Asian Journal of Scientific Research ISSN 1992-1454 Asian Journal of Scientific Research 5 (1): 1-13, 2012 ISSN 1992-1454 / DOI: 10.3923/ajsr.2012.1.13 © 2012 Asian Network for Scientific Information # Complementary Therapeutic Potential: A Focus on Polyherbal Products for Hyperglycemia ## S. Sujatha and J. Jemima Shalin International Centre for Bioresources Management, Malankara Catholic College, Mariagiri, Kaliyakkavilai-629153, India Corresponding Author: S. Sujatha, International Centre for Bioresources Management, Malankara Catholic College, Mariagiri, Kaliyakkavilai-629153, India ## ABSTRACT Nature has always been stands as a golden mark to amplify the outstanding phenomenon of symbiosis. Ayurvedic remedies for diabetes are usually mixed formulations containing blood sugar lowering herbs in combinations with immunomodulator, detoxicants with the rationale behind such formulations being provided by modern research. Polyherbal formulations have plant-based pharmacological agents which may exert synergistic, potentiative, agonistic antagonistic actions by virtue of its diverse active principles within themselves. These pharmacological principles work together in a dynamic way to produce maximum therapeutic efficiency with minimum side effects. Medicinal plants existing even before human being made their appearance on the earth. The development procedures of herbal drugs for world-wide use has to been different form that of synthetic drugs. The raw materials for Ayurvedic medicines were mostly obtained from plant sources in the form of crude drugs such as dried herbal powders or their extracts or mixture of products or mixture of product. Apart from these systems there has been a rich heritage of Ethnobotanical usage of herbs by various colorful tribal communities in the country. Hence, the present review provides the supportive evidence consideration of a therapeutic approach combining the beneficial effects of Polyherbal preparation in association with adaptive physical activity for effective management of diabetic complications. Key words: Polyherbal, antidiabetics, hyperglycemia, antioxidant ### INTRODUCTION Diabetes affects about 5% of the global population (Chakrabarti and Rajagopalan, 2002) and management of diabetes without any side effects is still a challenge to the medical system (Rao et al., 2003). Diabetes is one of the most common chronic diseases in the world. The number of people with diabetes is increasing dramatically due to population growth, aging, urbanization and increasing prevalence of obesity and physical inactivity that is finally associated with major health and socio-economic problems. The extent and severity of these problems are reflected in extra mortality and at-risk people. For example, according to the last International Diabetes Federation (IDF) report, about 25,66,000 people (6% total population) are suffering from diabetes in Iran and its prevalence is increasing like other developing countries expecting to reach 51,14,900 in 2025 (Sicree et al., 2007). Current estimates demonstrate that the world prevalence of diabetes will increase to 7.7% (439 million) adults by 2030. Between 2010 and 2030, there will be a 69% increase in number of diabetic patients in developing countries and 20% in developed countries (Shaw et al., 2010). So, with regard to the issue of socioeconomic burden of diabetes, discovery of more effective and less side effect therapies are necessary. In the recent years good data have been obtained from traditional medicines indicating usefulness of many herbal medicines (Hasani-Ranjbar et al., 2008, 2009). Hyperglycemia, diabetes and oxidative stress: Hyperglycemia is a connector between diabetes with diabetic complications (Brownlee, 2001; Rolo and Palmeira, 2006). In the review of Role and Polmeira (2006) four of the most important molecular mechanisms have been involved in hyperglycemia-induced tissue damage. Hyperglycemia-induced overproduction of superoxide is the causal link between high glucose and the pathways responsible for hyperglycemic damage. In fact, diabetes is typically associated with increased generation of free radicals and/or impaired antioxidant defense qualifications, representing a central contribution for reactive oxygen species in the onset, progression and pathological consequences of diabetes. Besides oxidative stress, some evidence has demonstrated a link between various disturbances in mitochondrial functioning and type-2 diabetes. Mutations in mitochondrial DNA and decreases in mitochondrial DNA copy number have been connected to the pathogenesis of type-2 diabetes (Rolo and Palmeira, 2006). Oxidative stress is increased in diabetes and is more definite in women and this leads to cardiovascular disease (Marra et al., 2002). Modifications of life style through increased physical activity and reduced intake of calories can help lower the number of future cases of diabetes (Lakka et al., 2002). Early recognition, treatment and prevention of the metabolic syndrome present a major challenge health care professionals confronting an epidemic of overweight and sedentary lifestyle (Lakka et al., 2002). People with diabetes do not have enough antioxidant defenses (Martin-Gallan *et al.