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ABSTRACT

Power producing plants possess a maintenance cost of about 30% of the total power generating
cost. Studies alse show that a cost reduction of about 30% can be achieved by shifting from
preventive maintenance to condition based maintenance. This study presents an intelligent fault
detection and diagnosis system designed for a cogeneration and cooling plant. Fuzzy systems are
used to address multiple operating regions, nonlinear model identification and fault diagnosis.
Performance of the designed system is demonstrated by conducting case studies on actual Gas
Turbine Generator (GT(), Heat Recovery Steam Generator (HES(G) and steam absorption chiller.
In most of the tested cases, the system was found capable of providing 95 to 100% true detection
and true diagnosis, respectively. For assumed incipient faults, it was found performing better than
principal component analysis or auto-asscciative neural networks., While having a dedicated
graphical user interface, it 1s also designed to be applicable for steady state simulation of the GTG
and HESG, respectively.
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INTRODUCTION

Cogeneration and Cooling FPlants (CCPs) include important elements of power generation and
chilled water production systems. Their high efficiency and low greenhouse gas emission make
them preferred to plants designed for separate production of power, steam and chilled water. Recent,
designs of CCPs are equipped with mechanisms to increase overall system efficiency while keeping
CO, and NO, emission levels as low as possible. However, studies show that, CCPs exhibit high
maintenance cost that could reach up to 80% of the total electricity generating cost (Graber, 2004),
Since their energy throughput is high, reduced performance cannot be tolerated as it threatens
economic operation of the system. Condition Based Maintenance (CBM) 1s known to reduce the
maintenance cost significantly. Cne of the building blocks of CBM is decision making, which
involves fault detection and diagnosis. An Intelligent Fault Detection and Diagnosis (IFDD) system,
in general, has the following advantages:

*  Avoids catastrophic failure

+ Helps better manage maintenance resources

+ Reduces greenhouse gas emissions

«  Minimizes the cognitive load on maintenance operators and
*  Allows better utilization of the primary energy
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A fault detection and diagnosis system can be designed using either model free or model based
approaches (Isermann, 2011). In model free design, methods like hardware redundancy, limit
checking, spectral analysis or special sensors are applied to detect and 1solate the onset of abnormal
conditions. While hardware redundancy requires multiple sensors and space, spectral analysis
assumes that the frequency spectrum for a fault signal 1s discernable, which may not be always the
case, Special sensors are costly and the sensors themselves may fail. Limit checking, also overlooks
the spatial and temporal correlations in the measured signals. A model based design 1s preferred
for it is cost effective and addresses the issues related to data correlations and delays.

The model based design, in a broader sense, can be classified as qualitative model based and
quantitative model based (Venkatasubramanian et al., 2003). The later includes analytical methods
{observers, parity equations, parameter estimation and Kalman filters), multivariate statistical
approaches and computational intelhgence (Palade ef af., 2006). The analytical methods are known
to demand first principle models. Until 1991, most of the designs on fault detection and diagnosis
were based on rule based and declarative representations (Conroy ef al., 1989; Sztipanovits ef al.,
1990; Kumamaru et al., 1991; Padalkar ¢t al., 1991). Starting around 1991, the use of Artificial
Neural Networks (ANN) and hybrid designs became a common practice (Horiguchi et al., 1991;
Szezepaniak, 1994; Perryman, 1995; Sreedhar et al., 1995, Fast and Palme, 2010). On the
other hand, Lazzaretto and Toffole (2006), used thermo-economic and exergetic approaches to
detect and diagnose faults in a combined heat and power plant (CHP). This 1s probably the most,
interesting contribution from mechanical engineering point of view. From statistical process control,
{Thomson et al., 2000) used exponentially weighted moving average to detect and diagnose faults
in the heat recovery system of a combined heat and power plant. It turns out that, while the
requirement in the stat-of-the-art design of [FDD systems is enormous, it 1s indeed difficult to meet,
all the needs applying only one approach. It was also observed that the effort made to deal with
multiple operating regions, interconnection between subsystems and nonlinear characteristics of
the plant is minimal as compared to the efforts made in areas like DC motors and pilot plants.

