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ABSTRACT

As our dependence on the digital media continues to grow, finding competent ways of storing
and conveying these large amounts of data has become a major concern. The technique of image
compression has then become very essential and highly applicable. In this regard, the performance
of an efficient segmentation-based image coding method combined with Geometric Wavelets that
divides the desired image using a recursive procedure for image coding is investigated. The objective
of the wark 1s to optimize the performance of geometric wavelet based image coding scheme and to
suggest a method to reduce the time complexity of the algorithm. We have used the pelar coordinate
form of the straight line in the BSP scheme for partitioning the image domain. A novel pruning
algorithm is tried to optimize the rate distortion curve and achieve the desired bit rate. The
algorithm 1s also implemented with the concept of no tiling and its effect in PSNR and computation
time is explored. The enhanced results show a gain of 2.24 dB over the EZW algorithm andl.4 dB
over the SPIHT algorithm at the bit-rate 0.0625 bpp for the Lena test image. Image tiling is found
to reduce considerably the computational complexity and in turn the time complexity of the
algorithm without affecting its coding efficiency. The algorithm provides remarkable results in
terms of PSNR compared to existing techniques.

Key words: Segmentation, binary space partition, geometric wavelets, image coding, time
complexity

INTRODUCTION

Digital images have become an integral part of cur daily life, be it storage or transmission. As
our reliance on the digital media continues to grow, finding proficient ways of storing and
conveying these large amounts of data has become a major concern. Because the amount of space
required to hold unadulterated images can be extremely large in terms of cost, as well as of the
huge bandwidth required to transmit them, researchers are seeking methods for efficient
representations of these digital pictures (Netravali and Haskell, 1988) to simplify their transmission
and save disk space. At this point in time, the technique of image compression has become very
essential and highly applicable. The field of image compression is rich in diverse source coding
schemes ranging from classical lossless techniques and popular transform approaches to the more
recent. segmentation-based (or second generation) coding methods (Froment and Mallat, 1992). The
Discrete Cosine Transform (DCT) (Rao and Yip, 1990) has been, until recently, the most popular
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technique for image compression because of its optimal performance and ability to be implemented
at a reasonable cost. The popular JPEG standard (Wallace, 1991) for still images and the MPEG
standard for moving images are based on DCT. Wavelet-based image coding techniques are the
latest development in the field of image compression offering multiresolution capability resulting
in superior energy compaction and high quality reconstructed images at low bit rates. The discrete
wavelet transform forms the basis of the popular JPEG 2000 (Skodras et al., 2001). The wavelet,
transforms (Antonim ef al., 1992) based coding approaches have taken over other classical methods
particularly the cosine transform, due to its capability to sclve the problem of blocking artifacts
which is a common phenomenon in DCT based compression. However, the EZW, the SPIHT, the
SPECK, the EBCOT (Islam and Pearlman, 1999) algorithms and the current JPEG 2000 standard
are based on the discrete wavelet transform (DWT) (Daubechies, 1990).

Despite providing outstanding results in terms of rate-distortion compression, the
transform-based coding methods do not take an advantage of the geometry of the edge singularities
in an image. This led to the design of ‘Second Generation’ or the segmentation based image coding
techniques (Kunt et af., 1985) that make use of the underlying geometry of edge singularities of
an image. To this day, almost all of the proposed ‘Second Generation’ algorithms are not competitive
with state of the art (dyadic) wavelet coding (IDaubechies, 1992). In this regard, inspired by a
recent progress in multivariate piecewise polynomal approximation, we put together the
advantages of the classical method of coding using wavelets and the segmentation based coding
schemes to what can be described as a geometric wavelet approach.

This study focuses on a recent development in the field of piecewise polynomial approximation
for image coding using Geometric wavelets (Alani ef al., 2007). This scheme efficiently captures
curve singularities and provides a sparse representation of the image and thereby achieves better
quality reconstructed images with higher compression ratios. Stress is given on the shared approach
of image compression using geometric wavelets and the binary space partition scheme. The
algorithm is extremely complex in computation and has very high execution time. In general, the
BSP algorithm is applied on individual tiled regions of the image. Once the BSF tree is generated
from on tile the procedure is repeated on other tiles thereby creating a BSP forest. In this work, we
have applied the BSP tree generation procedure on the whole image rather than on the individual
tiled regions and compared the execution times. The effect of no tiling on PSNE is also explored.

