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Abstract
Background and Objective: Determining the optimal architecture and optimization method in neural network for time series modeling
have been interesting open problem in recent years. Several studies have been developed to solve this problem, but only to a limited
extent. Determination of optimal size with a specific method is only done in the search for weights with standard methods, as well as the
use of heuristic optimization without including how to determine the optimal architecture. This paper focuses on the determining optimal
architecture in neural network for time series model optimizing by heuristic optimization. Materials and Methods: In this method, the
network built first with the big size and then the cells with low  contribution, expressed by the R2inc, will be removed from network. To
get an approach of global  optimum,  genetic  algorithm  was used as optimization method to obtain the optimal weights. This model
was applied to the rainfall data. Starting with eight hidden units, NN (1,2,18,5) was chosen as the optimal size of the network, i.e., a
network consists of lags 1, 2 and 18 as input and has 5 hidden units. Removing 3 units in the hidden layer is not too  large  reducing R2.
Results: The proposed procedure successfully reduced the size of  the  network  so  that  the  constructed  model  was  simpler.
Conclusion: The use of incremental contribution method can effectively reduce network size on neural network optimized by genetic
algorithm and is no longer just based on trial and error techniques.
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INTRODUCTION

There is a lot of flexibility in constructing Neural Network
model, especially in the field of time series. The flexibility of
this model makes it have more open issues to be further
researched. How to determine the optimal architecture
includes input model, number of hidden units, the activation
function and the optimization method used in the training
process to obtain the optimal weights are some of them. Many
studies have developed methods used to obtain optimal
architecture. In general, the architecture is not known and has
to be determined heuristically1. Several approaches have been
taken but none has been shown to be applicable in general.
On the other hands, they are depending on complex
parameter selection and fine-tuning1. In general, there are two
main methods, the first is the general to specific that is started
with a complex model and it will be reduced to the simpler
model with a certain algorithm and the second is the contrary,
i.e., specific to general. Some studies that belong to general to
specific are Optimal Brain Surgeon and Optimal Brain Damage
proposed by Hassibi and Stork2 and LeCun et al.3, respectively,
Magnitude Base Pruning method developed by Hagiwara4 and
Pruning Neuroplasticity by Wagarachchi and Karunananda5. In
these methods, the complex architecture is built first and then
the units with low saliency will be removed to get simpler
architecture. Another type of general to specific class is
Incremental Contribution method developed by Kaashoek and
Van Dick6 that proposed a way to obtain optimal hidden unit
and input unit by constructing a complex architecture, then
the units with no significant weight will be removed from
network result as a simple network. In this case, the removed
unit is regarded not giving real contribution to the result. The
analysis of this method is by using R2  incremental quantity
and graphic method. In this procedure, the optimization
method used to estimate the weights is conventional method.

The next question is whether the optimum value is real
global optimum or just local optimum. Some optimization
methods are, often unable to get the optimal global. Besides,
the optimization methods used  are  difficult  to  determine
the initial value  to  get  convergence  and  need  trial and
error. Even a run from a starting point close to the global
optimum is practically not guaranteed to converge7. Genetic
Algorithm (GA) is one of the approaches to get optimum
global based on evolution theory. There are some reasons why
the using of genetic algorithm is useful to train neural
network8. The first is the peculiarity of genetic algorithm that
is efficient in a large and complex searching space to get an
approach of global optimum, especially if the objective
function has some local optimum.  Because  the  complexity of

the searching space grows, the algorithm can be an
alternative to the technique based on gradient method as
back propagation. The second advantage is its generality.
Genetic algorithm can be used to train all kinds of network
with different transfer functions than sigmoid, which are
discontinuous and hence not trainable by gradient
techniques, just with a little minor modification. Furthermore,
genetic algorithm can be used to optimize not only the
weights and bias but also combination of weights, bias,
topology and the transfer function8. The type of generality
given by genetic algorithm is allowed to use arbitrary
evaluation function. The third reason using genetic algorithm
for learning neural network is that the algorithm is an
important method used in nature. Weights in neural network
are genetically essential and therefore learning method is
used as well as the process of natural selection. This
superiority makes genetic algorithm be used as optimization
technique in NN model to obtain optimal weights. Some
papers that already used genetic algorithm as optimization
method to obtain weights in NN for time series Giovanis9,
Mahajan and Kaur10, Idrissi  et  al.11 and Chung and Shin12. In
this paper, the incremental contribution method is used to
determine the optimal architecture of the NN model which
the weights are estimated by genetic algorithm.

