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Abstract: Full autoregressive models are always characterize by many parameters and this
is a problem. Some of these parameters are redundant that is close to zero and there is the
need to eliminate these parameters through the concept of subsetting. Subsets autoregressive
models are free from redundant parameters thereby lowering the residnal variance and
forecasting with such models will always give a better forecast. Likewise auto projective
models calculate on the basis of current knowledge what the errors would have been which
gives us some guide to errors of the future. Tt is in the light of the above we considered the
subsets autoregressive models and auto projective models, to see how these models will
perform with regard to forecast. Exponential smoothening was used to forecast the future
value in auto projective models while conditional least square predictor was used to forecast
the future value in subset autoregressive models. An algorithm was proposed to eliminate
redundant parameters from the full order autoregressive models and the parameters were
estimated. To determine optimal models, residnal variance, Akaike Information Criterion
(AIC) and Bavesian Information Criterion (BIC) were adopted. Results revealed that the
residual variance attached to the subset autoregressive models is smaller than the residual
variance attached to the auto projective models. We conclude that the forecast for subset
autoregressive is preferred to the forecast for auto projective.

Key words: Forecast, autoregressive, auto projective, residual variance, conditional least
square, algorithm

INTRODUCTION

It may be said that the era of linear time series models began with such linear models as Yule’s
autoregressive (AR) models (1927), first introduced in the study of sunspot numbers. In the past five
decades or so, we have seen remarkable successes in the application of linear time series models in
diverse fields for example Box and Jenkins (1970), Hannan (1970), Chatfield (1980), Priestely (1978)
and Nottingham International Time Series Conference in March (1979). These successes are perhaps
rather natural in view of the significant contributions of linear differential equation in all branches of
science. In particular, as far as a one-step-ahead prediction is concerned, a linear time series model is
often quite adequate.

Forecasting counote an attempt to see into the future. There are two words, which are used to
denote numerical forecasting methods namely forecasting and prediction. Forecasting is the process
of estimation in unknown situations. Prediction is a similar, but more general term and usually refers
to estimation of time series, cross-sectional or longitudinal data. Risk and uncertainty are central to
forecasting and prediction. In more recent years, forecasting has evolved into the practice of demanding
planning in every day business forecasting for manufacturing companies. The discipline of demand
planning, also sometimes referred to as supply chain forecasting, embraces both statistical forecasting
and consensus process. Forecasting is commowly used in discussion of time-series data.
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Therefore, forecasting is a powerful useful instrument in planning and making a wise decision
about future. In this research we considered and compared two methods of forecasting, subset
autoregressive and auto-projective.

MATERIALS AND METHODS

Autoregressive Model
A time series {X,} is said to follow an autoregressive process of order P, if it satisfies the
difference equation:

Xf“ = Kl(Xt-l'“) + KZ(Xt-Z'u) Tt Kp(Xt-p'u) e
A finite stationary stochastic process {X,} is defined as:
X=0X +OX,;+. . +OX +e (D

Where:

(i) e isa Gaussian process

(ii) @, P, ..., D, is a finite set of weight parameter
(i) E(X)=p=0

using backward shift operator B, we can write (1) as ®(B) ¥, = e, where
®(B)=1-®,(B)-@,(B)* ... -® (B

and the equation ®(B) = 0 is called the characteristic equation. To ensure stationary, the roots of the
characteristic equation ®B) = 0 must lie outside the unit circle.
The estimate of the parameter @, 1= 1, 2, ..., p can be obtained by Yule Walker method.

Subset Autoregressive Model
A zero-mean stationary stochastic process {X,} is said to be generated by an autoregressive model
of order K, denoted by AR(k), if it satisfies the difference equation

=0 X +OX,+ ...+ O X e (2)

where, {e,) is a white noise process with variance o, Here, {e} will be assumed to a Gaussian
process.

When a model of the form (2) is fitted to a set of observations on a stationary time series {3},
the fitted model will include all the terms {3, ;1=1,2, ... k}.

In many situations, in particular where there may be evidence that a time series may have some
form of a seasonal behaviour, this may lead to models, which include many more parameters than are
strictly necessary to describe its behaviour. It is often desirable to use models of the form (2) where
some of the {X}} are set equal to zero. Such models are referred to as subset auto regressive time series
models.