The objective of this study is to present the design of an intelligent fault detection and diagnosis
system that can be applied in cogeneration and cooling plants. The design considers multiple
operating regions, varieties of measured signals and the inter connection between subsystems. The
diagnostic system is designed in such a way that the uncertainties in the diagnostic results are
included.

MATERIALS AND METHODS

The design of an IFDD system requires first principle models, data preprocessing tools,
nonlinear model 1dentification, adaptive fault detector and a diagnostics tool. In the developed
design, the stated inputs are arranged in a structure as shown in Fig. 1. The whole IFDD system
is characterized by three main modules: Data Preprocessing Module (DFM), Fault Detection Module
(FDEM) and Fault Diagnosis Module (FDIM). Details about each module are presented as follows.

The DPM is designed to normalize the data p, ¢ K and y, € R and remove measurement noise.
While the normahization is done dividing each measured value by the corresponding alarm setting
or design point data, Discrete Wavelet Transform (DWT) 1s assumed to reduce the effect of
measurement noise and outliers.

The data from FDM is used in the FDEM, which 1s the module intended to perform fault
detection. The FDEM is comprised of four sub-modules: FDEM-U, FDEM-Y, FDEM-S and FDEM-H

that relates to the input sensors, ocutput sensors, soft sensors and sensors with unique signal
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Fig. 1: Structure of the IFDD system

features, respectively. To reahze the models in the first three sub modules, fuzzy systems and global
optimization algorithms are considered. For FDEM-S, since it requires reliable training and
validation data, which are not measurable, semi-empirical models are developed for the GT(G and
HRSBG, respectively. In fact, the model is also applicable to generate data for an implanted fault.
In case of FDEM-H, the signals (e.g., vibration signals) need more than fuzzy system. Due to this
reason, no further discussion is included except stating that the develop structure is flexible enough
to accommodate not only vibration signals but also qualitative data from manufacturer’s catalogue
and maintenance history database,

Onee the residuals are calculated by the FDEM and faults are detected, the FDDIM further
processes the residuals to identify the highly likely cause for the abnormal condition. The
diagnostics procedure works either in binary or fuzzy mode. However, since the binary approach
overlocks the diagnostics uncertainty, the default setting is fuzzy approach. Construction of the
FDIM 1s realized by developing a knowledge base through simulation of the possible fault cases.
The output from the FDIM are state names ST, and fault activation level y, ¢ [0, 1]. For fault free
case, 5T, is assigned as state name.

Semi-empirical models for the GTG and HRSG: Development of the semi-empirical model starts
with the preparation of database for the working fluids. Since the CCP uses air, combustion gas
and steam/water at different stages of the whole process, the property database includes the three
fluids. For air and combustion products, empirical equations are adopted from (Walsh and Fletcher,
2004). For steam, all the data are taken from (Irvine and Liley, 1984). In the modeling of the GT(,
duct pressure loss, combustion efficiency, generator efficiency, gearbox efficiency and turbine blade
cooling are all included. For the HRSG, the effect of blow-down heat exchanger is accounted by
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including mass and energy conservation equations in the overall model. The models for the two
systems are for design point and off-design point calculation, respectively. Unique to the present
work is the model for the axial compressor in the GTG. Instead of developing a performance map
applying scaling method, non-dimension correlation constructed from actual data itself are
employed to characterize the compressor over the whole operating region.