*, 2003) but in contrast, too much of the free radical-induced damage can occur. Oxidative stress takes place while oxygen free radicals are produced in a very large amount through the diminution of oxygen. Diverse surveys were intended to establish the levels of stress associated biomarkers in type-I and II (Varvarovska *et al.*, 2003). Medicinal plants and its anti-diabetic potential: Interntional scenario: For a very long time, plants have been an important role part of treatment of many diseases. The use of plants to treat diabetes is a centuries-old practice. More than 400 traditional plant treatments for diabetes have been recorded but only a small number of these have received scientific and medical evaluation to assess their efficacy. Hypoglycemic action from some treatments has been confirmed in animal models and various hypoglycemic compounds have been identified. Traditional treatments may provide valuable clues for the development of new oral hypoglycemic agents and simple dietary adjuncts. Urtica dioica (Stinging Nettle) has been used for centuries for food and medical purposes. The species name dioica means two houses because the plant usually contains either male or female flowers. It is abundant in North America, Northern Europe and most of Asia, usually found in the rural area. It contains flavonoids (0.7-1.8%), silicic acid (1-4%), Potassium-ions (0.6%), Nitrates (1.5-3%), volatile oil, Histamine, Serotonin, acetylcholine, formic acid and leukotrienes (LTB4, LTC4, LTD4). The blood sugar lowering effect of Urtica dioica has been mentioned in old script such as those written by Avicenna. There have been other reports indicating the benefits of using the infusion or the extract of the leaves or other parts of this plant for the use in diabetes (Ramos et al., 1992; Saha et al., 2011). Moreover, it is used internally and externally as supportive therapy for prostatic hyperplasia (Prasad et al., 2009; Joseph and Jini, 2011), inflammation (Dompeipen et al., 2011). Very recently, Mishra et al. (2012) reported the ethno-medicinal plants used to cure different diseases by rural folks and tribes. Medicinal plants and its anti-diabetic potential: Indian scenario: India represented by rich traditional practices, the present research was focused on culture, traditions and natural biodiversity, offers a unique the antibiotic activity of one new species leads to an opportunity for drug discovery researchers (Jachak and Saklani, 2007). Since ancient times, plants have been an exemplary source of medicine. Ayurveda and other Indian literature mention the use of plants in treatment of various human ailments. India has about 45000 plant species and among them, several thousands have been claimed to possess medicinal properties. Many researchers conducted in last few decades on plants mentioned in ancient literature or used traditionally for diabetes have shown anti-diabetic property. Previously, Grover et al. (2002) reviewed 45 such plants and their products (active, natural principles and crude extracts) that have been mentioned are used in the Indian traditional system of medicine and have shown experimental or clinical anti-diabetic activity. Indian plants which are most effective and the most commonly studied in relation to diabetes and their complications are: Allium cepa, Allium sativum, Aloe vera, Cajanus cajan, Coccinia indica, Caesalpinia bonducella, Ficus bengalenesis, Gymnema sylvestre, Momordica charantia, Ocimum sanctum, Pterocarpus marsupium, Swertia chirayita, Syzigium cumini, Tinospora cordifolia and Trigonella foenum graecum. Among these, we have evaluated M. charantia, Eugenia jambolana, Mucuna pruriens, T. cordifolia, T. foenum graecum, O. sanctum, P. marsupium, Murraya koeingii and Brassica juncea. All plants have shown varying degree of hypoglycemic and anti-hyperglycemic activity (Table 1). Table 1: Indian medicinal plants with hypoglycemic activity | Name of the plants | Family | |---------------------------------------|----------------| | Acacia arabica (Lam.) Muhl. ex Willd. | Mimosaceae | | Aegle marmelos (L.) Correa ex Roxb. | Rutaceae | | Allium cepa L. | Liliaceae | | Allium sativum L. | Alliaceae | | Alœ vera (L.) Burm. f. | Aloaceae | | Areca catechu L. | Arecaceae | | Artemisia pallens Wall. ex DC. | Compositae | | Annona squamosa L. | Annonaceae | | Andrographis paniculata Nees | Acanthaceae | | Aerva lanata (L.) Juss. ex Schult. | Amaranthaceae | | Azadirachta indica A. Juss. | Meliaceae | | Biophytum sensitivum (L.) DC. | Oxalidaceae | | Bombax ceiba L. | Bombacaceae | | Beta vulgaris L. | Chenopodiaceae | | Brassica juncea (L.) Czern. | Brassicaceae | | Barleria lupulina Lindl. | Acanthaceae | | Boerhavia diffusa L. | Nyctaginaceae | | Cassia auriculata L. | Leguminosae | | Caesalpinia