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Detection of Outliers in Time Series Data: A Frequency Domain Approach
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Department of Statistics, University of Thadan, Tbadan, Nigeria

Abstract: We consider the identification and detection of outliers in frequency domain using
the spectral method. By assuming both the additive and multiplicative effect of outliers on
a series, the parameters of the model were estimated using the maximum likelihood method
with a view to measuring the effect of the suspected outlier on the parameter of the series.
The occurrence of outliers has led to a shift in the phase and amplitude of the Fourier series
thus affected the periodogram estimates. Further more, detection of aberrant observations
is more exact in the frequency domain than in the time domain.
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INTRODUCTION

Considerable attention has been devoted to the detection of outliers in discrete univariate time
series were developed for univariate samples in time domain. Fox (1972) and Rosner (1975) started
study on ouflier detection, Haoglin and Iglewicz (1987) worked on resistant rules for labeling outliers.
Chang and Tiao (1983) introduced the additive {(AO) and Innovative (I0) models, these were further
developed by Shangodoyin and Shittu (2000) the Multiplicative (MO) and Convolution (CO) were
proposed in using the model identification tools (ACF and PACF). However in almost all the
techniques in time domain Tsay (1986). Shangodoyin and Shittu (2003) detected that outliers
were found to have some degree of smearing or swamping effects on other regular observations
in the series. Also most economic and social data which are no longer linear but continuous in nature
just in physics, engineering and medicine are of the contimious type which can be analyzed in
frequency domain.

In this research, we determine the occurrence of outliers in time series data that assumes a
Gaussian process and has a continuous spectrum using the spectral method of analysis. An algorithm
that uses the robust trigonometric regression of Tatum and Hurvich (1993) is proposed. The estimate
of the parameters of the model for the contaminated series is obtained by the maximum likelihood
method with a view to compare with that obtained by the least squares method by Priestley (1981 )and
Brillinger (1981). We also assume the additive and multiplicative effect of outliers on the observed
process and the measure of impact of outliers on the observed process and the measure of impact of
outliers on the observed values shall be estimated as well as the location of the suspected outlier using
a proposed algorithm based on the repeated median transform of Siegel (1982).

ESTIMATION OF PARAMETER USING THE MAXTMUM LIKELIHOOD TECHNIQUE

Here, we estimate the parameters of the model using the maximum likelihood technique with
a view to comparing them with that obtained by the least Square method in the literature
(Priestley, 1981; Brillinger, 1981).

Let X, be any periodic stochastic process with period 2m with Fourier representation as:
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K
%= A+ 2 RCos(wt+0')+g, (1

t=1

Where:

w, : The Fourer frequency;

®, : The phase uniformly distributed on (0, 27)
Ri : The amplitude

g, : Therandom error term NID (0, o)

Equation 1 can be re-written as:

K
X, = A, + 2 (ACos wit+BSin. w,t)+e, (2)

i=1

A, =R cos &, and B; = R, sin ¢, are parameters to be estimated and ¢, is a purely random process,
normal and independently distributed with:

E{g,)=0and(g})=0c’

Where, 6.2 is a further unknown parameter and

k = 1,2,3

.
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‘With a corresponding maximum likelihood function:

- 12 % [X,—A,-TACos. t +BSin. wtl
n 1 2g e

L(8)= Hg(ét) = je

- (2n5) Z

and log- likelihood:
n n._, 1 & k . : (4
L = InL($) :Eln(En)f S Ina’ - 2—22 [X,~ A+ (A Coswt+BSinwt)] 4
S 1
The maximum likelihood estimate of the A, A, and B, are
n _ n X/ 5
Ao = le A 5
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A; ZEZ:Xt cosat i:1,2,...,§ (6)
1=1
and
B:EZthinwlt i-12, N (7
N& 2

It can be shown that the estimates Al and B are unbiased with variances:
Var(A,) =
and

Var(B) =

w ot

Z |2

‘Where:

2z

N K
& = 1 Z[Xt — Z (A, Cos wt+B, Sinwt)
N-K3 t=1

is the unbiased estimate of the residual variance.
ESTIMATION OF PARAMETERS OF A CONTAMINATED SERIES
Our focus here is to derive estimates of the parameters of outlier contaminated series.
The Additive Model
Suppose outliers have additive effect on a series, we assume the additive outlier generating model

of Tsay (1986).
The additive model is given by:

¥, =7, +DET (®)

Where, X,is the observed series; Z, is the outlier free series; and D is the magnitude of the outlier £(7
is the time indicator of the outlier such that

m_ [Lt=T
' 0,t=T

Using (8) in (4) gives the maximum likelihood function:
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1 n
— > [Z,+ DEY -A -
g i=1

=]

g(x) L

L(e):1 ! :We

and the log-likelihood function:

1
267

L = IL{0) = —%In(Zn) - %Incz -

The maximum likelihood estimate of the A, is:

A, = lzzt s De™

1 i=1 ni=t
When t=; A, :Zt+b
the estimate of the magnitude of outlier is:

™ _ ls

Dét - An -—Z Zt
ni=1

att=T, &" = L, therefore:

Dr = Ao Z,

and for reasons of orthogonality when there is no outlier:

X:=A. hence,

Dr=X;— 7,

The maximum likelihood estimate of the A, and B, are:

. 2
A=

=—> 7 cosmt
ngl t 1

and

o

25n .
B = EE Z, sint

3
A

i=1

i,j=1

.cos@. + B sin )]
i i AT

n k
Y[Z,+DEV —A - ¥ (A cosat+ B sino )]
=1

(9

(10)

(1)

(12)

(13)

(14)

(15)

It could be observed that from (12, (14) and (15) the occurrence of outlier has influenced only A, (the
grand mean) and noinfluence on A&, and B, for (AO) model. However, the influence on A, could

be monotone increasing or decreasing depending on whether [ is positive or negative.
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Thus the occurrence of outlier in any series does not affect the periodogram I{es) = Af (&) + Ef (&)
for the (AQ) model.

The Multiplicative Model (MO)

Suppose outlier have multiplicative effect on a data set, without loss of generality, we consider
the multiplicative outlier generating model (MO) {Shangodoyin and Shittu, 2003):

T
X, =2Z,DE (16)

Where, X, is the observed series; Z, is the outlier free series; and D is the magmitude of the outlier
£(" is the time indicator of the outlier such that

m_ [Lt=T
i 0,t=T

Using (16) in (4) we have the log-likelihood function:

L i[Z DEM A — i(A coset+ B, sinwm t)]’ amn
202 et ' ’ i,9=1 ! ! ! ]

L:mum:f%m@mfgm&f

and the estimate of:

- 1a

Ag=—-%7,DE" (18)
ni=1

When t="T; Aq :itb (19)

While the MLE of the magnitude of outlier for the multiplicative model is:

n

AXZ N
DE_;ET) — nt=1 7[1*(mi)]/222t (20)

E Zzt 1=1

in1
Where:

. n 2 2
I(c—)l)— E[A1 +—B; }

the Normalized Periodogram.

The maximum likelihood estimate of the A, and B, are:

a

2 n
A= EZ 7, D! cosat (21
ia

and

134



Asian J. Sci. Res., 1(2): 130-137, 2008

B = Ei Z,DET sinat 22)

1=1

However when there is no outlier, thatis whent # T and £!" = 0, the estimates of Al and ]§1 are

n

2 n
A= EE 7, cosmt

i=1

and
]n?)- = zi Z. sinm t
1= N 't fl
respectively.
‘Which are also unbiased

DETECTION OF OUTLIERS USING THE DERIVED ESTIMATES

The derived estimates shall now be used to diagnose for suspected outliers using the following
proposed algorithms.

Algorithm I (Detection of Outlier)
If observations X, X,.. . . . ; X, can be expresses as a sum of sine and cosine waves as in (2)
which can be written as:

k
X, =2 (@ Cos ot + P, Sinet)+e,

i=1

Using any of the spread sheet package or Microsoft Excel to

¢ Obtain the estimate of the Fourier frequencies & = 2mnk

fork=1,2... %, and

+« 1=1,2,... khence the periodogram I,{w,) for all w inthe range - Il < w <1l by
Io(@) = {af,, + Bloy’]

Where, at(w) and [(w) are as defined in (9) and (10).
If &, is very close to its true value then & (@) and B(c—)) will also be close to a(w)and Plw),
respectively, hence the squared amplitude will be non-zero. However, if ¢, is substantially far from

its expected value the periodogram will be close to zero.

