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Abstract: Cellular Manufacturing System (CMS) is an application of Group Technology
(GT) in which sirmlar parts and machines are grouped into part families and machine cells.
In this study, a metaheuristic called Memetic Algorithm (MA) is introduced to solve the
machine cell formation problem. This study is conducted to minimize the intercellular
movement of parts known as exceptional elements. MA is incorporated using Genetic
Algorithm (GA) and Tabu Search (T'S) Algorithm. In the MA approach, local optimization
(TS) is applied to each newly generated offspring at the end of genetic algorithm. The MA
is tested on a number of problems of various sizes and its performance is evaluated. The
results obtained by MA are highly comparable with an objective obtained by Metaheuristics
GA, T8 and there is a considerable reduction in computational effort.
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INTRODUCTION

Cell formation, one of the most important stages in CMS, is to group parts with similar
geometry, function, material and process into part families and the corresponding machines into
machine cells. Design of cellular manufacturing systermns (CMSs) is a complex, multi-criteria and multi-
step process. In the design of CMSs, design objective (s) must be specified. Minimizing inter-cell
moves, distances, costs and the number of exceptional parts (parts that need more than one cell for
processing) are common design objectives. An exceptional part can be also called an exceptional
element or a bottleneck part. An example is given in order to introduce some of the terminology to be
used in this study.

An example from Kusiak (1992) of 5 part types and 4 machine types was used in order to form
cells. A machine-part matrix is one way to represent the processing requirements of part types on
machine types as shown in Table 1. A 1 entry on row 1 and ¢olumn j indicates that part type j has one
or more operations on machine type i. For instance, part type 1 has operations on machine types 1
and 3. Manufacturing cells are formed with the objective of minimizing inter-cell moves. Two cells
(clusters) are formed as shown in Table 1. Cell 1 consists of machine type 2 and 4 and produces part
type 5 and 2. Cell 2 consists of machine type 1 and 3 and produces part type 3, 1 and 4. Part type 3
needs to be processed on machine type 1 and 3 in cell 2, however, it also needs to be processed on
machine type 2 which is assigned in cell 1. Therefore, an inter-cell move is required: the symbol *
represents an inter-cell move of part type 3. Part type 3 is an exceptional part, so these two cells
(clusters) are called partially separable.
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Table 1: Tlhistration of machine-part matrix before and after cell formation

Initial machine part matrix before cell formation Final machine part matrix after cell formation

Part type 1 2 3 4 5 Part type 5 2 3 1 4
Machine type Machine type

1 1 1 1 2 1 1 *

2 1 1 1 4 1 1

3 1 1 1 1 1 1
4 1 1 3 1 1 0

Analogous to an exceptional part, a bottleneck machine is one that processes parts belonging to
more than one cell. Two possible approaches to eliminate exceptional parts are by considering
alternative process plans for parts or additional machines. In Table 1, 0 represents a void in cell 2. A
void indicates that a machine assigned to a cell is not required for the processing of a particular part
in the cell. In this example, machine type 3 is not necessary for part type 4. The presence of voids
leads to inefficient large cells, which in turn could lead to additional intra-cell material handling costs
and complex control requirements. Any cell configuration should satisfy operational goals (constraints)
such as desired machine utilization, production volume, number of manufacturing cells, cell sizes, ete.

In the last three decades, several research papers and practical reports have been published in the
field of CM, seeking effective methods for designing CMSs. Reviews of existing CM literature can be
found in Joines ef af. (1996) and Selim ef af. (1998). According to those reviews, the existing CM
design methods in the CMSs can be classified into the following categorics: part coding analysis, cluster
techniques, similarity co-efficient, graph partitioning, mathematical programming, heuristic search and
Al-based approaches.