bonducella (L.) Roxb. | Cesalpinaceae | | Capparis decidua (Forsk.) Edgew. | Capparidaceae | | Cajanus cajan (L.) Millsp. | Fabaceae | Table 1: Continued | Name of the plants | Family | |----------------------------------------------------|------------------| | Citrullus colocynthis (L.) Schrad. | Cucurbitaceae | | Coccinia indica Wight and Arn. | Cucurbitaceae | | Casearia esculenta Roxb. | Flacourtiaceae | | Catharanthus roseus (L.) G. Don. | Apocynaceae | | Camellia sinensis Kuntze | Theaceae | | Eugenia uniflora L. | Myrtaceae | | Eucalyptus globulus Labill. | Myrtaceae | | Enicostemma littorale Blume | Gentiaceae | | Biophytum sensitivum | Laksmana | | Eugenia jambolana Lam. | Myrtaceae) | | Ficus bengalensis L. | Moraceae | | Gymnema montanum Hook. f. | Asclepiadaceae | | Gymnema sylvestre R. Br. | Asclepiadaceae | | Glycyrrhiza glabra L. | Fabaceae | | Hibiscus rosa sinensis L. | Malvaceae | | Helicteres isora L. | Sterculiaceae | | Ipomoea batatas (L.) Lam. | Convolvulaceae | | Lantana camara L. | Verbenaceae | | Mangifera indica L. | Anacardiaceae | | Memecylon umbellatum Burm. f. | Melastomataceae | | Momordica cymbalaria Fenzl ex Naudin | Cucurbitaceae | | Musa sapientum L. | Musaceae | | Momordica charantia L. | Cucurbitaceae | | Morus alba L. | Moraceae | | Murraya koeingii (L.) Spreng. | Rutaceae | | Nelumbo nucifera Gaertn. | Nymphaeaceae | | Ocimum sanctum L. | Lamiaceae | | Picrorrhiza kurroa Royle ex Benth. | Scrophulariaceae | | Phyllanthus amarus Schumach. and Thonn. | Euphorbiaceae | | Pterocarpus marsupium Roxb. | Fabaceae | | Punica granatum L. | Punicaceae | | Pterocarpus santalinus L. f. | Leguminosae | | Salacia reticulata Wight. | Celastaceae | | Salacia oblonga Wall. | Celastaceae | | Swertia chirayita (Roxb. ex Fleming) H. Karst. | Gentianaceae | | Scoparia dulcis L. | Scrophulariaceae | | Syzygium alternifolium Walp. | Myrtaceae | | Sida cordifolia L. | Malvaceae | | Trigonella foenum graecum L. | Fabaceae | | Terminalia catappa L. | Combretaceae | | Terminalia pallida Brandis | Combretaceae | | Tinospora cordifolia (Willd.) Hook. f. and Thomson | Menispermaceae | | Vinca rosea (Catharanthus rosens) | Rroseaseae | | Zingiber officinale Roscoe | Zingiberaceae | | Zizyphus sativa Gaertn. | Rhamnaceae | **Enumeration of antidiabetic plants:** Several medicinal plants have found potential use as hypoglycemic in the Indian system of medicines, including ayurveda. Many Indian plants have been investigated for their beneficial use in different types of diabetes and reports occur in numerous scientific journals. This article aims to provide a comprehensive review on various plant species from Indian biosphere and their constituents which have been shown to display potent hypoglycemic activity. The use of herbs as hypoglycemic is a major avenue in Indian perspectives particularly for treating diabetes which require to be explored more effectively as there are so many literatures available on these aspects. This paper describes the chemistry, activity and usage of the constituents isolated from these plants from India for the treatment of diabetes recorded by Mukherjee et al. (2006). Traditional herbal medicines used for the treatment of diabetes: In recent years, there has been renewed interest in the treatment against different diseases using herbal drugs as they are generally non-toxic and World Health Organization has also recommended the evaluation of the effectiveness of plants in condition where we lack safe modern drugs (Mohseni-Salehi-Monfared et al., 2010). Plant derivatives with hypoglycaemic properties have been used in folk medicine and traditional healing systems around the world (Yeh et al., 2003) from very ancient time. Despite the introduction of hypoglycaemic agents from natural and synthetic sources, diabetes and its secondary complications continue to be a major medical problem to people (Ravi et al., 2005). In addition, Medicinal plants used to treat hypoglycemic and hyperglycemic conditions are of considerable interest to ethnobotanical community as they are recognized to contain valuable medicinal properties in different parts of the plant depicted by very recently (He et al., 2011). In traditional medicine, diabetes mellitus is treated with diet, physical exercise and medicinal plants, even though, more than 1200 plants are used around the world in the control of diabetes mellitus and approximately 30% of the traditionally used antidiabetic plants were pharmacologically and chemically investigated (Alarcon-Aguilar et al., 2002). Again, Ayyanar et al. (2008) studied the potential hypoglycaemic agents have also been detected for more than 100 plants used in antidiabetic therapy. Traditional treatments may provide the valuable clues for the development of new oral hypoglycemic agents and simple dietary adjuncts (Mukherjee et al., 2006). More than 100 medicinal plants are mentioned in the Indian system of medicines including folk medicines for the management of diabetes which are effective either separately or in combinations (Kar et al., 2003). As per the ethnobotanical literature on traditional Phytotherapy of Indian medicinal plants, the species like Asparagus racemosus butea monosperma, Cathanranthus roseus, Coccinia indica, Gymnema sylvestre, Syzygium cumini and Momordica charantia are consistently used by the tribal communities for the treatment of diabetes (Kumarappan et al., 2007) as well as in modern medicine. The oxidative stress due to free radicals (H_2O_2 , oxy radicals O_2^- etc.) lead to many diseases such as atherosclerosis (DeWitt and Hirsch, 2009) and diabetes mellitus (Rahimi *et al.