LITERATURE REVIEW

A number of segmentation algorithms have been proposed for image coding till date, each
claiming to be different or superior in some way. The first segmentation-based coding methods were
suggested in the early 1980s. These algorithms partition the image into complex geometric regions
using a contour-texture coding method (Kocher and Kunt, 1982) over which it is approximated
using low-order polynomials. One of the most popular segmentation based coding schemes
investigated by researchers in the early days were the Quadtree-based image compression
{(Sullivan and Baker, 1991) which recursively divides the image signal into simpler geometric
regions. Many variations of the ‘Second CGeneration’ coding schemes have since been announced
that explait the geometry of curve singularities of an 1image (Kunt ef al., 1987). Coding algorithms
that are geometric enhancements of existing wavelet transform based methods (Cohen and Mat.ei,
2001), where wavelet, coefficients are coded using geometric context modelling also exist. But all of
these constructions are redundant, i.e., the output of the discrete transform implementations
produces more coefficients than the original input data. Research on the possibility of using these
new transforms to outperform wavelet based coding is still on-going.
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The Binary Space Partition (BSP) scheme (Dekel and Leviatan, 2005), a simple and efficient
method for hidden-surface removal and sclid modelling was introduced in 1990, The BSP technique
{Radha et al., 1998) was applied to the conecept of image compression in 1996 and is adopted in the
first stage of this study. Later, in 2000, binary partition trees were used as an efficient
representation for image processing, segmentation and information retrieval (Salembier and
Garrido, 2000). Recently, many second generation image compression algorithms such as the
Bandelets (e Pennec and Mallat, 2005), the Prune Tree (Shukla et al., 2005), the GW 1mage
coding method (Alani ef al., 2007) and the like based on the sparse geometric representation have
been introduced. Le Pennec and Mallat (2005) lately applied their ‘Bandelets’ algorithm to image
coding, where a warped-wavelet transform is computed to align with the geometric flow in the
image and the edge singularities are coded using one-dimensional wavelet type approximations.
The conecept of combining the binary space partition scheme and geometric wavelets for compression
of digital images were put forward by Alam ef al. (2007). Here the bisecting lines of the BSP
scheme are quantized using the normal form of straight line. This method successfully competes
with state-of-the-art wavelet methods such as the EZW (Shapiro, 1993), SPIHT (Said and
Pearlman, 1998) and EBCOT (Taubman, 2000) algorithms and also beats the recent segmentation
based methods. But the algorithm turned out to be computationally intensive. An improvement was
made to this work by Chopra and Pal (2011). They used the slope intercept form of a straight line
instead of the normal representation. This improved the possibility of minimizing the cost functional
by increasing the choice of bisecting lines available for partitioning. This technique further
increased the complexity of the algorithm.

The presented approach deviates from the context of multi-scale geometric processing, even
from the more general framework of harmonic analysis which is the theoretical basis for transform
based methods and also from the peopular wavelet based studies and is based on the GW and binary
space partition method introduced in 2007 (Alani ef al., 2007). The main difference between the
GW algorithm and recent work is that we use the polar coordinate representation of straight line
for partitioning the domain thereby further improving the availability of partitioning lines and
intern further minimizing the cost functional at each step of BSP scheme. Moreover, unlike the
existing method of tiling the image into smaller blocks and applying the BSP algorithm
independently on each tile, we adopted the method of no tiling, i.e., we apply the algorithm on the
whole image. Image tiling has many disadvantages. The tiling procedure may significantly reduce
the time complexity of the algorithm but also reduces its coding efficiency. Also at low bit-rates,
there are blocking artifacts at the tiles’ boundaries, similar to the common phenomenon in low
bit-rate JPEG compression. In addition, there is a possibility that a long, linear portion of a curve
singularity will be captured by several BSPs, one at each tile, whereas, with no tiling, only a single
BSPF is needed. Here, the BSP scheme is applied on the entire image by using the polar coordinate
form of the straight line. We indicate the performance of the algorithm in terms of PSNR and
execution times with and without tiling and show that image tiling significantly reduces the time
complexity of the algorithm without affecting its coding efficiency.

