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ABSTRACT

We discuss a new method for solving unsteady convection—diffusion problems arising high order
compact difference approximations. The method can investigate not only the effects of numerical
error but also those of uncertainty in a physical model at the same time. In this study, we developed
numerical methods by replacing the time and space derivatives by compact finite-difference
approximations. Furthermore, numerical experiments are conducted to verify its high accuracy and
to compare it in combination preconditioned methods for stability, convergence.

Key words: Finite difference scheme, compact high order scheme, convection diffusion equation,
krylov subspace methods, preconditioner scheme

INTRODUCTION

An attractive problem 1s the Diffusion-Convection equation for which various numerical
methods have been suggested by a number of researchers to solve them (Golbabai and Arabshahi,
2010). Application of this equation may be seen in computational fluid dynamics, computational
acoustics and computational hydraulics and electromagnetic for modeling Diffusion-Convection of
quantities such as mass, energy, vorticity, heat, etc. (Dehghan and Molavi-Arabshahi, 2007,
Fvans, 1999; Zhao ef al, 2008). This study is devoted to the numerical solution of the
Diffusion-Convection equation in the form:

Bu, +Vu, +vu =vuo +vu (XY 0 [0,L]x[0,L]x[0,t] (L.1) (1)

Subject to initial and dirichlet boundary conditions:

u(x,y,0) = uy (x,y), 0< xy <1 (2)
u(0,y,t)=h,(y.t), wlyt)=h(yt), t=0 (3
ux0)=g,(xb, uxlbt=gxt, t= 0, (4)

where, ¥, V,and v, v, are constants that present the convective velocities and diffusivities with
respect to x and y directions, respectively. The grid points are given by:

t,=ke, 0<k<T, x =lh, y=mh, Lm=0,.,N+1 (5)
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The convection-diffusion Kq. 1 above cccurs in many practical problems in which the diffusion
coefficient is very small compared to the velocity field v, v; which drives the convection, precisely
the case which is most difficult to solve accurately. The solution then contains many scales
composed of a complex collection of boundary and interior layers. It has been realized that if the
convection becomes very large as compared to the diffusion, then second order approximations of
the convection term with a large spatial step size give rise to oscillations in the computed solution.
Attempts have been made to overcome this difficulty either by the use of an unrealistically small
grid or by modifying the method.

Various numerical finite difference schemes have been proposed to solve convection-diffusion
problems approximately. Most of these schemes are either first-order or second-order accurate in
space and have poor quality for convection dominated flows if the mesh 1s not. sufficiently refined.
Higher order discretizations are generally associated with large (non-compact) stencils which
increase the band-width of the resulting matrix and lead te a large number of arithmetic
operations, especially for higher dimensional problems. To obtain satisfactory higher order
numerical results with reasonable computational cost, there have been attempts to develop Higher
Order Compact (HOC) schemes, which utilize only the grid nodes directly adjacent to the central
node,

Usual finite element methods typically produce approximate solutions with large, non-physical
oscillations unless either the mesh width h 1s globally small with respect to the diffusion coefficient,
or enough is known about the exact solution to generate Shishkin-like meshes which are locally
small with respect to in all transition regions in a very precise sense. Thus, various stabilizations
have proven to be essential computational tools.