*, 2005). It is essential to counteract this oxidative stress and there by enhance the immunity of body system. Allopathic drugs are available for counteracting the oxidative stress and hence improve immunity but the side effects and prohibitive cost of these allopathic drugs makes it necessary to search for an alternative (Fazeli *et al.*, 2008). The Ayurvedic system of medicines not only provides that alternative but also scores over the side effects and cost factor of allopathic medicine. Guard Sansar (GS) is a Polyherbal formulation, developed by Pradhan Herbal Company, Bangalore. GS consists of extracts of seven medicinal plants which are *Emblica officinalis*, *Tinospora cardifolia*, *Terminalia arjuna*, *Piper longum*, *Comiphera mukul*, *Nardostachys* jatamansi and Boerhavia diffusa as well as corals and asphaltum. These plant extracts are classified, in ayurveda, as Rasayanas which improve defense mechanism of body and possess antioxidant activity. Earlier studies indicate that Emblica officinalis (Sarkhail et al., 2007), Tinospora cardifolia, Terminalia arjuna and Piper longum possess immunomodulatory and antioxidant activity (Petlevski et al., 2001). As there is a need to generate scientific evidence/prechnical data to support the clinical use of the ayurvedic medicine (s), the present study was undertaken to investigate and to validate the immunomodulatory and antioxidant activity of Guard Sansar. Current trends in diabetes mellitus: Current available therapies for diabetes include insulin and various oral antidiabetic agents such as sulfonylurea, biguanides, α -glycosidase inhibitors and glinides which are used immunotherapy or in combination to achieve better glycerin regulation (Varvarovska et al., 2003). The use of oral drugs is limited due to adverse side effects including hematological, courageous and gastrointestinal reactions, hypoglycemic coma and disturbance of liver and kidney functions in addition, they are not suitable for use during pregnancy (Anam et al., 2009). In the treatment of diabetic mellitus non-pharmacologic measures [leg diet, exercise, relaxation therapy, meditation and music therapy remains a critical component of therapy (Shaw et al., 2010). To avoid the serious side effects of complementary the therapies, technically another survey of alternative treatments used by patients with diabetes (Mobaseri et al., 2009). A part from currently available therapeutic options many herbal medicines have been recommended for the Treatment of diabetes medicinal plants have the advantage of having no side effects (Mohseni-Salehi-Monfared et al., 2010). Effected biological product in diabetes mellitus: Plants have always been utilized as sources of drugs and many of the currently available drugs have been directly or indirectly obtained from plant sources (Jachak and Saklani, 2007). Herbal medicines derived from plant extract are being used to treat a wide variety of clinical disease (Kar et al., 2003). More attention has paid to the protective effects of natural antioxidants against drug induced toxicity studies especially whenever free radical generation is involved (Mobaseri et al., 2009). Flavonoids have been found to play a very important role in protection against oxidative stress (Said et al., 2008). In accordance with the recommendations of the World Health Organization (WHO) committee on diabetes mellitus it is important to investigate the hypoglycemic actions from plants which were originally used in traditional medicine (Jachak and Saklani, 2007). When the herbal remedies may have recognizable therapeutic effects compared with synthetic drugs, derived from the plants are frumenty considered to be less toxic described by Momtaz and Abdollahi (2010). Therefore, the search for the more effective and safer anti hyperglycemic agents becomes an area of active research. The effective botanical products are available in capsules and tablets, as well as in other forms, such as water extracts (also called decoctions or infusions), tinctures (hydro alcoholic extracts) and glycerites (glycerin-extracted preparations that are alcohol free). All vary in potency (21) Searching for new antidiabetic drugs from natural plants is still attractive because they contain substances which take alternative and safe effect on diabetes mellitus (Domola *et al.