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ABSTRACT

One of the major problems in fully automated manufacturing systems is the breakage and
deterioration of the tools. Efficient tool condition monitoring systems are required to address such
problem. In this study, a new method is proposed for tool condition monitoring for turning
operation. The proposed method monitors the condition of the tool flank wear by classifying the tool
into any one of the three states; initial wear, medium wear and severe wear. This classifying is done
by a trained competitive neural network. The network is trained by using the instantaneous
frequencies and amplitudes extracted from the audible emitted tool sound signal by using the new
signal processing technique Hilbert-Huang transform. The propesed new method is tested by the
audible sound signals collected from a turning machine while machining carbon steel with new,
slightly worn and severely worn carbide inserts coated with Aluminum titanium nitride. From the
marginal spectrum of Hilbert-Huang Transform analysis it 1s found that the amplitude of the
emitted sound is increasing staidly as the tool flank wear is progressing with time. This correlation
between the amplitude of the tool sound and tool flank wear enabled the trained competitive neural
network to perform tool wear classification with 80% of accuracy. Hence, the new method can be
implemented in tool condition monitoring of turning machines.

Key words: Competitive neural network, empirical mode decomposition, Hilbert-Huang transform,
marginal spectrum, tool condition monitoring, tool sound

INTRODUCTION

Efficient. tool condition monitoring systems are required to support the fully automated
manufacturing systems. According to Byrne ef al. (1995), monitoring systems are most often used
in turning and drilling processes and no monitoring system should be expected to operate with
100% reliability, although failures almost always cceur due to human error. Flank wear which
occurs on the tool flank as a result of friction between the machined surfaces of the work piece 1s
the most important wear type from the process point of view. Flank wear affects to the great extent,
the mechanics of cutting. Cutting forces increase significantly with flank wear (Marinov, 2008).
The increased cutting force may cause tool breakage if the amount of flank wear exceeds some
critical value (VB>0.5~0.6 mm), therefore the parameter which has to be controlled 1s the width of
flank wear land, VB. It is suggested that the VB for carbide cutting tools should not exceed 0.4 mm
{(Marinov, 2008; Micheletti, 1978). Tocl flank wear need to be monitored because it affects the
preduction significantly (Sick, 2002).
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Indirect methods are mostly used in tool condition monitoring systems. In such methods the
relationship between tool wear and the process variables (such as vibration, cutting force,
temperature, surface roughness, acoustic emission, audible sound etc.) are normally used to identify
the amount of tool wear. The combined cutput of radial force, feed force and AE (RMS value) was
utilized to model the tool flank wear in a turning operation. Damodarasamy and Raman (1993)
used radial force, feed force and AE (RMS value) together to model tool flank wear system for
turning operation. Salgado and Alonso (2007) used feed cutting force, estimated from feed motor
current and the information extracted from sound signal to predict the tool flank wear using
artificial neural network. Sadettin et al. (2007) found that the amplitude of the vibration increases
steadily with the increasing tool wear Ming-Chyuan and Kannatey-Asibu (2002) and Alonso and
Salgado (2005) managed to monitor the tool flank wear using singular spectrum analysis on
audible sound generated from the cutting process. In this research audible sound emitted from teol
insert 1s used for tool wear classification.

The traditional data analysis methods such as Fourier analysis assume the signals are linear
and stationary. According to Peng et al. (2005), the signal to be processed must be linear and
temporarily stationary; otherwise, the resulting Fourier spectrum will make little physical sense.
According to Huang et al. (1998), the Fourier transform represents the global rather than any local
properties of the signal because it employs a convolution integral through which the signal is
decomposed in terms of sine and cosine functions covering unifermly the whole data span. Wavelet,
transform, the time-frequency analysis method, can generate both time and frequency information
of a signal simultanecusly through mapping one dimensional signal to a two-dimensional time-
frequency plane. However, it is also suffering with deficiencies like border distortion and energy
leakage that makes the result difficult to interpret (Feng ef al., 2001). Hence, new methods are
needed to analyze the data from non-linear and non-stationary processes like turning.