Each design approach considers different munbers of design objectives and constraints to different
extent, depending upon the scope and interest of each. For instance, clustering analysis approaches
consider ouly one objective, the minimization of inter-cell moves. In the design process of clustering
technmques, ouly part operations and the machines for processing those operations are considered.
Other product data (such as operational sequences and processing times) and production requirements
(such as production rate) are not incorporated into the design process. Thus, solutions obtained may
be valid in limited situations. However, they are simple to implement and solutions can be obtained
in reasonable amounts of time. Minimizing inter-cell flows of parts is fundamental to achieving many
of the benefits associated with CM (Cao and Caen, 2005). The cell formation problem is complicated
by the existence of exceptional parts and/or exceptional machines. Both exceptional parts and
exceptional machines cause intercellular movement of parts. Ideally a part-cluster is processed in a
single machine cell for its entire operations. In practice, however, it is a very rare case. Extensive work
has been done by many researchers to provide new techniques for solving this problem.

The recent shift toward heuristic solutions to the Machine-Part Cell Formation {(MPCF) problem
is due, in part to the fact that the problem is NP-complete. With heuristic approaches showing promise
in this area, present study focuses on the application of genetic algorithm, tabu search and memetic
algorithm to the MPCF problem. An objective function provides the basis for evaluating the machine
groupings arrived at by a searching method such as GA, TS. This work uses the metaheuristics of GA,
TS and memetic algorithm for cell formation with an objective of minimizing the exceptional elements.
The proposed memetic algorithm approach combines genetic algorithm with tabu search heuristic. The
objective of the heuristic is to construct a set of machine/product groups and improve it, if possible.
The proposed Memetic Algorithm is validated with the test cases studied in the literature and
comparisons are presented.

METAHEURISTIC ALGORITHMS

The major drawback of mathematical programming approaches is computational timing required
forlarge problems. So heuristic approaches have been used as alternatives to obtain reasonably good
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solutions. Nowadays metaheuristics are widely used to solve important practical combinatorial
optimization problems. A metaheuristic is a set of concepts that can be used to define heuristic
methods that can be applied to a wide set of different problems. Examples of metaheuristics include
Simulated Annealing (SA), tabu search (T'S), genetic algorithm and Ant Colony Optimization (ACO).

GENETIC ALGORITHM

Genetic Algorithms are search and optimization procedures that are motivated by the principle
of natural genetics and natural selection. GA is a metaheuristic for solving combinatorial optimization
problems (Goldberg, 1989). GA is a heuristic solution technique that works by encoding a population
of solutions to a given problem and manipulating these solutions through the use of operators such as
crossover and mutation in an attempt to evolve superior solutions. The new population is further
evaluated and tested for termination. If the termination criterion is met, GA process stops otherwise,
the above cycle is followed until the termination criterion is met.

GENETIC OPERATORS

Reproduction

Reproduction is usually the first operator applied on population. Reproduction sclects good
strings in a population and forms a mating pool. There exist a number of reproduction operators in GA
literature and rank selection method is used for reproduction. The individuals in the population are
ranked according to fitness and the expected value of each individual depends on its rank rather than
on its absolute fitness.

Reproduction selects good strings in a population and forms a mating pool. The lingar ranking
method proposed by Baker (1987) is as follows: Each individual in the population is ranked in
increasing order of fitness from 1 to N. The expected value of each individual i in the population at time
tis given by:

Expectd value(i,t) = (min) +(maxfmin)x% 1)
Where:
N = Sample size.
Min = 0.4
Max = 1.6.

After calculating the expected value of each rank, reproduction is performed using Monte Carlo
simulation by employing random mumbers.

Crossover

In the crossover, new strings are created by exchanging information among strings of the mating
pool. In single point crossover, one crossover point is selected; binary string from beginnming of
chromosome to the crossover point is copied from one parent and the rest is copied from the second
parent.

Mutation

Mutation is also done randomly for each gene and it depends upon another parameter called
mutation probability. Here one gene is selected at random and the mutation operation is performed.
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Tabu Search

Tabu search is a meta-strategy for guiding known heuristics to overcome local optimality. Tabu
Search (TS) has its antecedents in methods designed to cross boundaries of feasibility or local
optimality standard treated as barriers and to systematically impose and release constraints to permit
exploration of otherwise forbidden regions.

The philosophy of Tabu Search is to derive and exploit a collection of principles of intelligent
problem solving. A fundamental element underlying tabu search is the use of flexible memory. From
the standpoint of tabu search, flexible memory embodies the dual processes of creating and exploiting
structures for taking advantage of history (hence combining the activities of acquiring and profiting
from information). TS methods operate under the assumption that a neighborhood can be constructed
to identify adjacent solutions that can be reached from any current solution (Baykasoglu and Gindy,
2000; Tavakkoli and Arunlzhar, 2005).