*, 2010). Most of plants contain glycosides, alkaloids, terpenoids, flavonoids, carotenoids, etc., that are frequently implicated as having antidiabetic effect (Grover *et al.*, 2002). Status of diabetes mellitus disease in the world: Diabetes is one of the most common chronic diseases in the world. The number of people with diabetes is increasing dramatically due to population growth, aging, urbanization and increasing prevalence of obesity and physical inactivity that is finally associated with major health and socio-economic problems (El-Haouari et al., 2007; Ayyanar et al., 2008). The extent and severity of these problems are reflected in extra mortality and at-risk people. For example, according to the last International Diabetes Federation (IDF) report, about 2566000 people (6% total population) are suffering from diabetes in Iran and its prevalence is increasing like other developing countries expecting to reach 5114900 in 2025 (Sicree et al., 2007; Fazeli et al., 2008). Current estimates demonstrate that the world prevalence of diabetes will increase to 7.7% (439 million) adults by 2030. According to Shaw et al. (2010), statement between 2010 and 2030, there will be a 69% increase in number of diabetic patients in developing countries and 20% in developed countries. So, with regard to the issue of socioeconomic burden of diabetes, discovery of more effective and less side effect therapies are necessary. In the recent years good data have been obtained from traditional medicines indicating usefulness of many herbal medicines (Hasani-Ranjbar et al., 2008, 2009). For a very long time, plants have been an important role part of treatment of many diseases. More than 400 traditional plant treatments for diabetes have been recorded but only a small number of these have received scientific and medical evaluation to assess their efficacy depicted by Fathi-Azad et al. (2005). Hypoglycemic action from some treatments has been confirmed in animal models and various hypoglycemic compounds have been identified It contains flavonoids (0.7-1.8%), silicic acid (1-4%), potassium-ions (0.6%), nitrates (1.5-3%), volatile oil, histamine, serotonin, acetylcholine, formic acid and leukotrienes (LTB4, LTC4, LTD4) reported by Bijan et al. (2003). The blood sugar lowering effect of *Urtica dioica* has been mentioned in old script such as those written by Avicenna. There have been other reports indicating the benefits of using the infusion or the extract of the leaves or other parts of this plant for the use in diabetes (Khouri and Golalipour, 2006; Khairandish et al., 2009). Moreover, it is used internally and externally as protective activity in beta cells (Golalipour and Khouri, 2007), stereological studies in liver cells (Golalipour et al., 2007), then morphological as well as histological alterations in renal and liver depicted by (Golalipour et al., 2009a, b) and proliferation of pancreas in diabetic rat (Golalipour et al., 2010). Effects of polyherbal formulations: Polyherbal formulations have plant-based pharmacological agents which may exert synergistic, potentiative, agonistic antagonistic actions by virtue of its diverse active principles within themselves (Table 2). These pharmacological principles work together in a dynamic way to produce maximum therapeutic efficacy with minimum side effects (Sarwar et al., 2011; Karou et al., 2011). According to Ayruvedic texts, a combination of substances is used to get the enhanced described action and eliminate unwanted side effects (Mukherjee et al., 2006). Again, Jeyachandran and Mahesh (2007) have been investigated, antidiabtic and antioxidant values of a polyherbal formulation, Gly-13-C (Pterocarpus marsupium, Azadirachta indica, Swertia chirate, Curcuma longa Gymmena sylvestre, Emblica officinalis, Eugenia jambolana, Salacia reficulate, Trigonella foenum graecum, Vince rosea, Aegle marmelos and two minerals viz., processed stannum and processed asphltum in streptozotocin induced diabetic male Wister rats. He also demonstraded that Gly-13-C provided better glycemic control and significantly protected lever tissue against oxidative damage than reference drug. ${\bf Table\ 2:\ Polyherbal\ medicinal\ plants\ effective\ on\ diabetes\ mellitus}$ | Botanical name | Parts used | Views | Medicinal properties | |--------------------------|-------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------| | Curculigo orchioides | Tuber | | Piles, jaundice, gonorrhea, bronchitis, diarrhoea, dyspnoea, gleet, hydrophobia, pains in the joints, diabetes, cancer etc. | | Scoparia dulcis | Whole plant | | Wounds, ulcer, kidney stone skin disease. It increases
the activities of plasma insulin, pain killers, stomach
troubles, diuretics, fever | | Santalum album | Root | | Urogenital (internal) and skin (external) antiseptic