Many scientists are interested in the convection-dominated case, which may come from a
linearized Navier-Stokes equation with high Reynolds number, the drift-diffusion equations of
semiconductor device modeling and the Black-Scholes equation from financial modeling. Due to the
small diffusion, the solution to Eq. 1 has singularities in the form of boundary or interior layers.
The standard numerical approximation, e.g., standard finite element method, on quasi-uniform
grids will yield nonphysical oscillatgions unless the mesh is fine enough to capture the layers. To
obtain a robust numerical approximation for convection-dominated problems, one approach is to
modify the diseretization of the convection term while keeping the underlying uniform or quasi
uniform grids unchanged (Spotz, 1995; Golbabai and Arabshahi, 2011). Moreover the accuracy
depends crucially on the uniformity of the grids which are away from the singularity. On the other
hand, we further show that the accuracy depends crucially on the uniformity of the grids which
are away from the singularity. The accuracy of the approximation is very sensitive to the
perturbation of grid points in the region where the solution is smooth but, in contrast, it is robust,
with respect to the perturbation of properly adapted grid peints inside the boundary or interior
layers. Up to now, various numerical methods have been suggested for solving Egq. 1. Many authors
are mainly interested in the case || % |, | ¥, |>>v,, v,. Since the diffusion coefficient is often much
smaller than the transport velocity, it is very difficult to simulate the Diffusion-Convection problems
numerically. The central finite difference and classical Galerkin methods may introduce non-
physical oscillations into numerical solutions. Many schemes have been used in the simulations of
these problems and have a large number of successful flow simulations. For high Péclet numbers,
numerical solutions often exhibit an oscillatory behavior, one possibly chooses a grid-size h small
enough to avoid oscillations. However, this is sometimes unpractical and costs much time in the
process of iteration, because one has to sclve a large linear system that has toeo many unknowns
and may be unfeasible in higher dimensional cases.
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Therefore, for the Ihffusion-convection problems, there is considerable interest in constructing
accurate and non-diffusive schemes, which overcome or reduce numerical oscillations with as little,
computing cost as possible and which preserve numerical stability. Both explicit and implieit
methods for solving the Diffusion-convection equation are not efficient because the explicit schemes
are usually very time consuming due to the stability restriction and implicit methods are
un-conditionality stable, thus allowing a large time step. Krvlov subspace methods are one of the
widely used and successful classes of numerical algorithms for solving large and sparse systems of
algebraic equations but the speed of these methods are slow for problems which arise from typical
applications. In order to be effective and obtaining faster convergence, these methods should be
combined with a suitable preconditioner. The rate of convergence generally depends on the
condition number of the corresponding matrix. Since the preconditioner plays a critical role in
preconditioned Krylov subspace methods, many preconditioners have been propoesed and studied
amongst the ADI preconditioner. In this study, we accomplish a comprehensive study for different,
preconditioners in combination with Krylov subspace methods for solving linear systems arising
from the compact high-order approximations. The resulting block tri-diagonal linear system of
equations is solved by using Krylov subspace methods. The outline of the study is as follows:

In Section 2, we discuss some physical example of convection diffusion equations and in section
3, we briefly introduce RKrylov subspace methods and in Section 4, we consider some available
preconditioned techniques. In Section B, we consider Diffusion-convection problem arising from the
compact high-order approximations (Jain et al.,, 1992). We present the results of our comparative

study in the final section.

BEHAVIOR OF CONVECTION-DIFFUSION EQUATION

The convection-diffusion equations are widely used in science and engineering as mathematical
models for computational simulations, such as in oil reservoir simulations, transport of mass and
energy and global weather production, in which an initially discontinuous profile is propagated by
diffusion and convection, the latter with a speed of v,, Vv,.

The convection-diffusion equation is a combination of the diffusion and convection (advection)
equations and describes physical phenomena where particles, energy, or other physical quantities
are transferred inside a physical system due to two processes: Diffusion and convection. The general
equation is:

U, = V.(DVU)-V.(VU)+ R

Where:

+ U is the variable of interest (species concentration for mass transfer, temperature for heat
transfer)

* D is the diffusivity (also called diffusion coefficient), such as mass diffusivity for particle motion
ar thermal diffusivity for heat transport

« vV is the average velocity that the quantity is moving. For example, in advection, ¢ might be the
concentration of salt in a river and then would be the velocity of the water flow. As another
example, ¢ might be the conecentration of small bubbles in a calm lake and then Vwould be the
average velocity of bubbles rising towards the surface by buoyancy
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*+ R deseribes "sources” or "sinks” of the quantity ¢. For example, for a chemical species, R>0
means that a chemical reaction 1s creating more of the species and R<0 means that a chemical
reaction 1s destroying the species. For heat transport, R>0 might occur if thermal energy is
being generated by friction

*  Vrepresents gradient and V represents divergence

The convection-diffusion equation 1s a relatively simple equation describing flows, or
alternatively, describing a stochastically-changing system. Therefore, the same or similar equation

arises in many contexts unrelated to flows through space:

+ It is formally identical to the Fokker-planck equation for the velocity of a particle

*  In semiconductor physics, this equation is called the drift-diffusion equation. The word "drift"
is related to drift current and drift velocity

* It s closely related to the Nawvier-stokes equations, because the flow of momentum in a fluid 1s
mathematically similar to the flow of mass or energy. The correspondence 1s clearest in the case
of an incompressible Newtonian fluid, in which case the Navier-stokes equation is:

M, =L VM - v.IM + (- VP)
P

where, M 1s the momentum of the fluid (per unit volume) at each point {equal to the density p
multiplied by the velocity v),  is viscosity, P is fluid pressure and f is any other body foree such as
gravity. In this equation, the term on the left-hand side describes the change in momentum at a
given point; the first term on the right describes viscosity, which is really the diffusion of
momentum,; the second term on the right describes the adjective flow of momentum; and the last
two terms on the right describes the external and internal forces which can act as sources or sinks

of momentum.