TS Operators

+  Move attribute: The pair of sites of the string being swapped.

«  History record: List of sites of the string classified under Tabu restrictions with record of on
which iterations each of them classified as tabu.

+  Tabu classification/Restriction: The sites of string swapped in the previous iterations will not
be considered for swapping.

«  Tabu tenure: The tabu restriction of a site is lifted after a consecutive three iterations.

«  Agpiration criterion: Tabu restrictions are lifted for the solutions under tabu classification, with
the value of the objective, 10% or more, less than that of the current solution.

+  Choice criterion: The solution with the minimum Objective value among the neighboring
solutions of the current solution.

«  Termination criteria: Reaching a predefined minimum value of objective or 50 numbers of
iterations whichever occurs first.

Memetic Algorithm

GA are not well suited for fine tuning structures, which are close to optimal solutions. MAs are
EAs that apply a separate local search process to refine individuals (i.¢., improve their fitness by tabu
search algorithm). Under different context and situations, MAs are also known as hybrid EAs, genetic
local searchers (Muruganandam et af., 2005). The operation of MA begins with a population of random
strings representing design and decision variables. Thereafter each string is evaluated to find the
objective value. The population is then operated by 4 main operators reproduction, crossover,
mutation and TS.

Pseudo-code for a simple MA
Begin
Imitialize population;
Evaluate population,
Repeat
Reproduction;
Crossover,
Mutation;
Tabu search;
Until (termination criteria);
End.

141



Asian J. Sci. Res., 1(2): 138-1435, 2008

Problem Formulation

In this study, an objective of minimization of exceptional elements is considered to evaluate the
goodness of the cell formation.

Minimization of exceptional elements is considered as the objective function (Z)

n

1=1 ;=1

G
au[kz;|xlk kaJ/D. (2

k = Cellindex

G = No. of manufacturing cell

M = No. of machines

n = Total number of parts

X, = Binary value indicating if machine i is assigned to cell k
¥y, = Bbinary value indicating if part j is assigned to cell k

a; = Element of machine part incident matrix
Decision Variables
X, = lifmachine typei is assigned to cell k.
= 0, otherwise
Y, = 1,if part/component j is assigned to cell k
= 0, otherwise
Representation

Representation forms a key role in the development of Genetic Algorithm, Tabu Search and
Memetic Algorithm. A problem can be solved once it is represented in the form of solution string. In
the problem, each gene represents whether the machine or part is in that cell or not.

Model Illustration

For 16x30 size problem (Boctor, 1991), each cell or the string is coded and decoded as shown in
Table 2.

After representation, an initial solution can be generated using random numbers and the generated
solution is subjected to iterations or generations.

Parameters Selection

The appropriate values of the GA parameters are arrived at, based on the satisfactory performance
of the trials conducted for this application with different ranges of values. The crossover probability
varied from 0.4 to 0.9 and it was found that the solution was improving faster for a crossover
probability of 0.60. Similarly in the range from 0.001 to 0.020, the mutation probability of 0.015 was
found to retain better solutions than worse solutions.

Table 2: Coded and decoded information for 1630 problem

Machines list Component list
CellNo.  Coded Decoded Coded Decoded
Cell 1 0010001010011100 3,79,12,13,14 11011000111110101 1,24,5,910,11,12.13,
1111101011010 15,17,18,19,20,21,

22,24,26,27,29
Cell 2 1101110101100011  1,24,5,6,8,10,11,15,18 00100111000001010  3,6,7,8,14,16,23,25,28,30
0000010100101
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COMPUTATIONAL RESULTS

To demonstrate the performance of the proposed MA, 7 Group Technology (GT)
problems of different sizes from the information collected from the literature were tested. The selected
matrices range from dimension 4x18 to 24=40. The matrix sizes and their sources are shown in the
Table 3.

The objective function of number of exceptional elements obtained by the proposed MA with
that of GA and T'S are compared and the algorithm was coded in C*.

