 1: MATLAB
n xn Sxn
0 0.1000 0.1000
1 1.0463 0.6994
2 1.0588 0.7257
3 1.0769 0.7357
! ! !

6 1.0792 0.7414
! ! !

9 1.0792 0.7415

Since S is continuous and the fact that {Sxn} converges to
Sw  implies that the sequence {xn}  converges to w, the root  of
g.

It was observed that for function:

     22
2g x x cos x 

the implicit hybrid Jungck-Kirk multistep hybrid algorithm
{Sxn} given by (1) converges to 0.7415, which is also the
common fixed point of (S, T).

CONCLUSION

The convergence of implicit hybrid Jungck-Kirk multistep
hybrid {Sxn}  algorithm is proved analytically and numerically
in this study. The numerical example considered in this paper
demonstrated the applicability of the convergence results
obtained.  These  results  show  that  the implicit hybrid
Jungck-Kirk multistep hybrid iterative algorithms have good
potentials for further applications.

SIGNIFICANCE STATEMENT

This  study  proves significant convergence relationship
of implicit hybrid Jungck-Kirk multistep hybrid iterative
algorithms. Particularly, the new significance of this research
is the applicability of the convergence results of implicit type
through a numerical example which has not been paid
enough attention.
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