A major problem in fitting autoregressive time series models, even of full order, has always been
the choice of the order of the model. Consequently, many researchers as Akaike (1973), Box and
Jenkins (1970), Hannan (1970}, Parzen (1974), Quenonille {1947), Walker (1952) and Whittle (1951)
to mention a few, have paid special attention to this problem. The choice of the order of the model goes
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firther back in classical statistics. For example, choosing the best linear mmultiple regression has always
posed a problem to statisticians.

In time series modelling, subset models are often desirable, especially when the data exhibits some
form of periodic behaviour. In such cases, fitting filll order models often results in the fitted coefficients
of some lags being close to zero.

Furnival (1971) has given an algorithm for including and excluding variables in a multiple linear
regression. By applying matrix operations to the augmented matrix associated with the multiple
regressions, estimates of the regression coefficients and residual variance of the corresponding
regression model are obtained. Furnival pointed out that the application of Gaussian elimination to the
augmented matrix has the advantage of saving a great deal of computer time, although it yields ouly the
maximun likelihood estimate of the residual variance and not the regression coefficients. This is not
a disadvantage, since the coefficients of any model of interest may easily be recomputed.

Algorithm for 2*-1 Possible Subsets in Time Series Models

The 21 subsets of time series models make use of the properties of permutation and
combinatorial analysis and the algorithm goes thus:

The k-value, which is an integer and a maximum lag, is identified in our model.

The first sets of numbers are one digit mumber 1, 2, 3, up to k. The second sets of numbers are
2-digit numbers arranged in such a way that the first digit 1 is taking and combine with the next
number until k is reached; the next digit 2 is picked and combines with the next number until k is
reached, the next digit with the next number until k is reached. This is continuing until (k-1) and k is
reached.

The third sets of numbers are three digits and the second digit is operated on to produce third
digit. Our guide is that the 2-digit must have the next forward number until k is reached and the next
two digits must have the next forward digit until k is reached. This is continuing until we have
(k-2)k-1) and k. This is continuing until we have the maximum digit, which is the digit k that is
(k-m)k-s)}k-wik-z)}k-mi(k-y)............ k.
where, n<k by 1,s<kby 2, usk by 3...................... k. Suppose we have our k to be 4, there are
2%-1 possible subsets that is 15 subsets. Following our algorithmn we shall have the following:

1,2,3,4,12,13,14, 23,24, 34, 123, 124, 134,234, 1234

The equation for the following are

X=bx, te (3
X =bx,te (4
X =bx,te (5)
X=bx, T bx b by te (6)

where, 1 =b,, 2 =b,, 3 =b,, 4 =b,. If the minimum AIC occurred in (5) that modsl is the Subset Time
Series model.
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Conditional Mean Square Predictor
The minimum mean square error predictor is given by

3, (m) = E(X,, /X, —o <s<t)

We shall show as follows that the conditional mean square predictor has the smallest mean square
error:
Let M (m) denote the mean square error for the m-step ahead predictor 3, (m) i.e.,
M{m) = E (¥, - X (m))], where, 3, (m) is any predictor.
Mm) = E {[(Xup - X () + (X, (m) - X, (m))]*}

= E(¥n- X (m)y + E(m) - X, (m)* + 2E[(Xe, - X, )X (m) - X, m)]}

M@m =T, +T,+T,
But T, E[E (¥, - X (m) (X (m) - X, (m) | X -0 <5 < t] K05t
Since X, (m) and X,(m) are based on X -« < s < t, hence given X,: - <3 < t X, (m) and X,(im) are
mixed.

Therefore T, =E_ (EG{{m) - 3L, M) E[X,,,, | X, 1 - <s < t- X(m)] =0
Thus M(m) = E(X,,,- X, (m)¥ + E(X{m) - X, (m))? and for M{m} to be minimum X(m) = ¥, {m)
that is, 3(m) = E[X,,,/X, : -e < 8 < t] has the smallest mean square error.