Hilbert-Huang Transform (HHT) 1s considered to have the potential of becoming a perfect
method for analyzing non-stationary and nonlinear data (Lisha et «l., 2003) which is derived from
the principles of Kmpirical Mode Decomposition (KMD) and the Hilbert Transform. It 1s a two-step
process devised by Huang ef al. (1998). Firstly, EMD is applied to decompose the given signal into
a set of complete and almoest orthogonal components called Intrinsic Mode Funetions (IMF). Since
the IMF i1s almost mono-component, it can deterrmne all the instantaneocus frequencies from a
nonlinear and non-stationary signal. Secondly, the local energy of each instantanecus frequency
compoenent can be obtained through the Hilbert transform (Peng et al., 2005). Zhang (2008)
successfully applied this new signal processing technique in analyzing vibration signals and faults
diagnosis of roller bearing. In this research HHT is used to extract features for tool flank wear
classification from emitted sound.

Artificial neural network has been a better choice for researchers in tool condition monitoring
because of its advantages such as superior learning, noise suppression and parallel computation
{(Rangwala and Dornfeld, 1990). Rangwala and Dornfeld (1990) used a neural network to integrate
information from acoustic emission and force to monitor the occurrence of tool wear in a turning
operation. Lin and Ting (1998) successfully trained a neural network, using a cumulative
back-propagation algorithm to identify the tool wear conditions based on the thrust force and
torque signals while drilling. Choon and Dornfeld (1996) suggested that when the great variety
of work piece materials, tool materials and cutting conditions is taken into account a supervised
procedure requiring a known value of tool condition for each input of sensor signals from the
numerous combinations of machining configurations 1s far from practical. They also recommended
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using competitive learning based unsupervised methods. Finally, Sick (2002) in his review of more
than a decade of research on-line and indirect tool wear monitoring in turning with artificial neural
networks, concluded that it 1s possible to estimate or to classify certain wear parameters by means
of neural networks. He also concluded that despite of more than a decade of intensive scientific
research, the development of tool wear monitoring systems is an on-going attempt. In our research,
the combination of HHT and competitive neural network has been attempted to classify the flank
wear for tool condition monitoring systems.

MATERIALS AND METHODS

The various stages of the proposed method are shown as Fig. 1. The input stage records the
emitted sound from the tool as input which is a multi-component signal. Features extraction stage
uses EMD to decompose the multi-component sound signal into several mone-component IMF's. This
decomposition 1s needed because the signal consists of tool emitted sound and the various unwanted
signals such as sound generated by rotational components and environmental noise. Hilbert
Transform (HT) 1s then applied on each IMFs to extract the local energy in the form of
Instantanecus Amplitude (IA) of each Instantaneous Frequency (IF) found in the IMFs. The
required IMF corresponding to the emitted tool sound is then selected in the IMF selection stage of
feature extraction. The classification stage with competitive neural network uses the EMS
Instantanecus Amplitude (IA) and the mean Instantaneous Frequency (IF) to classify the tool into
any one of the three states (Initial wear, medium wear and severe wear) which 1s the output of this
tool condition monitoring system. An ICP microphone 1s used to record the tool emitted sound. A
strong correlation between tool wear and the emitted sound is needed for the neural network to
classify the tool wear from the emitted sound. This correlation is investigated in this research and
it is discussed in the results and discussion section. The selection of required IMF and the
classification accuracy of the neural network are also tested in this research.

Hilbert-Huang transform (HHT): It is a new two-step signal processing technique derived by
Huang et al. (1998) more suitable for analyzing non-stationary and nonlinear data. Firstly, EMD
is applied to decompose the given signal into a set of complete and almost orthogonal components
called Intrinsic Mode Functions (IMF). Since the IMF is almost mone-component, it can determine
all the instantaneous frequencies from a nonlinear and non-stationary signal. Secondly, the local

| Input | | Features extration | |Clnss1.ﬁcana4 |0utput|

NCompetitive| n] 1.,
¢ neural 4
V] . i/ [wear state
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Fig. 1: Block diagram of the proposed tool condition monitoring system

705



Asian J. Set. Res., 6 (4): 703-T14, 20153

energy of each instantanecus frequency component. can be obtained through the Hilbert transform
(Peng et al., 2005). If the inspected signal is multi-component within the defined time frame, the
result of the instantaneous frequency will be distorted (Rilling ef al., 2003). Unfortunately, in
almost all of the practical applications, the inspected signals are hardly mone-component but
multi-component. Therefore to make the instantanecus frequency applicable, the key is the ability
to decompose the signal into some individual monoe-component signals. The Empirical Mode
Decomposition provides such decomposition ability.