MATERIALS AND METHODS

Data: The data used in this section is the ten daily rainfall data
of ZOM 136 Cokro Tulung, Klaten, Central Java Indonesia from
January, 2010 until July, 2018 with the length of 309. The
network inputare three variables i.e., lags 1, 2 and 18.The eight
hidden units are built first, i.e., NN(1,2,18;8). Logistic sigmoid
and linear are the activation functions used in hidden layer
and output layer, respectively. The specification of genetic
algorithm used to estimate weights are: population size = 20,
probability  of  crossover  pc = 0.7,  probability   of   mutation
pm = 0.1 and the number of generations = 10000. Selection of
the parents couple is using roulette wheel selection method.

Optimization of weights and architecture of neural
network: Neural Network model were examined specifically
in this paper is Feed Forward Neural Network (FFNN).
Architecture of FFNN model for forecasting time series data
with the configuration Xt-1, Xt-2, ..., Xt-p as input units and a
constant (bias), one hidden layer with n neurons and one
output unit is shown in Fig. 1. This FFNN model can be written
as follows13:

(1) l pb o h b h
t j j ji t-i tj = 1 i = 1

x = w + w f w + w x + ε 
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Fig. 1: Architecture of FFNN for forecasting the time series
data with one hidden layer containing n neuron and
the input variables at lags 1 until lag p

where, wbj is the weight between constant unit and neuron
while wb is the weight between constant and output unit. The
symbols whji and woj are weights connection from input to
neuron and from neuron to output respectively. Both
functions fh is the activation function used at hidden layer. The
notation used to write neural network model is NN (j1, ..., jk, n)
that shows FFNN with input variables at lag j1, ..., jk and n
neuron in one hidden layer.

The most widely used of training algorithm for feed
forward neural network is back propagation14. It involves three
stages: feed forward of the input pattern, the calculation and
back propagation of error and adjustments the weights. At the
first stage, every input unit receives an input signal xi and
passes it to the hidden units z1, ..., zp. Each hidden unit then
calculates the activation and weighted summation is
considered as:

(2)jin ji i bjz = w x + w

where, xi is the activation of the i-th input unit that sends the
signal to hidden unit j and wj is the weight of the signal sent
and j = 1,2, ..., q is the number of hidden units, whereas wbj is
the weight from bias to hidden unit j. The sum was
transformed by nonlinear activation function f(.) to get
activation zj from hidden unit j in the form:

(3) jj inz = f z

After all of the hidden units calculate the activation and
then they send the signal zj to the output unit. The output unit
then calculates the activation to give response from the
network to input pattern in the form:

g (w, z)  =  Σ wj zj  +  w bo (4)

The function at Eq. 4 is the output of the network:

y  =  Σ w j  f (a j )  +  w bo (5)

where, wbo is the weight from bias to the output unit. During
the training process, output unit compares the calculated
activation y with the target t to establish the error of the
pattern.