Autoprojective Models

The method to be considered is that for which we extrapolate forwards an existing series, without
regard to other series, which may be concomitant. Auto-projective method calculates on the basis of
current knowledge what the errors would have been which gives us some guide to errors of the future.
Exponential smoothening is a simple method of auto-projective or adaptive forecasting. It is an
effective way of forecasting when you have ouly few observations on which to base your forecast.
Uulike regression models, which use fixed coefficients, forecasts from exponential smoothing method
adjust based upon past forecast error.

Autoprojective Forecasting Models

The exponential smoothing method is appropriate for series that move randomly above and below
a constant mean with no trend and seasonal patterns. The smoothed series X, of X, is computed
recursively by ¥, = X, + (1 - X, , where, 0<a<l is the damping or smoothing factor. The smoother
the o the smoother the 3. By repeated substitution, we can rewrite the recursion as
X =ad> (l- X, , . This shows why this method is called exponential smoothing. The forecast of X
is a weighted average of the past value of X, where the weight decline exponentially with time.

Holt Winters Method of Exponential Smoothing
This method is appropriate for series with linear time trend and no seasonal variation. This
method is a two-parameter method; the smoothed series X, of X, is given by:

X, =a+bk
Where:
¢ = Parameter component {intercept)
b = Trend

These two coefficient are defined by the following recursions
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elt) = aXt+ (1- o) e(t-1) +b(t-1)
bty = Pla-alt-1)) + (1-pib(t-1)

where, 0< ¢, [3<1 are damping factors. This is an exponential smoothing method with two parameters.
Forecast are computed by X,,, = a{T)+ b(T)k . These forecast lie in a linear trend with intercept o(T)
and slope b(T).

Consider also a process which is a constant ¢ plus a random residual e with mean zero. We construct
the prediction at time t.

ay(t) = (1= PIIX, + PX,, + FX,, + ] 7
—0-pT X, (®)

where, due to | B<1] the weights diminish exponentially

ay(t-1)=1-PI[X,_, +BX,_,+..]
(1) = (1 - PX, + Pyt =T).... )]

The formmilar bears some resemblance to a markoff process. If then we know the constant P, we can
construct an estimator of ei(t) at time t from the estimate made at time t-1 plus (1-p) times the actual
observation at time t. This could provide an estimate of the future values for the series.

Let the error at time t-1 in forecasting X, one unit ahead be e, that is to say

Xi—ogt-D=e¢

Substituting for e, (t-1) in (9) o) = X -Pe,=a,t-1) + (1-Ple,. Thus our forecast attimetis
the forecast made at time t-1.

Test for Linearity
A zero-mean stationary stochastic process {X,} is said to be generated by an autoregressive model
of order k, denoted by AR(k), if it satisfies the difference equation

=0 X +OX,+ ...+ O X e (10)

where, {e,} is a white noise process with variance o®. Here, {e,} will be assumed to be a Gaussian
process.

Suppose, in a multiple linear regression, the response variable is given by Y and there is a set of
explanatory variables, say {X,, 3, ....X,}. The full linear regression model is given a set of derivations
on {Y, ¥, X, ....%.},

Yi=a,X;ta,X; +.. . +taxX,+ei=1,2,.. )N (11)

where, {e,) are usually assurned to be independently distributed as N{0, ¢%). The problem is to search
for that subset of explanatory variables, which best explains the variationin Y.

Comparing the AR(k) given by (10) with the multiple regression model given by (11), it may be
seen that they are similar, except that for the AR model the X’s are not deterministic. However, it is
well known that; asymptotically, the results obtained by assuming the X’s are deterministic can be
directly extended to time series modeling.
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With this knowledge, we discussed the test for linearity or test of significance of departure from
linear regression (Table 1).

The Deviations Mean Square and the F-test
In the multiple regression models, the deviations of the Y’s from the population regression plane
have mean 0 and variance 0. An unbiased estimate of o7 is:

ST=3(Y-¥)Y -k

where, nis the size of sample and k is the mumber of parameters that have been estimated in fitting the
regression.
The multiple regression model with two independent variable is given by

Y=atBX +PX, +¢ (12)
Given a sample of n values of (Y, X, X,) the sample regression-the prediction equation is:
Y-a+ bX +b,X, (13)