dysuria and also useful in tuberculosis of gall bladder | | Tribulus terrestri | Root | | Piles, frequency of urination in diabetes, cystitis andurinary tract infection, enhances sex hormones | | Terminalia chebula Retz. | Fruit | | Stomach disorders, piles, fistula, chrouic fever, cough, coryza, sore throat, asthma, renal alculi,diabetes | | Cuminum cyminum Linn. | Seeds | | Antiseptic, anti-spasmedic, antitoxic, bactericidal, diuretic, emmenagogue, nervine, tonic, osteoarthritis, headaches | | Ipomœa turpetum L. | Root | | It is used in the treatment of diarrhea acne and diabetes | | | | | | ### Table 2: Continued | Botanical name | Parts used | Views | Medicinal properties | |----------------------------------|-------------|-------|---| | Trigonella foenum-
graecum L. | Seeds | | Hypoglycaemic, laxative, parasiticide, restorative, uterine toxic, anticholesterolemic, anti inflammatory, antitumor, antidiabetic | | Michelia champaca L. | Flower | | Kidney diseases, anti diabetic, nausea and fever. The oil extracted from the flowers is locally used in headache, opthalmia, rheumatism and gout | | Glycyrrhiza glabra Linn. | Root | | Arteriosclerosis, adjusts blood salts, balances
bloodsugar, cancer, circulation, colds, flu, heart
strengthener, hypoglycemia | | Centella asiatica (L)
Urban. | Whole plant | | Antibacterial, anti-viral, anti-inflammatory, anti-
ulcerogenic, anxiolytic, a cerebral tonic, a circulatory
stimulant, anidiabetict | | Andrographis paniculata
Nees. | Whole plant | | Sorethroat, hepatitis, dysentery choleradiabetes, influenza, brochitis, swelliugs and itches, piles, diabetes | | Withania somnifera | Root | | Dehydration, bone weakness, muscle weakness,
tensionpremature ageing, parkinsons disease,
bone cancer, bipolar disorder, diabetes. diabetes | | Salacia obolnga | Root | | Antidiabetic, anticancer, antibacterial, antifnngal | | | | | | Karnim plus, polyherbal formulation containing the *Momordica charantia*, ocimum sanctum, Azadirachta indica, Picrorrhiza sanctum and Zingiber officinale has been selected by Martin-Gallan et al. (2003). It was helpful in reducing the lipid profile seen in some diabetics in whom hyperglycemia and hyper cholesteriolemia co exist quite. Hence this product has been used as one of the alternative remedy for the treatment of diabetes. Sitasawad et al. (2000) reported that MD-19 is a polyherbal formulation has been screened for antidiabetic activity in alloxan induced diabetes mellitus. MD-19 is a combination of medicinal plants with mineral namely Momordica muricata, Tinospora cordifolia, Trigonella foenum graecum, Caesalpinia bonducella, Curcuma longa, along with shilajit (mineral). Treatment of diabetic rats with MD-19 restored the biochemical parameters significantly and it is also proved to be effective in nephrotoxicity and anti hyperglycemic activity (Kusano and Abe, 2000). Fulzele et al. (2002) projected on DRF/AY/5001, an indigenous polyhedral formulation containing medicinal plants such as Gymnema sylvestre, Syzygium cuimini, Pterocarpous marsupium, Momordica charantia, Emblica officinales, Terminalia beterica, Terminalia chebula and shudh shilajit (Asphaltum). This formulation has been selected to evaluate the antidiabetic and its related mechanism(s) of action. "Diabrid" a herbal based formulation to evaluate the hypoglycemic activity in mild and moderate diabetes. The herbal constituents of Diabrid contain four indigenous medicinal plants namely Gymnema sylvestre, Momardica charantia, Eugenia jambolana and Trigonella graeceium. Furthermore, Hasani-Ranjbar *et al.* (2008) investigated Diabet, a polyherbal formulation intended to use for diabetic patients has been screened for antioxidant activity. The formulation exhibited significant antioxidant activity showing increased levels of SOD, CAT, GPx, GSH and decreased level of LPO. ## CONCLUSION This review studies has been presented cumulative Polyherbal antidiabetic medicinal plants used in the treatment of diabetes mellitus which can provide a comprehensive review on various plant species from Indian biosphere and their constituents. Many Indian plants have been investigated for their beneficial use in different types of diabetes and reports occur in numerous scientific journals. The use of herbs as hypoglycemic is a major avenue in Indian perspectives particularly for treating diabetes. Several new bioactive Polyherbal drugs (Secondary metabolites) isolated from vast kinds of medicinal plants having hypoglycemic effects showed antidiabetic activity commonly with more vibrant as well as most powerful than commonly available oral hypoglycaemic agents such as Daonil, Tolbutamide and Chloropropamide. Though, number of bioactive compounds extracted, isolated and utilized for varieties of medicinal plants have not been well characterized. ## REFERENCES Alarcon-Aguilar, F.J., R. Roman-Ramos, J.L. Flores-Saenz and F. Aguirre-Garcia, 2002. Investigation on the hypoglycaemic effects of extracts of four mexican medicinal plants in normal and alloxan-diabetic mice. Phytotherapy Res., 16: 383-386. Anam, K., R.M. Widharna and D. Kusrini, 2009. α-glucosidase inhibitor activity of *Terminalia* species. Int. J. Pharmacol., 5: 277-280. Ayyanar, M., K. Sankarasivaraman and S. Ignacimuthu, 2008. Traditional