THE CONCEPT

The basic concepts of the geometric wavelet method are described in the fellowing sections:

BSP technique: The BSP technique can be described as follows. Given an image f, the algorithm
divides convex polygonal domain Q into two subsets Q, and Q, using a bisecting line. The
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subdivision is performed to minimize a given cost functional Eq. 1. This partitioning process then
operates recursively in a hierarchical manner on the subdomains until some exit condition is met.
To be specific, we describe the algorithm of which 1s a BSF algorithm that identifies a compact
geometric description of a target bivariate function. The goal in is to encode an optimal cutoff the
BSP tree, to be precise, a sparse piecewise polynomial approximation of the original image based
on the union of digjeint polygonal domains in the BSP tree. Rate-distortion optimization strategies
are used to meet a given bit rate.

For a given convex polygonal domain Q, the algorithm finds two subdomains, €, and €, two
bivariate (linear) polynomials Q, and Q,;, that minimizes the given cost functicnal:

F(E%,Q):arg?:a “f_QouH; +Hf_QﬂH2q @

where £, and £, represent the subsets resulting from the subdivision of € (£}, and €, should be
considered as children for the mother Q). The bivariate polynomial used 1s defined by:

Qq =Ax+Bvy+C (2)

The peolynomial interpolation is made using the least square method, computing the difference
between the image and the polynomal at a defined region Q. The algorithm continues partitioning
each region recursively until there are no enough pixels to subdivide or the approximation error
is sufficiently small. The algorithm constructs a binary tree with the partitioning information
(Paterson and Yac, 1990). The algorithm needs to encode the information of the geometry, namely,
the line that cut each sub-domain and the approximation function in each sub-domain represented
by the polynomial coefficients. Figure 1 show the steps involved in Binary Space Partitioning
algorithm.

First a line L divides the region Q into two regions £, and ;. The two regions £, and £); are
further divided into Qg,, €y and Q,;, Q,,, respectively. These four regions are further divided into
eight and so on until area of the subdomain contains only a very few pixels. Then it is represented
in a tree structure as shown in Fig. 2.

Fig. 1: Binary space partitioning of the domain Q (two levels)
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Q, Q,
Qq Q, Q Q,

Fig. 2: B8P tree representation of the polygon in Fig. 1

Geometric wavelet: Geometric wavelets are multi-scale dictionary elements which are constructed
directly from the data and have guarantees on the computational cost, the number of elements in
the dictionary and the sparsity of the representation. Geometric Wavelets (GW) have been
considered in context of image compression in 2007. It 1s a new multi-scale data representation
technique which is useful for a variety of applications such as data compression, interpretation and
anomaly detection. The GW 1s defined as:

Yoo (D2154(Q-Qg) (3)

Q, here means one of the children of mother, Q. It is possible to reconstruct the function
fusing:

f=3. 7. (4)

Geometric Wavelet, P, is a “local difference” component that belongs to the detail space between
two levels in the BSP tree, a “low resolution” level associated with Q and a “high resclution” level
associated with €,. Geometric wavelets also satisfy the vanishing moment property like isotropic
wavelets, i.e., if f is locally a polynomial over €, then minimizing of (1) gives G, = Q5 = 1 and
therefore ., (f) = 0. Unlike classical wavelets, geometric wavelets do not satisfy the two scale
relation and the biorthogonality property.

THE GEOMETRIC WAVELET ENCODING ALGORITHM

As in wavelet decomposition, we only encode the differences between the criginal coarse
projections of the data and the points projected onto the planes at a finer scale, to find a compact
representation for the data at the finer scale. In order to do this, an effective scheme is developed
based on the construction of a minimal space spanning this set of differences. The axes of this
difference space are termed “geometric wavelets” and the projections of the finer-scale corrections
to the data points onto the plane spanned by these axes are called the “wavelet coefficients”. The
process is continued, forming a binary tree of mother and children at finer and finer scales until
no further details are needed to approximate the data up to a pre-specified accuracy. The process
is discussed in detail in the following sections.

BSP tree construction: The BSP method is computationally very intensive. Therefore
generally, the image 1s tiled first and then the BSF algorithm i1s applied independently on each tile
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{Chopra and Pal, 2011). The tile size 1s generally adopted 1s 128%x128. But image tiling has many
disadvantages. The tiling procedure significantly reduces the time complexity of the algorithm but
also reduces its coding efficiency. Also at low bit-rates, there are blocking artifacts at the tiles’
boundaries. Several BSPs, one at each tile are to be created which is computationally very
intensive, whereas, with no tiling, only a single BSP 1s needed. The BSF scheme 1s applied on the
entire image by using the polar coordinate form of the straight line (Rehna and Jeyakumar, 2014).
In polar coordinates on the euclidean plane, a line 1s expressed as:

P R (5)

gin® —mcos0

where m 1s the slope of the line and b isthe y-intercept. The equation can be rewritten
as:

reinf=mcosd+b )

It is not possible to quantize the parameter m, as it is unbounded, has value infinity for the
straight lines which are parallel to y axis. This problem 1s solved by using the new parameter a in
place of min (8), where @ 1s the angle between the line and the x axis in the anticlockwise direction
(Fig. 3).