The values of a, b, and b, are chosen so as to mimimize Z(Y—‘I’)2 the sum of squares of n the

differences between the actual and the predicted Y values. With our model, theory shows that the
resulting estimates a, by, b, and ¥ are unbiased and have the smallest standard errors of any unbiased
estimates that are linear expressions in the Y’s. The value of a is given by the equation

a=Y-bX -bX,
By substituting for a in 2 the fitted regression can be written as:
Y=Y +bx, +byx,

where, x, =X, - X, asusual.
Since the sample means of x, and x, are both zero, the sample mean of the fitted values

Yis Y. Write §=Y-Y and d=Y-¥, so that d represents the observed deviation of Y from the fitted
regression at this point. It follows that

V=Y-Y=(Y-D+(¥-D
=¥+d

Zyzzzszrzdz

Sum of square due to regression= 2. %"
= b12x1y+ szxzy

Sum of square deviations from curved regression = 2.d* =2 y* -3 %’

2
Sum of squares of deviations from a linear regression _ Syt (2xy)

zx
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Table 1: Analysis of variance table for the testing of significance of departure from linear regression

Source of variation df Sumn of squares Mean square
Deviations from linear regression n-2 Ey2 _Eiﬂ (Zy2 _292);[1_2

2 2
Deviations from curved regression n-3 Syt - Qx) =5y _ox) V/(n—3)

zx zx

Reduction sum of squares 1 Difference *# = Differencefl
o=
Residual Variance

Residual variance or unexplained variance is part of the variance of any residual. In analysis of
variance and regression analysis, residual variance is that part of the variance which cannot be
attributed to specific causes. The unexplained variance can be divided into two parts. First, the part
related to random, everyday, normal, free will differences in a population or sample. Among any
aggregation of data these conditions equal out. Second, the part that comes from some condition that
has not been identified, but that is systematic. That part introduces a bias and if not identified can lead
to a false conclusion.

Akaike Information Criteria (AIC)

The Akaike information criterion (AIC) (pronounced ah-kah-ee-keh), developed by Hirotsugu
Akaike in 1971 and proposed in Akaike (1974), is a measure of the goodness of fit of an estimated
statistical model. It is grounded in the concept of entropy. The AIC is an operational way of trading
off the complexity of an estimated model against how well the model fits the data.

In the general case, the AIC is AIC = 2k-2In(L)

where, k is the number of parameters and L is the likelihood fiunction.

Over the remainder of this entry, it will be assumed that the model errors are normally and
independently distributed. Let n be the number of observations and RSS be the residual sum of squares.
Then AIC becomes

AIC = 2k + nIn(RSS/M)

Increasing the number of free parameters to be estimated improves the goodness of fit, regardless of
the mumber of free parameters in the data generating process. Hence AIC not only rewards goodness
of fit, but also includes a peualty that is an increasing function of the number of estimated parameters.
This peualty discourages overfitting. The preferred modzl is the one with the lowest AIC value. The
AIC methodology attempts to find the model that best explains the data with a minimum of free
parameters. The AIC penalizes free parameters less strongly than does the Schwartz.

Bayesian Information Criterion

In statistics, the Bayesian Information Criterion (BIC) is a statistical criterion for model selection.
The BIC is sometimes also named the Schwarz criterion, or Schwarz Information Criterion (SIC). It
is so named because prof. Gideon E. Schwarz (1978) gave a Bayesian argument for adopting it.

Let:
n = The number of observations, equivalently, the sample size
k = The number of free parameters to be estimated. If the estimated model is a linear regression,

k is the number of regressors, including the constant
RSS = The residual sum of squares from the estimated modsl
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L = The maximized value of the likelihood function for the estimated model
The formula for the BIC is:
BIC< [—ZIHL + kln(n)]
n

Under the assumption that the model errors or disturbances are normally distributed, this becomes:

BIC-In [@] FEWALLE
n n

Given any two estimated models, the model with the lower value of BIC is the one to be preferred. The
BIC is a decreasing function of RSS, the goodness of fit and an increasing finction of k. The BIC
penalizes free parameters more strongly than does the Akaike Information criterion.

RESULTS AND DISCUSSION

Table 2: Analysis of variance table for the testing of significance of departure from linear regression

Source of variation df Sum of squares Mean square
Deviations from linear regression 185 19.6000 0.1059
Deviations from curved regression 184 19.6044 0.1070
Reduction sum of squares 1 0.0350 0.0350

F=0.035/0.1070, =0.33

From Table 2, the test revealed non departure from linearity and as a result the data used for this
research is linear in nature.