herbal medicines used for the treatment of diabetes among two major tribal groups in south Tamil Nadu, India. Ethnobotanical Leaflets, 12: 276-280. - Bijan, F., D. Ahmadvand, S. Vardasbi, F.J. Majin and Sh. Khaghani, 2003. Induction of insulin secretion by a component of *Urica dioica* leave extract in perfused islets of langerhans and its *in vivo* effects in normal and streptozotocin diabetic rats. Ethnopharmacology, 89: 47-53. - Brownlee, M., 2001. Biochemistry and molecular cell biology of diabetic complications. Nature, 414: 813-820. - Chakrabarti, R and R. Rajagopalan, 2002. Diabetes and insulin resistant associated disorders: Disease and therapy. Curr. Sci., 83: 1533-1538. - DeWitt, D.E. and I.B. Hirsch, 2009. Outpatient insulin therapy in type-I and type II diabetes mellitus. JAMA, 17: 2254-2264. - Domola, M.S., V. Vu, C.A. Robson-Doucette, G. Sweeney and M.B. Wheeler, 2010. Insulin mimetics in *Urtica dioica*: Structural and computational analyses of *Urtica dioica* extracts. Phytother. Res., 24: S175-S182. - Dompeipen, E.J., Y. Srikandace, W.P. Suharso, H. Cahyana and P. Simanjuntak, 2011. Potential endophytic microbes selection for antidiabetic bioactive compounds production. Asian J. Biochem., 6: 465-471. - El-Haouari, M., I. Jardin, H. Mekhfi, J.A. Rosado and G.H. Salido, 2007. *Urtica dioica* extract reduces platelet hyperaggregability in type 2 diabetes mellitus by inhibition of oxidant production, Ca2+ mobilization and protein tyrosine phosphorylation. J. Applied Biomed., 5: 105-113. - Fathi-Azad, F., A. Garjani, N. Maleki and S. Ranjdost, 2005. Study of the hypoglycemic activity of the hydroalcoholic extract of *Urtica dioica* in normal and diabetic rat. Pharm. Sci., 2: 65-69. - Fazeli, S.A., A.M. Gharravi, S. Ghafari, M. Jahanshahi and M.J. Golalipour, 2008. The granul density of the dentate gyrus following administration of *Urtica dioica* extract on young diabetic rats. Folia Morphol., 67: 196-204. - Fulzele, S.V., P.M Satturwar, S.B. Joshi and A.K. Dorle, 2002. Studies on the immunomodulatory activity of a herbal formulation. Ind. Drugs, 39: 364-367. - Golalipour, M.J. and V. Khori, 2007. The protective activity of *Urtica dioica* leaves on blood glucose concentration and β-cells in streptozotocin-diabetic rats. Pak. J. Biol. Sci., 10: 1200-1204. - Golalipour, M.J., A.M. Gharravi, S. Ghafari and M. Afshar, 2007. Effect of *Urtica dioica* on morphometric indices of kidney in streptozotocin diabetic rats-a stereological study. Pak. J. Biol. Sci., 10: 3875-3879. - Golalipour, M.J., M.A. Gharravi, S. Ghafari and A. Azarhoush, 2009a. Protective effect of urtica dioicaon renal morphometric and histologic alterations in streptozotocin diabetic rats. J. Babol Univ. Med. Sci., 10: 14-22. - Golalipour, M.J., S. Ghafari and M.H. Farsi, 2009b. Effect of *Urtica dioica* L. extract on quantitative morphometric alterations of hiver parenchymal cells in STZ diabetic rats. Int. J. Morphol., 27: 1339-1344. - Golalipour, M.J., S. Ghafari, V. Kouri and A.A. Kestkar, 2010. Proliferation of the β-cells of pancreas in diabetic rats treated with *Urtica dioica*. Int. J. Morphol., 28: 399-404. - Grover, J.K., S. Yadav and V. Vats, 2002. Medicinal plants of India with antidiabetic potential. J. Ethropharmacol., 81: 81-100. - Hasani-Ranjbar, S., B. Larijani and M. Abdollahi, 2008. A systematic review of Iranian medicinal plants useful in diabetes mellitus. Arch. Med. Sci., 4, 3: 285-292. - Hasani-Ranjbar, S., B. Larijani and M. Abdollahi, 2009. A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases. Inflamm. Allergy Drug Targets, 8: 2-10. - He, L., Y. Qi, X. Rong, J. Jiang and Q. Yang et al., 2011. The ayurvedic medicine Salacia oblonga attenuates diabetic renal fibrosis in rats: Suppression of angiotensin II/AT1 signaling. Evidence-Based Complementary Altern. Med., 10.1093/ecam/nep095 - Jachak, S.M. and A. Saklani, 2007. Challenges and opportunities in drug discovery from plants. Curr. Sci., 92: 1251-1257. - Jeyachandran, R. and A. Mahesh, 2007. Enumeration of antidiabetic herbal flora of Tamil Nadu. Res. J. Med. Plant, 1: 144-148. - Joseph, B. and D. Jini, 2011. Insight into the hypoglycaemic effect of traditional indian herbs used in the treatment of diabetes. Res. J. Med. Plant, 5: 352-376. - Kar, A., B.K. Choudhary and N.G. Bandyopadhyay, 2003. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J. Ethnopharmacol., 84: 105-108. - Karou, S.D., T. Tchacondo, D.P. Ilboudo and J. Simpore, 2011. Sub-saharan rubiaceae: A review of their traditional uses, phytochemistry and biological activities. Pak. J. Biol. Sci., 14: 149-169. - Khairandish, P., M. Mohraz, B. Farzamfar, M. Abdollahi and M.H. Shahhosseiny *et al.