KRYLOV SUBSPACE METHODS

Consider the linear system Ax = b, where A is a large sparse non-symmetric matrix. Let x_
present an arbitrary initial guess to x and r, = b-Ax_ be a corresponding residual vector. An iterative
scheme for solving Eq. 3) is called a Krylov subspace method if for any choice of w; it produces
approximate sclutions of the form x = x+w. The subspace k_  is the Krylov subspace
K, (Ar)= span{r,AL,. . A™' }.

In section 4, we solve our problems with well-known Krylov subspace methods such as
generalized minimal residual method GMRES (m), quasi minimal residual method (QME), BiCG,
Conjugate gradient squared method (CGS) and Bi-Conjugate Gradient stabilized (BiCGSTARB)
method that for more complete explanation refer to (Barrett ef al., 1994; Saad, 1995; Van der Vorst,
2003).

PRECONDITIONED TECNIQUES
The convergence rate of iterative methods highly depends on the eigenvalue distribution of the
coefficient matrix. A eriterion for the width of the spectrum i1s the Kuchdean condition number, that

1s for SPD matrices 1s:
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K =[AL[A7], = 2 () 2 (8) ®)
With y=k-D&k+D, the distance to the exact solution x* in the i*® iteration is bounded by:

Hxi - X*HE < 2«]1?7‘ X - X*HE (N

The right hand side of (3.2) increases with growing condition number. Hence, lower condition
number usually accelerates the speed of convergence. Hence we will attempt to transform the hnear
system into another equivalent system in the sense that it has the same solution, but has more
favorable spectral properties. A preconditioner is a matrix that effects such as a transformation
(Bruaset, 1995). If the preconditioner be as M = M;M, then the preconditioned system is as:

M AMI (M, x)=M;'b (8)
The matrices M, and M, are called the left and right preconditioners, respectively. Now, we
briefly describe preconditioners that we use for solving linear systems and let us take A matrix
arising from fourth-order approximations that is block tri-diagonal.
Preconditioner based on relaxation technique: Let A = D+L+U such that D, L and U are
diagonal, lower and upper triangular block matrices, respectively. A splitting of the coefficient
matrix is as A = M-N where the stationary iteration for solving a linear system is as:

X, =M 'Nx +M'b &)

If the preconditioner M is defined as M = D), then this preconditioner is called Jacobi. Also, if M
1s defined as:

1
M=—D+wmL)
@

Then, we have SOR preconditioner where for w = 1, we have Gauss-Seidel preconditioner. If

M is defined as:

1 -1
M= P (D+oL)D (D+nl)

We get SSOR preconditioner. In the above notation, © is called the relaxation parameter. We
have chosen matrix M in Jacobi, G-5 and SOR methods as a left preconditicner and in SSOR
preconditicner, we have chosen:

(D+al)

1

_ 1
a &(2— @)
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As aleft preconditioner and M2 = D! (D4+wU) as a right preconditioner. Also, we take:

2

{Bruaset, 1995) (Fig. 1-3).

ADI preconditioner: Let A = H+V and matrix A is in the form:
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Fig. 1: Approximation solution, h: 0.25, delta: 0.00625, T: 0.1
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Fig. 2: 3D error of the compact finite difference scheme with time T = 10
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Fig. 3: Convergence plot of BICGSTAB method

where, A, = tridiag (a,;, by, ¢,), B, =tridiag (ay, by, cy) and C, = tridiag (ag, by, ) of order NxIN
where H and V are given in the form, V=(0.5B, a,, ¢;;, a5, c). The alternative direct H= (0.5 B,
b., b, ion implicit method {In't Hout and Welfert, 2009; Ma and Saad, 1993; Peaceman and
Rachford Jr., 1955) for solving the linear system Ax =b is in following form:

(H+Du™"? = b (Vg u®, (10)

(V+ Iu™? = b-(H-r, Hu™"'?, (11)

The ADI preconditioner is defined as M = (H+t,I) (V4r,I) and M, = (H+t,1), M, = (V+r,I) where
Parameters r; and r, are acceleration parameters. Young (1971) and Varga (1962) proved that the
optimum value for r; and r,is Jop where a<u,, v.<ff and u,, v, are eigen-values of matrices H and
V respectively.