Empirical mode decomposition (KMD): The data, depending on its complexity, may have many
different coexisting modes of oscillation at the same time. Each of these oscillatory modes is
represented by an Intrinsic Mode Function (IMF) with the following definitions (Huang et al.,
1998):

+ In the whole data set, the number of extreme and the number of zero-crossings must either
equal or differ at most by one

+ At any poeint, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero

To extract the IMF from a given data set, the sifting process 1s implemented as follows
(Rilling et al., 2003). First, identify all the local maxima and then connect all of the local maxima
by a cubic spline line as the upper envelope. Then, repeat the procedure for the local minima to
produce the lower envelope. The upper and lower envelopes should cover all the data between
them. Their mean is designated m,(t) and the difference between the data and m,{t) is h,(t), i.e..

x(t)}-m,(1) = h,(1) (1

The sifting process has to be repeated as many times as it 1s required to reduce the extracted
signal to an IMF. In the subsequent sifting process steps h,(t) is treated as the data; then:

hl(t)'mn(t) = h1 1(t) (2)

where, m,,(t) is the mean of the upper and lower envelops of h,(t). This process can be repeated up
to k times; h,,(t) is then given by:

hl g y©-m () = h, (1) (3)

After each processing step, checking must be done on whether the number of zero crossings
equals the number of extrema. The resulting time series is the first IMF and then it is designated
as ¢, (t) = h,, (). The first IMF component from the data contains the highest oscillation frequencies
found in the original data x(t).

This first IMF is subtracted from the original data and this difference, is called a residue r,t)
by:

x(t)-c,(0 = 1,(t) (4
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The residue r/(t) is taken as if it was the original data and we apply to it again the sifting
process. The process of finding more intrinsic modes ¢,(t) continues until the last mode is found. The
final residue will be a constant or a monotenic function:

X(t):icj(t)+rn(t) (5)

Thus, one achieves a decomposition of the data into n-empirical IMF maodes, plus a residue, r (1),
which can be either the mean trend or a constant.

Hilbert transform: The physically meaningful way to describe the system is in terms of the
instantanecus frequency, which will reveal the intra wave frequency modulations (Huang et al.,
1998). The easiest way to extract or compute the instantaneous frequency of a mono-component
signal 1s by using Hilbert transform. For an arbitrary signal or time series x(t), its Hilbert transform
y(t) is defined as:

yiy=2 [, (6)

where, P is the Cauchy principal value of the singular transform. This function exists for all
functions of class of Lebesgue spaces (Titchmarsh, 1948) or LF. Equation 8 shows that the Hilbert
transform is defined as the convolution of the signal x(t) with 1/t. Therefore, the Hilbert transform
is capable of identifying the local properties of x(t). Coupling the x(t) and y(t), we can have the
analytic signal z(t) of x(t), as:

) = x(DHiy(V) = a(e"” (7
a(t) = [,y (D], @(t) = arctan(y(t/x(t) (8)

where, a(t) 1s the instantanecus amplitude of x{t), which can reflect how the energy of the x(t)
varies with time and the ¢(t) 1s the instantaneous phase of x(t). The controversial instantaneous
frequency w(t) is defined as the time derivative of the instantaneous phase ¢(t), as follows:

w(t) = det)/dit) (9)

Because the instantaneous frequency is defined through differentiation rather than integration
it appears to be local and can describe intra-wave frequency modulation. Therefore, Eq. 9 1s useful
in extracting instantaneous frequencies from any non-stationary signals. However, Eq. 9 is only
valid in obtaining the instantaneocus frequency of a signal in a given time frame if the signal 1s
mono-component within the time frame.

Marginal spectrum: According to Eq. 7 it is possible to represent the amplitude and the
instantaneous frequency, in a three-dimensional plot, in which the amplitude 1s the height in the

time-frequency plane. This time-frequency distribution is designated as the Hilbert spectrum
Hw,t):
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H(mt)=Re En: a‘(t)ejj.w'mdt (10)

With the Hilbert spectrum defined, the marginal spectrum, h(w), can be defined as:

h(w) = ]H(m,t)dt (11)

where, T is the total data length.

The Hilbert spectrum offers a measure of amplitude contribution from each frequency and time,
while the marginal spectrum offers a measure of the total amplitude contribution from each
frequency (Huang et «l., 1998; Zhang, 2008). Therefore, local marginal spectrum of each IMF
component is given as:

h‘(m):].H‘(u),t)dt (12)

The local marginal hi{w) spectrum offers a measure of the total amplitude contribution from the
frequency. According to marginal spectrum, the characteristic amplitude of the tocl flank wear can
be easily recognized and thereby the condition of the tool wear can easily be determined.