«  Determine the value of wy;1=1, 2,. . . . K whose squared amplitude is non-zero.
Obtain the residual variance and Compute the test statistics:
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-

A =—L fori=12.. N

1

Q>
@t

«  Determine Ay = Max, pay A

+ Forall Az > C where, C is the critical value simulated as 1.00 or 1.10, the observation X;
corresponding to Ay is declared an outlier for the Fourier frequencies w; 1 =1, 2,.... k whose
squared amplitude is non-zero.

¢ Use the Repeated median filter of Siegel (1982) and for all w; # 0; compute the estimate discrete
Fourier transform:

- H
X=X+ 2 (@Sin ot+BSin ot

0et=<ty
X[ gives the uncontaminated data set whose contamination/outlier has been removed.
DATA ANALYSIS

To show the use of the above algorithm, five different natural and well analysed data were used.
They are series A: Zadakat datain a local mosque in Nigeria; series B: Wolfer Sunspot data, a record
of activities in the solar system; series C: Batch chemical data; series D: Well analyzed data from Box
and Jenkins (1976). Nigerian Consumer Price index data obtained for the Federal Office of Statistics;
and series E: Diabetic patient data from the University teaching Hospital, Tbadan, Nigeria.

The algorithm I was used to diagnosed collected data for outliers using the Microsoft Excel
package and the results were summarized in the Table 1-3.

Table 1: The timing and magnitude of outliers
Series A: N =146 (Zadakat data)

Timing (T) Observed value () Magnitude of outliers (T
132 135.5 77.27
138 130.0 76.96

Table 2: The timing and magnitude of outliers
Series B: N =100 (Sunspot data)

Timing (T) Observed value (O) Magnitude of outliers (D)
9 154 118.76
10 125 T8.17
18 132 101.86
19 131 108.01
20 118 60.82
67 122 O8.69
68 138 110.24
79 124 34.01

Table 3: The timing and magnitude of outliers
Series BE: N = (UTH data)

Timing (T) Observed value (Q) Magnitude of outliers (D)
47 58 41.03
63 1 -51.90
83 41 22.30
99 35 17.62

Tt should be noted that no outlier were detected in series C (N =48) and series D (N = 70)
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CONCLUSIONS

The derived estimates using the Maximum Likelihood Method (MLE) compares favourably with
the Least Squares Method (L8M). This confirms the remark made by Priestley {1981) that Maximum
likelihood method is a more asymptotically fully efficient method of estimation. It was found out that
the contarnination has no influence on the estimates of A, and B, for (AO) model. However, the
influence on AU could be monotone increasing or decreasing depending on whether [) is positive or
negative, however for the multiplicative model, the influence on the parameter estimates were
noticeable under the null hypothesis that there is contamination in the series.

We found that 2, 6 and 4 observations were identified as oufliers in series A, B and E, respectively
as shown in Table 1-3 while no observation were identified in series C and D. This is not to say that
the algorithm can not work for small sample size data (i.e., n<100) as studies have shown that the
procedure performs efficiently in any series were contamination is apparent.

It was also observed that using the spectral method of analysis in the frequency domain, the
detection of aberrant observations were more exact than in those techniques in discrete domain.

With the Robust repeated median transform, it can also be observed that the issue of swamping
or masking effect does not arise as outlying observations can be detected more exactly. The Robust
repeated median transform technique is more complex and involves a lot of iterations; it is also more
extensive computationally than other techniques.

RECOMMENDATIONS

Because of the fact that the number of outliers present in a set of data can not be determined
aprori, it is recommended that every set of data, especially time series data should be diagnosed for
outliers; the detected outlier should be treated or accommaodated by any known method, before further
analysis could be carried out.

Future research should emphasize on the identification and detection of outliers in Multivariate
and categorical data as well as the extension of multiple outlier detection technique to the frequency
domain.
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