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ABSTRACT

An analytical solution for simply supported and multilayered magneto-thermo-electro-elastic
plates is presented in this study. The fundamental theory was derived based on the generic
first-order transversely shearable deformation shell theory involving Codazzi-(GGauss geometrical
discretion, in which this fundamental equation and its boundary conditions were strenuously
derived using Hamilton's principle. Then the developed theory was applied to plate of rectangular
plane-form, at which the Navier' solution procedure for the response was derived and its mode
shapes were evaluated in the simply supported boundary condition. Moreover, the theory is
intended for a wide range of common smart materials. Thus, among the entire primary variable the
center deflection was selected for validation and verification purpoese and studied for four different
laminations schemes. Whereas, the result has shown a close agreement with those of higher order
shear deformation theory that obtained from literature,

Key words: Laminated composite plate, smart composite, piezeelectricimagnetostrictive,
structronies, free vibration, Navier’ solution

INTRODUCTION

Magneto-thermo-electro-elastic (MTEE) concept is a synergistic integration of smart, adaptive
or responsive materials that contains the main structure and the distributed functional materials
{e.g., piezoelectric, piezomagnetic, electrostrictive, magnetostrictive and alike materials). Which
refer to a class of structures that had the capability of simultaneously sensing/actuating;
mechanical, electrical, magnetic and even thermal effects, as well as simultaneously generating a
control foreces to eliminate the undesirable effects or to enhance the desirable one. Whereas,
structronics are largely improving the working performance and lifetime of devices that construct
from it (Bassiouny, 2006; Badr and Al-Kayiem, 2011a-c). Several accurate solutions of MTEE plate
have been presented using 3-D and 2-D theories or the discrete layer approaches. The exact
closed-form solutions for multilayered piezoelectric-magnetic and purely elastic plates have been
proved for special cases of Pan's analysis. Heyliger and Pan (2004) demonstrated the free vibration
analysis of the simply supported and multilayered MEE plates under cylindrical bending. Then,
studied two cases of the MEE plates subjected to static fields, one under eylindrical bending and the
other of completely traction-free under surface potentials. Following up the previous Stroh
formulation. Pan and Han (2005) presented the 3-D solutions of multilayered and FG MEE plates.
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Wang et al. (2003) proposed a modified state vector approach to obtain 3-D sclutions for MEE
laminates, based on the mixed formulation of sclid mechanics. By an asymptotic approach,
Tsai et al. (2008) studied 3-D static and dynamic behavior of doubly curved functionally graded
MEE shells under the mechanical load, electric displacement and magnetic flux by consideration
the edge boundary conditions as full simple supports. In comparison with the recent development
of 3D solutions of smart plate, we found that the literature dealing with theoretical work in smart
composites plate concerning coupled field phenomena in general and in MTEE in particular, is
rather scarce, especially for shear deformation studies. In addition, the distribution of sensors and
actuators in the plate structure are not well understood.

In this study, a theory of laminated composite MTEE plates based on the First-order
Transversely Shearable (FSDT) model will be developed. New issues elicited by the structural
lamination, such as the distributions of center deflection over the thickness of plate are addressed.
The results supplied herein are expected to provide a foundation for the investigation of the
interactive effects among the thermal, magnetie, electric and elastic fields in thin-walled structures
and of the possibility to apply the MTEE adapting.

THEORY OF VARIATIONAL PRINCIPLE
The energy functional are important for their use in approximate methods as well as deriving
a consistent set of equations of motion coupled with free charge equation and the boundary

conditions (Reddy, 1984; Bao, 1996; Tzou et al., 2004; Badri and Al-Kayiem, 2012a-c). In summary,
the total energy of a shell element 1s defined as:

8}[k—p] dt=0 (1)

where, p is total potential energy:
p=I11,1Q6, &, g, B + (TOIAV = JI (ts, 5, 8)+ Wis, 5, 8)) (2)

where, Q (s;, g, g, t), t (s, &, g) and W (s;, ¢, g)) are the thermodynamic potential “Gibbs free
energy’, tractions and the work done by body force, electrical and magnetic charge, respectively.
Moreover, the kinetic energy is:

K= I [0+ + wiav (3)

2

Substituting Kq. 2 and 3 inte Eq. 1 yields:

By s s [ 06 5.6
ritsn]dvd— [ [ (atls, 5. g)+ 8Wis,, 8, g))dAdH =0

The kinetic energy of the shell can be expressed as:
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It is known that, for quasi-static infinitesimal reversible processes, the linear thermodynamic
potential energy Q of a system subject to mechanical, electrie, magnetic and thermal influences
from its surroundings, can be approximated by:

1
Qls,, €. B» ) zE(Q(Su &y — £, &, —EBqXy —tt)

where, s, g, g and t are the dependent variables of @, while ¢;, {, x and T are the natural
independent variables. In order to obtain the thermodynamic potential for which these variables
are natural, 1s performed by Perez-Fernandez et al. (2009), that 1s:

2Q =it e By —ent B — i, — 07T - 2Q8 e, & - 2K e
— 2 g T 2N Gty — 20,0 5, T 21,7, T

where, @ 18 commonly known as (Gibbs free energy, the superscripts indicate that the
magnitudes must be kept constant when measuring them in the laboratory frame. The constitutive
relations can be expressed formally by differentiation of @ corresponding to each dependent
variable as:

S, = [f} = G, — Q& K, — AT -
K a
&, = %’;QQ J = Qe e G ML~ PL0T
g = [—;;Q ] = K8y~ Mo Ea M L, — ST 5b)
4 5
t= [;8Q J = At e e, FY Ty, T O
Then the total thermodynamic potential 1s given by:
50= Mg N _Ns R (6)
oe ae oy Figr
While the tractions are:
05 8 8) = (G B, + 8,8V, +8,08W,) + (8,50 + £,80) + (£,,38 + £,59) (7

Moreover, the external work is:
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Wis, e, 8) = (£, + £5v, + Fw, + Sy, + ey, — £, + %, — 29, + ¢%9)) (8)

o €

where, f;, fi and [ are the distributed forces in«, B and{ directions, respectively and ¢}
and ¢ are the distributed couples about the middle surface of the shell. In additien f*, ¢°, f# and ¢®
are the distributed forces and couples due to electrical and magnetic charge. Substituting
Eq. 6-8in Eq. 2 and equating the resulted equation with Eq. 1, yields after expanding the

terms:

%[ué + ¥y + Wy [oe— Q8 —kx — Atloe

j! E t _[QiJE - Sl_lE-* + nux - plr]BE_;

g Slwerwi] | ABdAdt- VITT] e+ my&+myx + piclay, |dvae
tO QD tU v

1[v 0 —Pe ity 0t
Llogwe +vowgl DAL CARE

9
{(Snn (Bu,, +C3W, )+ 8, (Bv, + C.»&Pgt) + -S-nqswr}
. (£ (800 +0801)) ~(2,0 (38, + £26,))
I —(Bal®e, + 630)) ~(8,,(50, + £88,)) BsAdt =0
fo £y e

H{[EZu, + £v, + fow, + ey, + ey, I}

—[c®p, +c%p ] [c®9, +¢ 9]

Not that, the temperature 1 1s a known function of position. Thus, temperature field enter the
formulation only through constitutive equations. While, I,, I, and I are, the inertia terms and they

define as:

- 1 1 I+2 .
L=|L+1, R—+— + for j=1,2,3 where [1,,1,,1,,1,,1.]
L

where, 1" is the mass density of the kth layer of the shell per unit mid-surface area. While the
energy expressions described above are used to derive the equations of motion. Note that, the
kinetic relations (i.e., the force and moment resultants per unit length at the boundary ) are
obtained by integrating the stresses over the plate thickness as in Eq. 10. Or we can rewrite
Eq. 10 in term of constitutive relations Eq. Ha and b directly as that expressed below in Eq. 11.
Thus, the constitutive terms in Eq. 9 could be replaced by the kinetic relations Eq. 11 for a reason
of casting the equation of motion to be dependent of forces and moment resultant as well as to
reduce the volume integral to double integral. Through, a recast of Eq. 9 to put in the famihar form,
the governing equations of motion and the equation charge equilibrium for first-order shearable
deformation case can be derived based on the fundamental Lemma of calculus of variations. By
integrating the displacement gradients by parts to relieve the virtual displacements and setting its
coefficients to zero individually:
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EQUATIONS OF MOTION