Competitive neural network: The proposed competitive neural network (Fig. 2) consists of two
neurcns (IN; and IN,) in the input unit and three neurons (ON,;, ON, and ON,) in the output unit.
The RMS Instantaneous Amplitude (IA) and the mean Instantanecus Frequency (IF) of the
selected IMF are given as input.

The three output neurons are representing the three different states of the tool wear, fresh,
slightly worn and severely worn. Kach input neuron i1s connected to every output neuron thus
forming the weight matrix of 3 rows and 2 columns. The weights are initialized to the centers of the
input ranges with the function midpoint. Because the input range is 0.03 to 0.21 for amplitude and
280 to 510 for frequency (obtained from HHT analysis), all the three output neurcns’ weight are
initialized to 0.12 and 395.

Inter connection with

Input unit associated weights

Output unit

Medium wear

IF
Severe wear

Fig. 2: The proposed competitive neural network
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Winner takes all unsupervised learning algorithm the Kohonen Learning Rule {learn from
MATLAB) 1s used to update the weights of the winning neuron. Supposing that the ith neurcon

wins, the elements of the ith row of the input weight matrix are adjusted as shown below

{Kohonen, 1984):
W, new = W, old+n{3{-W, old) (13)

where, W, new represents the updated weights of the winning neuron 1 and W, old represents the
existing weights of the winning neuron. The constant 1 represents the learning rate for the weight
adjustments and 0.5 is used in this experiment. It represents the fraction of the distance that the
winning neuron will move toward the input data vector. X represents the input vector consists of

IA and IF.

Experimental set-up: The photograph of actual excremental setup is shown as Fig. 3. A PCB
130D20 microphone is mounted on the side of the coolant pipe and facing towards the toal tip to
capture the emitted sound {Kopac and Sali, 2001). The micrephone is connected to the computer
through a specially designed signal conditioner. GoldWave software is used to record the captured
sound with sampling frequency set to 44100 Hz,

A series of machining experiments were conducted on a Turning machine (KNUTH Basic
180 V) with Carbide insert coated with Aluminum titanium nitride and carbon steel work piece with
a diameter of 25 mm. First, the free running sound for the spindle rotational speed of 570 rev min™*
was recorded, without the machining operation. Keeping the spindle rotational speed at

570 rev min~’, the sound emitted due to machining with a new tool was recorded for the depth of

Steel work piece

Emitted sound recording by GoldWave

Fig. 3: The photograph of actual experimental set-up
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cut of 1 mm. This recording process was repeated separately for slightly worn tool with 0.2 mm
flank wear and severely worn tool with 0.4 mm flank wear {(Altin et al., 2007). A constant feed rate
of 0.5 mm rotation™ was maintained throughout the experiment. The 10 sec long sound signal is
split into 10 one second sound signals for the subsequent signal processing using HHT. Each one
second signal contains 44100 sampling data. The MATLAB wavread function was used to digitize
the sound signals.

RESULTS AND DISCUSSION
The results obtained in feature extraction using HHT and the tool wear classifications by neural
network are discussed separately in this section.

Feature extraction using HHT: A sample of the recorded multi-component scund signal of
severely worn tool 1s shown in Fig. 4a. It contains various components such as sound emitted from
machine retational parts and the much needed sound emitted due to the contact between the tool
flank face and the surface of the work piece. In addition to these components, it also contains the
harmonics of the fundamental signals of this kind. The result of EMD applied on the sound signal
of severely worn tool 1s shown in the form of 14 IMFs and the residue in Fig. 4b where each IMF
is a mono-component signal.