Nonlinear model identification: The equations that govern characteristics of the GTG and
HRSG at any operating point are in the form of ordinary or partial differential equations. It may
involve also empirical models. In general, the models happen to be nonlinear due to the complex
interaction between the rotating parts and the working fluid. GTG and HRSG are highly
specialized machines. Details about geometric information are hardly available for proprietary
reasons. Instead, what is available are measured input and cutput data. In the present work, the
models needed to fill the FDEM and FDIM knowledge bases are constructed using either measured
or simulated data. Accordingly, the state space model for a discrete system is considered. Assuming
multi-agent design, the general equation describing ith Multiple Input and Single Output (MISO)
dynamic system is given by:

XO (k +1)=Dx® (k) + Tu®® (1)
v 0= (x" (k) + (k)

where, y¥ (k) € R is the cutput; u¥ &) ¢ R is the input; x¥ (k) is the state vector; e (k) is the
modeling and measurement. error. The symbols @ and I' refer to the matrices formed from the input
vector. Implementation of Eq. 1 1s realized applying fuzzy Takagi-Sugeno-Kang (TSK) model
{Nelles, 2001). The choice on TSK model 1s due to transparent characteristics of the fuzzy systems.
Block diagram representation of the overall model that works for either GT G or HRSG is shown in
Fig. 2. The model training is performed applying Local Linear Model Tree Algorithm (LOLIMOT)
(Nelles, 2001) followed by FParticle Swarm Optimization (PSO).

Adaptive fault detector and fault diagnosis: In fault detection and diagnoesis, the uncertainty
equation or confidence limit CI¥ (k) together with residual models are used. The general steps in
fault detection are as follows:

Step 1: Calculate the residual r¥ (k) for the ith model and compare it with the corresponding
confidence limit CI® (k) that decides the region for normal operation

f— Gk
Fuzzy model "H—p

| Fuzzy model

Fuzzy model ™ H——

Fig. 2: Fuzzy based multiple-model structure
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Step 2: If the condition r® (k)>CI¥ (k) is satisfied, then it is concluded that a fault is detected

Step 3: Once a fault is detected, the residuals are evaluated according to Eq. 2 to construct the
fault signatures

Step 4: Use the fault signatures from step-3 in a pre-designed Binary Diagnostic Matrix (BDM)
that is system specific. This step leads to iselation of the cause behind the abnormal
condition

The binary diagnostic signal s¥ (k) is obtained from:

PG ) k)
SO (k)= Lifr* (k)=» CI (2)
0,if 1% (k) > CIV®

In the case of fuzzy evaluation of the residual signals, the membership functions are defined
in terms of the adaptive model confidence interval CI¥ (k):

L (k)= R,,

. - .
p“(;m (k)): ;G‘)%RRM,RM )y <R, (3)

0,1 (k)= R,

0,5 (k}<R,,

A1)
u,_z(fﬂ“} (k))= ‘”R“‘)%RRM,RM < k) <R, (4)

L (k)>R,,

where, t% (k) = [r? (k)|; R, = bxCI¥ (k); R, = axCI¥ (k); @ and b are constants. The proposed
IFDD system uses 1.0 and 0.5 as the value of « and b, respectively.

min

RESULTS AND DISCUSSION

A CCP from Universiti Technologi PETRONAS, Malaysia, 1s chosen as a case to demonstrate
application of the developed IFDD system. The whole setup has two gas turbines working in either
droop mode or isochronous mode and each working in harmony with separate HR5Gs, The steam
from the two HRSGs is collected in the steam header and SACs are run by the steam from the
steam header. Nominal capacity of one gas turbine is about 5.2 MW, When the gas turbines are
set as droop mode and isochronous mode, the one with the droop setting is allowed to work in small
variation in shaft speed (usually 3% change from norminal) while the shaft speed of the isochronous
turbine remains constant. With this combination of contrel setting, the droop turbine delivers the
base load while the isochronous turbine is dedicated to take the extra load. Because more load
variations are experienced by the isochronous turbine, the data from this turbine is considered for
testing the [FDD system. Design specifications of the HRSG and SAC are as given in Table 1.