In order to solve the equation of motion, we introduce the following assumptions to cast
the equation of motion in thick (or shear deformation) plate theories. Where the
deepness (or shallowness) of the shell, is One criterion used in developing plate equations. Thus,
shell is referred to as a plate, when it has zero curvature or infinity radius of curvature
(i.e., the term 1+UR,: where, R, is either of the curvature parameter R, Ry, or Ry, (Qatu, 2004;
Badri and Al-Kayiem, 2011a, b). If it is represented by the plane cocrdinate systems for the case
of rectangular orthotropy, this leads to constant Lame” parameters (i.e., A, B=1). In addition, the
radii of curvature are assumed to be very large compared to the in-plane displacements (i.e.,
u/RE; =0, where | = ¢, p and «, p and «ff, u, or v,).

Hence:
_{N; Mfw}_
AT T L PN LE 1%
R R O S an
~h/i2 x
N;, Mg} [k e, —miE, — M, 7551 and x # y

The procedure outlined above, is valid irrespective of using the Navier' solution. The
Navier'-type solution can be applied to cbtain exact solution as (kij+k2Mj) iA} = {F}, which is an
eigenvalue problem. For nontrivial solution, the determinant of the matrix in the parenthesis is set
to zero. Then the configuration of k; terms for 88-1, cross-ply and rectangular plane form is given

by Badr and Al-Kayiem (2012b).

ILLUSTRATED EXAMPLE

In the present examine, laminated composite square plate (a/b-1) with both the upper and
lower surfaces embedded smart materials 1s considered. The plate structures considered here are
made of Terfonal-D smart composite material. The material properties are given in several papers
and books like (Reddy, 2004; Badri and Al-Kayiem, 2011¢) and it will not repeat here, The adhesive
used to bond the structural layers or smart-material layers are neglected in the analysis. The
laminated composite structures are composed of N layers and all the layers are assumed to be of the
same thickness. The side-to-thickness ratios stack range (a/h = 10 to a/h = 100) are considered to
represent the thick and thin laminated composites. Four different laminations schemes
(i.e., symmetric cross-ply, symmetric angle-ply, symmetric general angle-ply and asymmetric
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Table 1: Static analysis of nondimensionalized center deflection as w= 10" x w 0 /h and load parameter P° = P;a“ IE 2h4 of laminated
composite plate (a/b = 1, CFRP and Terfonal-D, 10-layer and SS-1)

Symmetric Symmetric Symmetric Asymmetric general
cross-ply angle-ply general angle-ply angle-ply (M, 45,-45,
(M,90,0,90,008 (M,45,-45,45,-45)s (M,45,-45,0,90)s 15,-15,0,90,30,-30, M)
Load
parameter Presented HSDT Presented HSDT Presented HSDT Presented HSDT
Thick (a/h = 10) 1 0.0089 0.00869 0.0053 0.00684 0.0067 0.00697 0.0070 0.00706
3 0.0268 0.02606 0.0160 0.02053 0.0200 0.02090 0.0209 0.02115
0.0446 0.04341 0.0266 0.03420 0.0333 0.03482 0.0348 0.03521
10 0.0892 0.08666 0.0532 0.06827 0.0666 0.06952 0.0696 0.07018
15 0.1338 0.12958 0.0798 0.10208 0.0999 0.10401 0.1044 0.10480
30 0.2677 0.25519 0.1596 0.20102 0.1999 0.20531 0.2088 0.20594
45 0.4015 0.37402 0.2394 0.29469 0.2998 0.30186 0.3132 0.30188
60 0.5353 0.48504 0.3193 0.38232 0.3997 0.39279 0.4176 0.39204
80 0.7138 0.62070 0.4257 0.49002 0.5330 0.50523 0.5568 0.50360
100 0.8922 0.74426 0.5321 0.58856 0.6662 0.60858 0.6960 0.60638
Thin (a/h = 100) 10 0.0864 0.07518 0.0525 0.05660 0.0659 0.05799 0.0689 0.05880
20 01727 0.14969 0.1051 011278 0.1319 0.11560 0.1378 0.11687
30 0.2591 0.22294 0.1576 0.16816 0.1978 017252 0.2067 0.17395
40 0.3454 0.29445 0.2101 0.22243 0.2638 0.22843 0.2756 0.22978
50 0.4318 0.36386 0.2627 0.27537 0.3297 0.28313 0.3445 0.28423
60 05182 0.43098 03152 0.32683 0.3957 0.33646 0.4134 0.33719
70 0.6045 0.49572 0.3678 037674 0.4616 0.38834 0.4823 0.38863
80 0.6909 0.55807 0.4203 0.42508 0.5276 0.43871 0.56512 0.43854
90 0.7772 061811 0.4728 047188 0.5935 0.48759 0.6201 0.48696
100 0.8636 0.67592 0.5254 051719 0.6595 0.53501 0.6890 0.53394