The instantaneous frequencies and amplitudes were then obtained by applying Hilbert
transform on the IMFs, Average amplitude of each IMF for free run, new tool, slightly and severely
worn tool sound signals were calculated and line graphs were generated to compare these
amplitude values Fig. 5. From Fig. 5 it is very clear that IMF 5 to IMF 7 are representing the sound
signal and its harmonics emmtted due to the contact of the tool flank face with the surface of the

G

L s e

res. Inf14 Inf13Inf12 Infll Inf10 Inf9 Inf8 Inf7 Inf6 Inf5 Inf4 Inf3 Inf2 Infl signal

Fig. 4(a-b); The original multi-component sound signal of {(a) Worn tool and its (b) Empirical mode
decomposition, imf: Intrinsic mode function
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Fig. 5: Comparison of the RMS amplitude found in the IMFs of free run, new tool, slightly and

severely worn tool sound signals
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Fig. 6(a-c): Marginal spectrum constructed using IMF 6 of tool sound with {a) Initial, (b) Medium

and (c) Severe wear

work piece. This is because the amplitude of these IMF's are different from the amplitude of IMFEs
corresponding to free run. Out of these three IMFs, more energy in the form of amplitude is found
in IMF 8&; hence it is appropriate to perform further marginal spectral analysis on IMF 6. The
marginal spectrum of IMF 6 for new, slightly and severely worn tool sound signals were obtained
as shown in Fig. 6. The maximum amplitude of sound emitted with the new, slightly and severely
worn tool bit insert is measured as 0.15971, 0.30193 and 0.42739 are the maximum amplitude of
sound emitted with the new, slightly and severely worn tocl bit insert. From Table 1 it is found that
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the sound pressure amplitude of tool bit 1s increasing with the progress of tool flank wear. These
findings show that the amplitude of emitted tool sound is increasing staidly with the progress of tool
flank wear.

Tool wear classification by neural network: The data set. for training and testing the neural
network was prepared with 30 samples taking 10 each from new, slightly worn and severely worn
tool sound. Each sample is a vector consisting of RMS value of Instantaneous Amplitudes (IA) and
the mean value of Instantaneous Frequencies (IF) of the selected 6th IMF of one second sound
signal. The weights of the three output neurons before and after training are shown in Table 2.
From Table 2 it is observed that output neuron ON, represents the initial wear state of the tool
because their weights are closer to the [A and IF of new tool sound. This neuron will fire whenever
a sound signal from new tool is input to this network. Similarly OIN, and ON, represent the medium
wear and severe wear states of the tool, respectively. This can be clearly viewed from the graph
(Fig. 7) plotted with the training data and the weights of the three trained cutput neurons.
Leave-one-out cross wvalidation technique was used for testing the performance of the
competitive neural network. According to this technique for a dataset with N examples, N

0.22

—t—Initial wear

0.20 < el P Médivmwear

S 3? —O—Severe wear

0.18

0.16 &
0.14 og':bo
0.12 o
0.10
0.08
0.06 e
+ . o
0.04 i -'-'*"UN, =2
0.02

RMS instantaneous amplitude

23

250 300 350 400 450 500 550
Mean instantaneous frequency

Fig. 7: Tool flank wear classification, ON;: Weights of the neuron representing initial wear state,
ON,: Weights of the neuron representing severe wear state, ON ; Weights of the neuron
representing medium wear state

Table 1: Amplitude of the sound and the tool wear

Tool condition

New Slightly worn (0.2 mm flank wear) Severely worn (0.4 mm flank wear)
Sound pressure amplitude from marginal spectrum ~ 0.15971 0.30193 0.43739

Table 2: Weights of the three output neurons before and after training

Weights before training Weights after training
Output neurons Amplitude Frequency Amplitude Frequency
ON,; 0.12 395 0.0455 445.26
ON, 0.12 395 0.1558 324.99
ON; 0.12 395 0.1058 374.62
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experiments need to be performed and for each experiment N-1 examples should be used for
training and the remaining example for testing. A total of 30 experiments were conducted and for
each experiment 29 samples were used for training and the remaining sample for testing. As usual
the true error is estimated as the average error rate on test samples using the following formula:

E (14

i

D=

-l
N

i

Out of the 30 tests, the trained network failed to classify the input correctly only six times.
Hence the rate of error estimated using Eq. 14 in this network is 0.2, In other words the success
rate or the percentage of success is 0.8 or 80%, respectively.

CONCLUSION

In this study, a new method is proposed for tool condition menitoring system which includes a
competitive neural network with HHT as feature extractor. The correlation between the amplitude
of emitted tool sound signal and the growth of tool flank wear made the competitive neural network
to classify the state of the tool insert with 80% of accuracy. The correlation was investigated while
turning carbon steel and it is found that the amplitude of emitted tool sound signal is increasing
staidly with the growth of tool flank wear. Hence the proposed new method can be confidently

applied in tool condition monitoring systems for tool flank wear classification.
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