Incremental contribution: The act of determining the size of
a network can be done by analysis of incremental contribution
proposed by Kaashoek and van Dick6. The explanation of the
method can be described below. Consider a network with H
cell  (unit)  at  hidden  layer. The network output will be as in
Eq. 5 and the network performance quantity can be declared
as squared of the correlation coefficient from y and í:

(6)
2

2 ˆ(y 'y)R ˆ ˆ(y 'y)(y 'y)


where, í is the vector of network output. The stage done
compares the observed data with the network output in
which one cell is removed to the one which all the cells are
entered in the network. For instance, if the contribution from
hidden cell h is put to zero (ch = 0) then the network will
produce the output í!h, with error:

e!h  =  y - í!h (7)

The squared of correlation coefficient from the network
reduced by one cell in the hidden layer, that is correlation
between y and í !h, is abbreviated as6:

(8)
2

2 h
h

h h

ˆ(y ' y)R ˆ ˆ(y 'y)(y ' y )



 



The incremental contributions of cell h can be explained
as the difference of R2 and R2!h:

R2
inc = R2-R2

-h (9)

If the result of R2inc from cell h is lower than R2inc from all
other cells then this cell is a candidate to be removed from the
network. The cell with the lowest contribution is the first
candidate  for  exclusion.   From   this   pronouncement,   if,   a
number of cell H and there are H’ cells that have low R2inc
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compared   to   all  other  cells,  then  the  number  of  cells 
that  were  maintained  in  the  network  are  H-H’  cells.  This
value  is  an  optimal  number  of  hidden  units  in  the 
network   due   to  the cell with low R2inc  basically does not
have  a  significant  contribution,  in  terms  of the network
with addition of the cell is not unduly affect network
performance.

Reduction cells can also be done with graph analysis.
Graph of {t, í!h (t)} is compared with the graph of {t, y(t)} and
this comparison will provide clues for the contribution of
hidden cell h in explaining the variance of y(t). If the graph of
{t, í!h (t)} has shown a good prediction to {t, y(t)}, then cell h
can be excluded from the network because the network
without cell h has resulted a good prediction. In other words,
the addition of cell h has no significant contribution to the
network performance.

The same procedure can be applied to reduce the
number of input layer cells. In this case, í!i is network output
without input cell i. The contribution of input cell i is put to
zero (Ahi = 0, h = 1, 2, ..., H), then the reduced network can be
quantified by the square of the correlation coefficient R2!i
between y and í!i as in Kaashoek and van Dick6:

(10)
2

2 h
i

i i

ˆ(y ' y)R ˆ ˆ(y 'y)(y ' y )



 



The contribution of cell i is measured as R2-R2!i. The
relative value of incremental contributions in R2 can be used
in evaluating whether an input cell can be omitted or not.

Genetic algorithm: The genetic algorithm (GA) is a search
heuristic that is routinely used to generate useful solutions to
optimization and search problems15,16. This method works by
imitating the mechanism of natural genetic, that finds the
structure of the best gen in creature's body. The basic of
genetic algorithm is evolution theory that explains base
principal of the conceived species in the world. Species who
are able to adapt better would have more chance to hold out.
The stage of genetic algorithm began with determining a set
of potential solution and adjusts it by some iteration to get the
best solution. The set of potential solution is established
earlier and called chromosome, that is formed randomly in the
form of generated binary alphabet. All sets of observed
chromosomes represent a population. The chromosomes will
evolve in some stages of iteration called generation. Evolution
process to get new generation (offspring) comprises selection,
crossover and mutation process. In principal, this algorithm
has several characteristics such as  working  a  set  of encoding

parameters, not the parameter set itself; searching from a
population of points, not just from a single point; using the
information of objective function (fitness function), not
derivative, using random operations with probabilistic
adjustment rules, not operation with certain derivative rules at
every iteration. 

Genetic algorithm works with encodes candidate
solutions in the form of chromosomes, each of has the same
length and consists of elements such as symbols of the chosen
set, for instance is binary alphabet. Each chromosome x
corresponds to the fitness function f(x). The election of
chromosome length, alphabet and coding that constitutes a
mapping from S (set with certain universe of discourse) to the
set of chromosomes is called representation scheme of a
problem.