Fitting of Full and Subset AR to Real Series

For our illustration, we have considered a well known series that is chemical process concentration
readings every 2 h with 187 observations. We fitted full AR for 187 observations and forecast for
15 observations. Using the Yule Walker estimation procedure, the linear model of all orders up to AR
(30) 1s fitted. The choice of the order is made on the basis of Akaike Information Criteria (AIC). Itis
found that AIC is minimum when p = 7. The fitted model is:

X, = 0.361362x,, +0.242756x,,+ 0.012048x,, + 0.045449x, ,+
0.004248x, +0.088649x, , +0.245123x, , +e,

The Algorithm described earlier was employed in fitting of best subset AR model. There are 2°-1
possible subsets, that is, 127 subsets. The choice of the best subset is made on the basis of minirmum
AIC and BIC and having considered the 127 possible subsets, it is found that AIC and BIC are
minimum in the modsl

X=0.371775x,,+ 0.265296%,, + 0.109497x , + 0.253978x,, + ¢,
Auto-Projective Model
¥, =0.136840(t-1)=¢,

Exponential smoothening
Included observations: 187
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Method: Holt-Winters No Seasonal
Original Series: CHEMICALF
Forecast Series: CHEMICSM

Parameters: Alpha 1.0000
Beta 0.0000
Sum of squared residuals 0.079346
Root mean squared error 0.020172
End of period levels: Mean 17.26274
Trend 0.001300

Table 3: Performance of subset autoregressive and autoprojective models

Subset atoregressive model Autoprojective model
Mean RV AIC BIC Mean RV AlC BIC
0.00088 0.08950 0.46317 0.53412 4.30758 55.5150 7.15 716

Rv = Residual Variance, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion

Table 4: Forecast for subset autoregressive models

1 NA NA NA NA NA

6 NA NA 16.86460 16.72765 16.59578
11 16.56912 16.75631 16.75708 16.78870 16.80208
16 16.76622 16.72002 16.70706 16.73761 16.74919
21 16.77109 16.78178 16.77740 16.76545 16.75990
26 16.76369 16.76897 16.77867 16.78591 16.78876
31 16.78810 16.78761 16.78879 16.79151 16.79609
36 16.80066 16.80423 16.80054 16.80836 16.81024
41 16.81262 16.81567 16.81898 16.82218 16.82504
46 16.82761 16.83007 16.83260 16.83533 16.83821
51 16.84113 16.84399 16.84675 16.84943 16.85211
56 16.85482 16.85759 16.86039 16.86320 16.86598
61 16.86873 16.87147 16.87421 16.87697 16.87974
66 16.88252 16.88529 16.88806 16.89082 16.89358
71 16.89634 16.89911 16.90188 16.90465 16.90742
76 16.91019 16.91296 16.91573 16.91850 16.92127
81 16.92404 16.92681 16.92959 16.93236 16.93513
86 16.93791 16.94068 16.94345 16.94623 16.94900
91 16.95178 16.95456 16.95733 16.96011 16.96289
96 16.96567 16.96844 16.97122 16.97400 16.97678
101 16.97956 16.98234 16.98513 16.98791 16.99069
106 16.99347 16.99626 16.99904 17.00182 17.00461
111 17.00739 17.01018 17.01296 17.01575 17.01854
116 17.02132 17.02411 17.02690 17.02969 17.03248
121 17.03527 17.03806 17.04085 17.04364 17.04643
126 17.04922 17.05201 17.05481 17.05760 17.06039
131 17.06319 17.06598 17.06878 17.07157 17.07437
136 17.07716 17.07996 17.08276 17.08556 17.08835
141 17.09115 17.09395 17.09675 17.09955 17.10235
146 17.10515 17.10795 17.11076 17.11356 17.11636
151 17.11917 1712197 17.12477 17.12758 17.13038
156 17.13319 17.13599 17.13880 17.14161 17.14442
161 17.14722 17.15003 17.15284 17.15565 17.15846
166 17.16127 17.16408 17.16689 17.16970 17.17251
171 17.17533 17.17814 17.18095 17.18377 17.180658
176 17.18940 17.19221 17.19503 17.19784 17.20066
181 17.20348 17.20629 17.20911 17.21193 17.21475
186 17.21757 17.22039 17.22321 17.22603 17.22885
191 17.23167 17.23449 17.23732 17.24014 17.24296
196 17.24579 17.24861 17.25144 17.25426 17.25709
201 17.25991 17.26274
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Table 5: Forecast for auto-projective model