*, 2009. Preclinical and phase 1 clinical safety of Setarud (IMOD™), a novel immunomodulator. DARU, 17: 148-156. - Khouri. V. and M.J. Golalipour, 2006. Chronic effect of the hydroalcoholic extract of *Urtica dioica* leaves in regeneration of β-cells of hyperglycemic STZ rats. J. Med. Plants, 5: 23-30. - Kumarappan, C.T., T.N. Rao and S.C. Mandal, 2007. Polyphenolic extract of *Ichnocarpus frutescens* modifies hyperlipidemia status in diabetic rats. J. Cell Mol. Biol., 6: 175-187. - Kusano, S. and H. Abe, 2000. Antidiabetic activity of white skinned sweet potato (*Ipomoea batatas*), in Obese Zucker fatty rats. Biol. Pharmacy Bull., 23: 23-26. - Lakka, H.M., D.E. Laaksonen, T.A. Lakka, L.K. Niskanen, E. Kumpusalo, J. Tuomilehto and J.T. Salonen, 2002. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. J. Am. Med. Assoc., 288: 2709-2716. - Marra, G., P. Cotroneo, D. Pitocco, A. Manto and M.A. Di Leo *et al.*, 2002. Early increase of oxidative stress and reduced antioxidant defenses in patients with uncomplicated type 1 diabetes. Diabetes Care, 25: 370-375. - Martin-Gallan, P., A. Carrascosa, M. Gussinye and C. Dominguez, 2003. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without sub-clinical complications. Free Radic. Biol. Med., 34: 1563-1574. - Mishra, D., R.K. Singh and R.K. Srivastava, 2012. Ethno-medicinal plants used to cure different diseases by rural folks and tribes of north eastern tarai districts of uttar Pradesh, India. Res. J. Med. Plant, 6: 286-299. - Mobaseri, M., A. Bahrami, N.A. Zarghami, A. Aliasgarzadeh and M. Rahmati *et al.*, 2009. Effect of total extract of *Urtica dioica* on insulin and C-peptide secretion from rat (RIN5F) pancreatic β cells and glucose utilization by human muscle cells. Iran. J. Endocrinol. Metab., 11: 721-727. - Mohseni-Salehi-Monfared, S.S., E. Habibollahzadeh, H. Sadeghi, M. Baeeri, M. Abdollahi, 2010. Efficacy of Setarud (IMOD™), a novel electromagnetically-treated multi-herbal compound, in mouse immunogenic type-1 diabetes. Arch. Med. Sci., 6: 663-669. - Momtaz, S. and M. Abdollahi, 2010. An update on pharmacology of *Satureja* species: From antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. Int. J. Pharmacol., 6: 346-353. - Mukherjee, P.K., K. Maiti, K. Mukherjee and P.J. Houghton, 2006. Leads from Indian medicinal plants with hypoglycemic potentials. J. Ethnopharmacol., 106: 1-28. - Petlevski, R., M. Hadzija, M. Slijepcevic and D. Juretic, 2001. Effect of antidiabetes herbal preparation on serum glucose and fructosamine in NOD mice. J. Ethnopharmacol., 75: 181-184. - Prasad, S.K., A. Kulshreshtha and T.N. Qureshi, 2009. Antidiabetic activity of some herbal plants in streptozotocin induced diabetic Albino rats. Pak. J. Nutr., 8: 551-557. - Rahimi, R., S. Nikfar, B. Larijani and M. Abdollahi, 2005. A review on the role of antioxidants in the management of diabetes and its complications. Biomed. Pharmacother., 59: 365-373. - Ramos, R.R., F. Alarcon-Aguilar, A. Lara-Lemus and J.L. Flores-Saenz, 1992. Hypoglycemic effect of plants used in Mexico as antidiabetics. Arch. Med. Res., 23: 59-64. - Rao, B.K., P.R. Sudarshan, M.D. Rajasekhar, N. Nagaraju and C.A. Rao, 2003. Antidiabetic activity of *Terminalia pallida* fruit in alloxan induced diabetic rats. J. Ethnopharmacol., 85: 169-172. - Ravi, K., S. Rajasekaran and S. Subramanian, 2005. Antihyperlipidemic effect of *Eugenia jambolana* seed kernel on streptozotocin induced diabetes in rats. Food Chem. Toxicol., 43: 1433-1439. - Rolo, A.P. and C.M. Palmeira, 2006. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Applied Pharmacol., 212: 167-178. - Saha, P., A. Bala, B. Kar, S. Naskar, U.K. Mazumder, P.K. Haldar and M. Gupta, 2011. Antidiabetic activity of *Cucurbita maxima* aerial parts. Res. J. Med. Plant, 5: 577-586. - Said, O., S. Fulder, K. Khali, H. Azaizeh, E. Kassis and B. Saad, 2008. Maintaining a physiological blood glucose level with Glucolevel, a combination of four anti-diabetes plants used in traditional Arab herbal medicine. Evidence-Based Complementary Alternative Med., 5: 421-428. - Sarkhail, P., S. Rahmanipour, S. Fadyevatan, A. Mohammadirad and G. Dehghan *et al.*, 2007. Antidiabetic effect of *Phlomis anisodonta*: Effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Pharmacol. Res., 56: 261-266. - Sarwar, M., I.H. Attitalla and M. Abdollahi, 2011. A review on the recent advances in pharmacological studies on medicinal plants: Animal studies are done but clinical studies needs completing. Asian J. Anim. Vet. Adv., 6: 867-883. - Shaw, J.E., R.A. Sicree and P.Z. Zimmet, 2010. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 87: 4-14. - Sicree, R., J. Shaw and P. Zimmet, 2007. Diabetes and Impaired Glucose Tolerance: Delice Gan Diabetes Atlas. 3rd Edn., International Diabetes Federation, Brussels, Belgium. - Sitasawad, S.L., Y. Shewade and R. Bhonde, 2000. Role of bittergourd fruit juice in stz-induced diabetic state *in vivo* and *in vitro*. J. Ethnopharmacol., 73: 71-79. - Varvarovska, J., J. Racek, F. Stozicky, J. Soucek, L. Trefil and R. Pomahacova, 2003. Parameters of oxidative stress in children with type 1 diabetes mellitus and their relatives. J. Diabetes Complications, 17: 7-10. - Yeh, G.Y., D.M. Eisenberg, T.J. Kaptchuk and R.S. Phillips, 2003. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care, 26: 1277-1294.