Subsequently, Eq. 6 reduces to:

rsinf=tan®rcos6+b (7)

Here, the probability of minimizing the cost functional given in (1) is increased, compared to
that when the normal form of straight line is used. The number of bisecting lines available for the
partitioning of the Cameraman test image of dimension 256x256 is 182325, Figure 4 shows the
tiling of bitmap image of Cameraman of size 256x 256 with each tile being 128x128,

We use a quantization scheme to discretize the set of possible bisecting lines by the parameters,
r and 0 of the polar co-ordinate form. The size of the quantization step depends on the “size” of the
polygonal domain. The “size” is defined as the longest side of the domain’s bounding box, but we
find this too crude and use the diameter of the bounding box instead. We apply a uniform
quantization of the line orientations @, where the quantization depends on the size of the domain.
We then use uniform quantization for, where the quantization depends on 6. For the purpose of
quantization, we set the domain’s size to be the smallest power-of-two that is larger than the
diameter of the bounding box. Then, the number of line-orientations is:

#0 2 min_, >~y (8)

where m and n are the lengths of the sides of the bounding box. Next, we quantize r. As mentioned
before, given a domain Q, the range of r is a function of 6. Let be the corner (x,v. of the bounding-
box of Q. Then, the range where r takes values is computed by:

G ()2 ming, o {(x—x,)cos8+ (y— v, )sin} )]
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y A

3

Fig. 3: Partaition of the image domain into two subdomains-Parameters 0 and ®

Fig. 4. Tiling of cameraman image (Tile size 128x128)
T (0)2 i, {(x—x,)cos0+ (y -y, )sin0} (10)

where V 1s the set of vertices of the polygonal boundary of Q and ris the fixed line orientation.
Given a line-orientation 0, the quantization step of r is:

A, (0) = max{|cos0], |sin 6]} (11)
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Equation 11 gives the smallest value for a quantization step size that reveals a new set of pixels
with each step. Following the procedure mentioned in earlier sections, the BSP tree is generated
for the entire image and according to the method defined in earlier section; geometric wavelets are
created for each node.

Pruning and sparse representation: The GW image coding algorithm is based on the idea that
among all the geometric wavelets only a “few” wavelets have large norm. Once all the geometric
wavelets are created, they are arranged according to their L? norm as shown in Eq.12:

2 (12)

I¥a,

=
2],

=],

2

Then the sparse geometric representation is extracted using the greedy methodology of
nonlinear approximation (Claypoole ef al., 2003). Here, n wavelets are selected from the joint list
of geometric wavelets over the entire image.

We tried a new rate-distortion eptimization pruning algorithm prior to encoeding. The R-D
curve for each node is generated by approximating the node by the quantized polynomial P (t)
which 1s obtained by secalar quantizing the polynomial coefficients. In this Lagrangian cost based
pruning, the R-D optimal pruning criterion for the given operating slope, A is as follows: Prune
the children if the sum of Lagrangian costs of the children is greater than or equal to the
Lagrangian cost of the parent. Mathematically, this means that the children are pruned if
(Do Do + ARy R o)>= (Dp+AR;), where Ky and Dy are rate and distortions of the parent and Ry,
Rus Dy and Dy, are the rate and distortions of the children respectively. Subsequently, function
fis approximated using the n-term geometric wavelet sum given in Eq. 4 where n is the number
of wavelets used in the sparse representation.

Encoding: To obtain a reasonable approximation of the image, it is essential that if a child is
present in the sparse representation, then the mother should also be there, 1.e, the BSF tree should
be connected. Therefore, instead of encoding an n-term tree approximation, we create an n + k
geometric wavelet tree by considering more k nodes. The cost of imposing the condition of the
connected tree structure is not very huge, since there is high probability that if a child is important
all its ancestors are also important.