1 NA NA NA NA NA

6 NA NA 16.86460 16.86590 16.72895
11 16.59708 16.57042 16.75761 16.75838 16.79000
16 16.80338 16.76752 16.72132 16.70836 16.73891
21 16.75049 16.77239 16.78308 16.77870 16.76675
20 16.76120 16.76499 16.77027 16.77997 16.78721
31 16.79006 16.78940 16.78891 16.79009 16.79281
36 16.79739 16.80196 16.80553 16.80784 16.80966
41 16.81154 16.81392 16.81096 16.82028 16.82348
46 16.82634 16.82891 16.83137 16.83390 16.83663
51 16.83951 16.84243 16.84529 16.84805 16.85073
50 16.85341 16.85612 16.85889 16.86169 16.86450
61 16.86728 16.87003 16.87277 16.87551 16.87827
66 16.88104 16.88382 16.880659 16.88936 16.89212
71 16.89488 16.89764 16.90041 16.90318 16.90595
76 16.90872 16.91149 16.91426 16.91703 16.91980
81 16.92257 16.92534 16.92811 16.93089 16.93366
86 16.93643 16.93921 16.94158 16.94475 16.94753
91 16.95030 16.95308 1695586 16.95863 16.90141
96 16.96419 16.96697 16.96974 16.97252 16.97530
101 16.97808 16.98086 16.98304 16.98643 16.98921
106 16.99199 16.99477 16.99756 17.00034 17.00312
111 17.00591 17.00869 17.01148 17.0142¢6 17.01705
116 17.01984 17.02262 17.02541 17.02820 17.03099
121 17.03378 17.03657 17.03936 17.04215 17.04404
126 17.04773 17.05052 17.05331 17.05611 17.05890
131 17.06169 17.06449 17.06728 17.07008 17.07287
136 17.07567 17.07846 17.08126 17.08406 17.08686
141 17.08965 17.09245 17.09525 17.09805 17.10085
146 17.10365 17.10645 17.10925 17.11206 17.11486
151 17.11766 17.12047 17.12327 17.12607 17.12888
156 17.13168 17.13449 17.13729 17.14010 17.14291
161 17.14571 17.14852 17.15133 17.15414 17.15695
166 17.15976 17.16257 17.16538 17.16819 17.17100
171 17.17381 17.17663 17.17944 17.18225 17.18507
176 17.18788 17.19070 17.19351 17.19633 17.19914
181 17.2019¢6 17.20478 17.20759 17.21041 17.21323
186 17.21605 17.21887 17.22169 17.22451 17.22733
191 17.23015 17.23297 17.23579 17.23862 17.24144
196 17.24420 17.24709 17.24991 17.25274 17.25556
201 17.25839 17.26121

From Table 3, we could see the performance of the two models. Residual variance attached to
subset autoregressive model is smaller than the residual variance attached to the autoprojective model.
This is suggesting to us that autoregressive model perform better than the autoprojective model. With
this result it is now wise for us to forecast with the best model. Autoprojective model is as well
adequate if we forecast with it but the subset autoregressive model should be preferred. The forecast
of the two models are as givenin Table 4 and 5.

CONCLUSION

In this study, we have seen clearly the estimation of the parameters of subset autoregressive
models and autoprojective models. The linearity test was performed on owur data for standardization
that i1s ascertaiming that the data is linear in nature. As we have noted earlier that forecasting with best
model is the appropriate thing to do. As a result we have seen the performance of subset autoregressive
modzl over autoprojective model through the residual variance. Though it is good to forecast with the
two models which we have done but the forecast attached to the subset autoregressive model should
be preferred. Conclusively, after performing linearity test on our data and we want to go ahead and
forecast, subset autoregressive model should be preferred.
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