Validation of semi-empirical models: The validation graphs for the GTG are illustrated in
Fig. 3. All the graphs are plotted in normalized form. For loads lower that 50% of rated capacity,
the parameters gradually increase with the load. Since the VIGV position is at fully open position,
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Table 1: Design point data for the HRSG and SAC in the cogeneration and cooling plant

System Caparity

HRSG 12 ton h™!, Saturated Steam at 0.85 MPa
HRSG-pump 15.5m® h* (Liquid Temp. less 100°C) and 11 kW
SAC 1250 RT, 5500 kg h™! steam consumption
SAC-pump 920 m® h™! (Liquid Temp. less 100°C) and 7.5 kW

Table 2: Models performance for traiuing and test data: GTG high load operating region

Training data Test data
Parameter Ty RMSE AlC VAF RMSE AlC VAF
P 5 0.0077 -8.93 98.2 0.0084 -8.5 98
W 4 0.0092 -8.35 98.3 0.0093 -8.3 98

AIC: Akaike's information criterion, VAF: Variance accounted for

the trend is reasonable. For higher load, the GT G 1s in temperature and load control. As such, both
the VIGV position and fuel flow rate are manipulated to keep the temperature constant and cover
the load. Again, the increasing trends are what were anticipated.

Validation of fuzzy models: For the gas turbine generator, fuel flow rate m, and Variable Inlet
Guide Vane (VIGV) position are manipulated to meet the total electric load demand and the high
temperature exhaust gas needed to run the HESG. Simultaneous contrel of the two inputs 1s
especially true in the high load region. Even though models are developed for all the measurable
parameters in the CCP (gas path, lubrication system, generator coils, HRS(G and SAC), the models
demonstrated hereunder are limited to the compressor discharge pressure P, and electric power

cutput at the generator terminal W .. This was done so for space limitation reasons. The data

ele’
needed for model training and validation are collected every 10 sec. About 1200 data points are
used for model training while an equivalent number is considered for model testing or validation.
The fuzzy models required to construct the IFDD knowledge base are trained by a Local Linear
Model Tree (LOLIMOT) algorithm (Nelles 2001) followed by Particle Swarm Optimization (P50).
The number of fuzzy rules n, and performanece parameters for the developed models are given in
Table 2. Fig. 4 and 5 show the validation graphs for compressor discharge pressure P, and electrie
power output at the generator terminal W _. Performances of the models are given in terms of Root

Mean Square Error (RMSE), Akaike's Information Criterion (AIC) and Variance Accounted For
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{VAF). As can be seen from Table 2, Fig. 4 and 5, the actual data and the predictions compare well.
The number of rules in the fuzzy models are also relatively low indicating the power of LOLIMOT
algorithm in optimizing the model structure.

Performance of the IFDD system: In this section, application of the IFDD system is
demonstrated by considering abrupt and incipient sensor faults, respectively. Variations of the
implanted faults for a given sensor are governed by Kq. 5 and 6. For abrupt fault, the added bias
is:

0,fork <300 (5)

Ax (k)=
=®) {Axm,fork >300

In case of incipient fault:

200

Ax

ma (| 200),for200 < k <400

Ax(k)= (k= 200) for (8)
Ax...fork =400

where, k is the data point; Ax__ is the maximum change assumed with respect to the alarm setting
or design paint data. The two models are common in testing a fault detection and diagnosis system
for different magnitudes of fault. In order to quantify the performance of the IFDD system for each
test, the following parameters are additionally considered:
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Table 3: Principal component. analysis (PCA) models for the GTG

Model No. of variables No. of PCs Cum var; (%)
Gas path 13 5 98.85
Lube system 6 2 99.70
Generator coils 1 99.44
Ts sensors and Psp 7 2 99.77
Table 4: Structure of the autoassociative neural network (AANN) models for the GTG
AANN structure