The first stage of genetic algorithm after initialization of
early population P(0) is selection operation, that is forming
mating pool set M(k) that many elements are equal to the
number of elements in P(k). Each point m(k) in M(k) is taken
from the points x(k) in P(k). The second stage is evolution in the
form of cross-breeding operations (crossover) and mutation.
Crossover operation took a pair of chromosomes as the parent
that give birth a pair of new chromosomes(offspring). A parent
couple is chosen from M(k) randomly with probability pc. The
completion of crossover is followed by the mutation process
by changing (flipping) the value of one or more genes in a
single chromosome. The mutation process occurred randomly
with small probability, pm<<1. The next stage is to select a
chromosome to survive to the next generation. An aid strategy
that can be used is elitism, i.e., by storing some good
chromosomes that have been maintained in the next
generation.   Another   useful  strategy  is  linear  fitness
ranking (LFR) to scale fitness values obtained from the
individual evaluations. LFR is done to avoid inclination to
converge to the local optimum solution by the new fitness
values obtained with the larger variance. This process is
repeated until it gets a best fitness chromosome as best
solution.

The stages of genetic algorithm can be simplified into the
following:

C Shape the early population (set: k = 0 6 P(0))
C Evaluate P(k)
C If stopping criteria is fulfilled then stop
C Select M(k) from P(k)
C Arrange M(k) to the form P(k+1)
C Back to stage 2 (set: k = k+1)

The stages can also be illustrated as shown in the
flowchart17.
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Evaluate P(k)

P(k)

Fitness
k = k+1

Selection

No

Yes

k = 0
from P(0)

Stopping
criteria

satisfied 

P(k+1)

Stop
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Crossover
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pc

Fig. 2: Summarize of genetic algorithm

As shown in Fig. 2, some criteria that have been arranged
are selection method, crossover technique, probability of
crossover and mutation and the number of generations.
Evaluation is done by using an error criteria. If stopping criteria
has not been satisfied yet, selection process is carried out to
choose two chromosomes as  parent.  Crossover  and
mutation are then be enforced for getting new generation.
This  processes  are  carried  out until   the    fulfillment   of the
stop criteria. In this  case,  time  series data Xt  and  FFNN
model is built as in (1),  the  input  variables  are from lag 1
until lag p (Xt-1, Xt-2, ..., Xt-p), nn and no are logistic sigmoid
f(x)=1/(1+exp(-x)) and linear function y = x, respectively. The
estimation of network weights w = (wbn, wbo, win and wno) that
are ë = (ëbn, ëbo, ëin and ëno) can be searched by genetic
algorithm to minimize MSE.

RESULTS AND DISCUSSION

The result of simulation shows that the squared of
correlation coefficient of this model is R2 = 0.9864. The
squared of correlation coefficient of the network which the
hidden unit removed one cell h, i.e. R2!h and the contribution
of each hidden cell h (h = 1,2, ..., 8), i.e., R2inc  are  shown in
Table 1.

The list of Table 1 is the result of NN (1,2,18;8), i.e., the
architecture which three input units and eight hidden units. R2

of NN (1,2,18;8) refer to the squared of correlation coefficient
of neural network model optimized by genetic algorithm.
Values in the row of R2!h indicate the squared of correlation
coefficients when the hidden unit is removed one by one and
R2inc follows the equation  9.  Hidden  cells  3,  5  and  8  are  the 

Fig. 3: Plot of actual and the prediction of NN (1,2,18;8) model 

candidates to be removed from the network due to the R2inc of
these cells are lower than the others. If cells 3, 5 or 8 is
excluded from the network, still have a high values of R2!3, R2!5
and R2!8, respectively. After deleting hidden cells 3, 5 and 8,
there are still five cells that will be used. Figure 3 shows the
plot of full 8 hidden units. By this composition, the initial
architecture contains 41 weights that must be obtained.
Figure 4 shows the plot after removing  hidden unit number
1-8, respectively. Attention should also b paid to the results of
these figures for visually checking the comparison of the plots
after deleting cells with the previous.