From the test results, it is observed that out of 87 trials for the 7 problems with total number of
cells as 2 and 3 for different possibilities of minimuwn number of machines which could be
accommodated in either 2 cells or 3 cells, the objective function of MA is mimimum or equally good
for 72 cases compared to GA and TS. Similarly GA has the minimum or equal mumber of exceptional
elements for 14 cases out of 87. And TS has the minimum or eqnal number of exceptional elements for
11 cases out of 87 trials (Table 4).

The computational experience has shown that for most of the problems, MA results in
soluions with lower objective function value. Even though MA vields higher values in few
cases compared to other approaches, it results in better solution and requires very little
computational effort.

Table 3: Selected GT problems from the literature

Problem size Source

48 Chang and Lee (2000)

9x9 Al-Ahmari (2002)

12%10 Al-Ahmari (2002)

16%30 Boctor (1991)

20%20 Harhalakis et af. (1990)

23x20 Chang and Lee (2000)

24x40 Venugopal and Narendran {1993)

Table 4: Comparative results of objective function (exceptional elements) for GA, TS and MA with different cell sizes

zZ
5. No. P. No Rize No. of cells Min. No. of M/Cs GA TS MA
1 1 4x18 2 1 4 11 5
2 2 8 8 5
3 3 1 11 9 8
4 2 9x9 2 1 4 5 3
5 2 6 5 3
6 3 7 8 3
7 4 3 3 3
8 3 1 8 8 5
9 2 7 10 8
10 3 16 10 8
11 3 12x10 2 1 0 5 3
12 2 0 8 0
13 3 3 8 5
14 4 3 8 2
15 5 6 6 5
16 6 8 8 5
17 3 1 9 9 4
18 2 12 8 10
19 3 11 10 5
20 4 11 12 7
21 4 16x30 2 1 16 19 5
22 2 13 17 11
23 3 15 17 11
24 4 26 17 17
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Table 4: Continued

Z
5. No. P.No Size No. of cells Min. No. of M/Cs GA TS MA
25 5 17 15 11
26 [\] 17 15 21
27 7 31 11 11
28 8 39 11 31
29 3 1 40 39 15
30 2 33 41 26
31 3 45 30 33
32 4 37 35 40
33 5 55 37 36
34 5 20<20 2 1 8 10 6
35 2 9 10 6
36 3 10 10 6
37 4 [\] 7 [\]
38 5 12 12 8
39 [\] [\] 12 9
40 7 15 12 [\]
41 8 15 8 7
42 9 14 12 8
43 10 20 12 8
44 3 1 19 13 10
45 2 22 11 16
46 3 28 23 12
47 4 30 15 17
48 5 26 12 14
49 [\] 39 19 15
50 [ 23x20 2 1 15 25 [\]
51 2 28 26 7
52 3 12 27 19
53 4 10 23 7
54 5 20 18 9
55 [\] 20 28 11
56 7 26 24 14
57 8 18 24 15
58 9 21 27 17
59 10 37 27 25
60 11 36 32 24
61 3 1 33 37 21
62 2 23 33 10
63 3 30 48 24
04 4 37 33 21
65 5 43 34 26
66 6 42 35 3
67 7 46 46 44
68 7 24x40 2 1 0 3 0
69 2 1 3 1
70 3 4 7 1
71 4 3 4 2
72 5 1 4 1
73 [\] 2 15 [\]
74 7 4 8 1
75 8 1 9 1
76 9 5 2 4
77 10 7 7 1
78 11 13 14 1
79 12 43 [ 5
80 3 1 15 16 9
81 2 43 21 21
82 3 27 13 15
83 4 31 [ 6
84 5 36 7 13
85 [\] 59 7 9
86 7 27 17 [\]
87 8 50 20 11
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CONCLUSION

A MA approach for obtaiming machine cells and product families has been presented.
Computational experience with the algorithm, on a set of Seven GT problems from the literature has
shown that the MA heuristic performs better than GA and TS algorithm as far as the objective
fimction of minimizing the exceptional elements are concerned. It is inferred from the results obtained
that the proposed MA heuristic is efficient either in the quality of the solutions or in the speed that
gets the solutions.
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