BLAGE preconditioner: The block alternating group explicit (BLAGE) method was originally
introduced as analogue of the Alternating Group Explicit (AGE) method (Bhuruth and Evans,
1997; Mohanty, 2007). The BLAGE uses fractional splitting technique that is applied in two half
steps on linear systems with block tri-diagonal matrices of order N*xN? and in the form:

where, A, B, and C, are tri-diagonal matrices of order NXN. The splitting of matrix A is sum of
matrices G, and G, in which A = G,+G;, where G, and G are of the form:
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B,
B, C,
G, = A, B
B:]*l Cnfl
A, B
and:
B
A, B
= B, C
n-2 n-2
An—l I’)—l
B,
For odd values of n where:
B =1p,
2

The BLAGE preconditioner is as M = (G +w, DiGtw,) that M, = (G+o,I) and M, = (Gtw,l)
where w, and v, are optimal iteration parameters. We have experimentally chosen the relaxation
parameter o =op, and e, = Jo,p where o =2,,M). B =2, M) and, B, =%..(M;) so that we will have
the minimum o, =2, M,) condition number (Fig. 4).

NUMERICAL ILLUSTRATIONS

In this section, in order the validity and effectiveness of the proposed scheme; have considered
the numerical solution of Ihffusion-convection Kq. 1 with using preconditioned methods
{(Table 1 and 2). The computations have been done on a P.C. with Core 7 Pue 3.40 GHz and 8 GB
RAM. We consider Eq. 1. in the region. The initial conditions 1s given by:

u(x,y,0) = exp[-8((x-0.5)" + (y-0.5)")]

()5t (b)
12.05 | e manrants To12.10L ]
12.00 ¢ i - PR
| o 12.05 .
11.95 _—_— 4+ | s =
11.90 , , 1200
0.0 - i i i i i i i 11.95 i 1 1 i 1 1
0O 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 10 12 14 16 18 20
Distribution of eigen values M1 Distribution of eigen values M2

Fig. 4(a-b): Distribution of eigen values in BLAGE preconditioner, (a) M; and (b) M,
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Table 1: No. of iterations with BiCGSTAR

h No. pre Jacobi SOR SSOR ADI BLAGE
0.1 7 5 5 2 3 3
0.05 16 11 11 4 4 8
0.025 34 24 22 8 7 17
0.02 45 29 24 10 7 22
0.0125 69 49 35 16 10 37
0.01 78 61 45 21 11 42

Table 2: Maximum absolute error |e|.

h QMR CGS BiCG BiCGSTAB
0.05 4.6479e-007 4.5792e-007 4.6264e-007 4.5381e-007
0.025 2.6892e-007 2.6993e-007 2.6992e-007 2.6990e-007
0.0125 1.2224e-007 1.2224e-007 1.2224e-007 1.2224e-007
0.01 7.3631e-007 Nun 4.3537e-007 9.2066e-008

The analytical solution is of the form:

1 1 2 2
uxyt)= —mexp[m((x-o.&-o.ﬁ) + (v-0.8t-0.5)")]

The initial condition is a Gaussian pulse centered at (0.5, 0.5) having height 1. The boundary
conditions have been taken from the analytical solution. We choose v, =v, =1, v,=v,=0.8, 0=0.01
and t = 10. We discretized Kq. 1 using compact high-order approximation.

CONCLUSION

High-order approximation are designed by the need to produce more stable schemes which are
efficient. with respect to the operation number and that do not experience difficulties near
boundaries. A high-order compact scheme in combination preconditioner was applied successfully
to Diffusion- Convection equation. We study comparison of different preconditioners in combination
KErylov subspace methods. The numerical results which are given in the previous section
demonstrate the good accuracy of this scheme and efficiency of preconditioned Krylov subspace
methods. We got to this conclusion that the ADI preconditioner is effective for model problems
rather than other. So, we propose using ADI preconditioner in combination with Krylov subspace
methods for solving non-symmetric systems because this preconditioner needs to less computing
time and have the less iteration number than other. Also, we propose the BICGSTAB method
because of the need to less iteration number, simplicity in implementation, flat convergence and to
save in computational time.
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