In Fig. 4, the top plots are actual and the prediction of the
series which removing hidden units 1 and 2, respectively. They
are the most  extreme  values.  After  excluding the hidden
unit 1 the prediction gave a bad result. So, the hidden unit 1
should be maintained in the  model.  The  same condition is
for second unit. On the contrary, exclusion of the 3rd unit
doesn’t greatly change goodness of the prediction results. It
means that the third unit could be excluded from the model.
The procedure was repeated until the last unit in the hidden
layer. This was the last stage of the proposed procedure and
it  given NN (1,2,18;5) as an optimal size of the network, i.e., NN
which has lags 1, 2 and 18 as input units and five hidden units.
It means that the optimal network architecture chosen was
not the smallest architecture and also not the greatest. This
method could remove about 36.58% weights, i.e., from 41-26.
This result was similar with Kavzoglu18 which was the second
smallest network considered, appeared to be the best choice.
Similarly, in Wijayasekara et al.19 the optimal architectures
were networks with a number of hidden units in the middle of
a number of experiments.
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Fig. 4(a-h): Incremental contribution of input units of NN (1,2,18;8) and NN (1,2,18;1-8), plot actual vs. predicted of FFNN-GA
without hidden units, (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7 and (h) 8
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Table 1: Incremental contribution of hidden units of NN (1,2,18)
R2 of NN (1,2,18;8) = 0.9864
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Excluded hidden cell -H1 -H2 -H3 -H4 -H5 -H6 -H7 -H8
R2-h 0.1304 0.1105 0.9782 0.6257 0.9703 0.4234 0.4421 0.9811
R2inc 0.8560 0.8759 0.0082 0.3607 0.0161 0.5730 0.5443 0.0053

In line with this research, Cantú-Paz20 has compared
several methods and successfully pruning between 30 and
50% of the total weights. It has used genetic algorithms as
optimizers, but has been applied in the case of classification.
On the other hand, Alshahrani et al.21  has done pruning with
a web-based tool, DANNP and has succeeded in reducing the
amount of weight to 99%. However, the main focus of this
study was on input reduction and is applied to the
classification problem. The optimization used was also a
gradient based method, not a heuristic. It was not discussed
whether the method also succeeded in reducing such hidden
units. In cases of reducing the network size, it is also
interesting to study the affect of removing too many hidden
units to the network’s learning ability.

It has not considered the speed needed to do pruning
with this method, as well as the change in speed from the
initial architecture to the final architecture, which are
limitations of this study. For developing, an automatic
architecture design algorithm by using this procedure is
important and interesting rule for speed up the process of
choosing the optimal network. It was successfully conducted
in traditional optimization22. It has also not yet pruned the
neural network model with genetic optimization to reduce
input and hidden layers simultaneously, which will increase
the likelihood of reducing network weights. It would be
interesting to compare various pruning methods in terms of
increasing speed, successfully reduced weights, accuracy and
its application in various types of data, not limited to seasonal
data.

CONCLUSION

The using of incremental contribution to obtain the
optimal size of Neural Network became a good progress in
modeling NN so that the act of determining the optimal
architecture is no longer just based on trial and error
techniques. The graph analysis conducted also helps to decide
which cells should be excluded from the network. The
superiority of the use of genetic algorithm as optimization
method to obtain the optimal weights in this procedure is the
stability of the estimation result in each experiment. From
some experiments done, in each step, the number of hidden
layer cell excluded from network almost always the same, 

from each other. Moreover, in determining the cells used in
the input layer, several experiments carried out always get the
same results, i.e., the input units except lag 1 are excluded
from the network. This procedure also could be adopted for
various neural networks modelling which were use the other
heuristic optimization methods.

SIGNIFICANCE STATEMENT

The main finding is how to obtain the optimal
architecture on neural network model whose optimization
uses the heuristic method, in this case is genetic algorithm. In
much previous work, procedure for obtaining optimal
architecture is limited to the gradient based methods. The
proposed procedure was applied in the seasonal data which
also very rarely discusses the selection of optimal architecture.
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