general angle-ply laminates) under S3-1 boundary condition are considered in this study. As a
baseline of computer simulation, unless otherwise specified, symmetric cross-ply laminates with
{(55-1) boundary condition are mainly used. The HSDT that developed by Lee (2004), are used here
in the verifications. The shear correction factor used in FSDT is (K? = 5/8). Numerical values of
nondimensional center deflection as function of the load parameter are tabulated in Table 1 and
the effects of two kind of plate thickness are studied. As stated earlier by Tsai et al. (2008), that the
distribution of displacements through the thickness by kinematics field in classical plate theories
may lead to unexpected error.

Consequently, the Higher-order Shears Deformation Theory (HSDT) that allows the
transversal displacement w and its corresponding strain ecg, to vary nonlinearly through the
cross-thickness, should be more accurate. Thus, a correspondence has been observed between the
results of the presented theory with those obtained by Lee (2004) that use an exact model based
on a HSDT and satisfactory agreement is found.

Even though, shear deformation theory is relevant in the stress calculations but still not
essentially for electric and magnetic potentials as well electrie displacement and magneticinduction.
Whereas only including of nonlinear constitutive relations of smart materials in the structural
analysis could justify the discrepancies found in the predictions with shear deformation theories.
A similar conclusion was also reported by Lee (2004).

In the other hand, Fig. 1-3 show the magnetic potential %, electrical potential ¢, center
deflections w, angle of twist i, and |, the in-plane displacement u and v responses for sandwich
plate formed from three smart layers. It is perceived that the elastic deflections, electrical potential

241



Asian J. Sei. Res., 6 (2): 256-244, 20183

o

Time (mmsec)

-0.5
-15

() ursaousnyu| pid dneuBe

=
@
[}

-0.4

() ursesusnjyu| ppid dieube N

n=>5) (a) PAIM/P and (b) M/P/M scheme, P: BaTiOz, M: CoFeO,

m

Fig. 1{a-b): The uncontrolled magnetic responses of laminated composite plate of (ab =1 and

(€85eznce,

0 400 450 500

35

0 250 300
Time (mmsec)
242

20

0 150

10

50

(A) ulseaUBN U pRIH [I1R[T (A) urssousnyuippld 1S3

n =5 (a) PIM/P and (b) M/P/M scheme, P: BaTiOs, M: CoFeO4

The uncontrolled electrical responses of laminated composite plate of (a/b = 1

and m

Fig. 2{a-b):



Asian J. Sct. Res., 6 (2): 256-244, 20153

M

Uncontrolled center deflectionsin (mm)

10

TR

0.5

0.0

-0.54

Uncontrolled center deflectionsin (mm)

1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

-1.0

Time (mmsec)

Fig. 3(a-b); The uncontrolled elastic responses of laminated composite plate of (a/b=1 and m =

n =35) (a) PIM/P and (b) M/P/M scheme, P: BaTiO,, M: CoFe,O,

and magnetic potential have similar occurrence. It is interesting to note that the
sensory responses have simple discriminate behavior against the variation in  the plate

dimensions.

CONCLUSION

In this study, a model is developed for static and dynamic analysis of MTEE and multilayered
plate structure and/or plate embedded a smart material lamina and influenced by MTEE load. The
fundamental theory is derived based on FSDT involving Codazzi-Gauss geometrical discretion. The
theory is casted in version of general laminated composite plate of rectangular plane-form, in which
the generic forced-solution procedures for the response were derived and its mode shapes were
evaluated in simply supported boundary condition. Thus the center deflection was selected
among the primary variable for validation and verification purpose. Whereas, result have been
shown a close agreement with those of HSDT that obtained by previous researchers. The present,
results may serve as a reference in developing the MTEE plate theories and to improve the
benchmark solutions for judging the existence of imprecise theories and other numerical
approaches.
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