Learning
Model nx nl ne nm ny algorithm
Gas path 13 8 2 8 13 LM
Lube system 8 2 8 LM
Generator coils 3 8 2 8 LM
Ts's and Pgp 7 8 2 8 7 LM
Table 5: Fanlt detection and diagnosis system perfarmance: Gas path sensaors

PCA AANN IFDD

Sensors  Tna Thap Thip Taa Tmd Tiap Thip Taa Tma Tiap Thip Tad
T, 6.50 98.33 - 44 19.5 4 - 244 9.2.0 61.7 100.0 131
Py 4.10 100.0 100 42 13.5 10 100 135 3.1.0 100.0 99.5 BT
P.. 0.29 100.0 100 6 1.1 100 100 26 0.89 100.0 100.0 20
Tene 3.80 100.0 100 44 12.5 12 - 244 11.00 34.5 - 131

PCA: Principal component analysis, AANN: Autoassociative neural netwaork, IFDD: Intelligent fault detection and diagnosis

Table 6: Fanlt detection and diagnosis system performance: GT(G lubrication system

PCA AANN IFDD
Sensors Tmd Thap Thip Tad Tmd Trap Tiip Tad Tind Ttap Ttip Tad
Ty 2.6 100 100 27 2.60 100 - 95 1.7 100 100 51
The 3.0 100 100 18 2.80 100 - 108 1.5 100 100 40
Tz 24 100 100 24 2.10 100 - 139 2.8 100 - 35
Tiny 1.0 100 100 24 0.85 100 - 95 0.52 100 100 26
Ths 1.0 100 100 18 1.05 100 - 109 0.51 100 100 40
P 4.5 100 0 24 4.50 100 - 95 6.6 100 - 64

PCA: Principal component analysis, AANN: Autoassociative neural netwaork, IFDD: Intelligent fault detection and diagnosis

*  Minimum percentage bias that can be detected (t_,)
* True detection percentage (1,,)

*  True diagnosis percentage (1, ) and

+  Detection delay (1,

The presentation compares the IFDD designed applying fuzzy systems against FDD systems
constructed on the bases of Principal Component. Analysis (PCA) and Autoassociative Neural
Network (AANN), respectively. Structures of the reference models in the later two approaches are
cutlined in Table 3 and 4. The AANN models are trained by Levenberg-Marquardt algorithm,
which is a derivative based optimization algorithm.
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The test results associated with sensors in the gas path and lubrication systems of the GT( are
shown in Table 5 and 6. For the gas path sensors (T, F,, P, T..), the IFDD performed as good as
FPCA and better than AANN. The low accuracies in T, and T, sensors are attributed to the weak
correlations with the rest of the signals and the effect of measurement noise. For the lubrication
system, five temperature and one pressure signals are included. The lubrication system is one of
the auxiliary systems vital for safe running of the GTG. Apart from lube oil monitoring for wear
rate prediction, temperatures and pressure data at different locations are monitored to ensure that
the system is safe to run. High lube o1l temperature indicates excessive vibration and even ail leak.
A drop in pressure also signals oil leak. Luube o1l valve, pressure controller or actuator malfunections
are often detected by the change in the temperature and pressure trends. While a fault in a gas
path sensor outside the contraol loop is somehow less destructive and tolerable, the consequence due
to a missed fault in the lube system is quite destructive. As can be seen from Table 6, IFDD
demonstrated a performance in the range of 95 to 100%, which is attractive enough for practical

use.

CONCLUSION

In purpose of this study is to present an IFDD system designed for a cogeneration plant. The
design is equipped with nonlinear models, adaptive fault detector and a fuzzy based diagnostic
method. The case study showed that, the steady state model for the GTG 1s accurate for inlet
temperatures in the range of 24 to 34 °C. In the fault detection and diagnosis test, the IFDD system
demonstrated a true detection percentage higher than 95% and true diagnosis percentage higher
than 93%. The numbers are attractive encugh for practical application. Future work will focus on
arranging the IFDD system in a standalone decision support system.
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