The encoding of the geometry of the extracted connected tree structure saves bits as only
optimal eut is to be encoded. There are two sorts of data to be encoded, (1) the geometry of the
support. of the wavelets participating in the sparse representation and (2) the polynomial
coefficients of the wavelet. Before encoding the extracted BSP forest, a small header 1s written to
the compressed file. Header consists of the minimum and maximum values of the coefficients of the
participating wavelet and the image gray levels. Out of header size of 26 bytes, 24 are used in the
storage of the minimum and the maximum values of the coefficients while 2 bytes are utilized to
store the extremal wvalues of the image. “Root” geometric wavelets contribute most in the
approximation, so each reot wavelet is encoded. Thus the enceding process is performed over the
entire image.

Encoding the geometry of the support of the wavelet: The following information is encoded
for each of the participating node Q:
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¢ Number of children of Q that participate in the sparse representation
* In case only one child is participating, then whether it is the left or the right child
« [fQisnot aleaf node, then the line that bisects Q is encoded using the slope intercept. form

Left child and right child are defined as the sets of the pixels satisfying the inequality r-tan .
r sinB<=b and r-tan @. r sinG@>=b, respectively. The leaf node is encoded by using the bit “1.” Codes
“00" and “017 are used for the one child symbol and the two children symbol, respectively. If only
1 child of Q is participating in the sparse representation, then this event is encoded by using an
additional bit. In case Q is not a leaf node, then the indices of the parameter @ and c of the bisecting
line are encoded using the lossless variable length coding.

Encoding the wavelet coefficients: The coefficients of the wavelet polynomial, @ are quantized
and encoded using an orthonormal representation of II,(Q), where I1,(Q) is the set of all bivariate
linear polynomials over Q. A bit allocation scheme for the coefficients is applied using their
distribution funection (over all the domains) which is discussed in later sections. The “root” wavelet
is always encoded.

Quantizing the wavelet coefficients: To ensure the stability of the quantization process of the
geometric wavelet polynomial Q, we first need to find its representation in appropriate orthonormal
basis. The orthonormal basis of II,(€2) is found using the standard Graham-Schmidt procedure. Let
V,Go,y) =1, Vi(xy) = x, Vi(x,y) =y and be the standard polynomial basis. Then, an orthonormal
basis of II, (€2) is given by:

v,

_ 1
U =7
v

_V-(V.U)u -(V,,U) U, (13)

where inner product and norm are associated with the space L, (Q). Let:
¥ = aU, + U, +9U, (14)

be the representation of the geometric wavelet Well,(£2) in the orthonormal basis.

A bit allocation scheme is applied depending upon the distribution functions of the coefficients
o, p and a of the wavelets participating in the sparse representation. Figure 5 shows the histogram
of the wavelet coefficients of Lena. We can infer from the graph that there is a very high
probability for the coefficients ¢, f and vy to be small (the graph resembles a generalized-(Gaussian
function). Some large coefficients are alse present due to root wavelets. Four bins are used to model
the absolute value of the coefficients; bin limits are computed and passed to the decoder. In case all
the three coefficients of the wavelet are small, i.e., they are present in the bin containing zero, then
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Fig. B(a-c): Histogram of wavelet coefficients, (a) « (b), p and (¢) ¥ of Lena image

this event is encoded using single bit, but if any one of them is not small then the bin
number of each coefficient is encoded. After this quantized bits are written to the compressed
file.

Figure 6 shows how the bit budget allocation of Lena at the bit-rate 0.03125 bits per pixel (bpp)
is distributed among the GW algorithm components. Figure 7 shows the bit allocation distribution
of Lena at the hit-rate 0.125 hits per pixel (bpp). It can be inferred from the chart that at higher
bit-rates, the bit budget for the polynomial coefficients relatively increases, while the bit allocation
for the bisecting lines decreases.

Decoding: In the decoding stage, the compressed bit stream i1s read to find whether the
participating node is a root node, has 1 child or 2 children, or a leaf node. If one child is
participating then by using bit stream identification, it is found whetherit is left child or right child.
If at least one of the children belongs to the sparse representation, then the indexes of s and b are
decoded and using these index parameters @ and b of optimal cut are calculated. Thereafter, using
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Fig. 6: Bit budget allocation for Lena at bit-rate 0.03125 bpp. Output file size 1s 1 kByte
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Fig. 7: Bit. budget allocation for Lena at bit-rate 0.125 bpp. Output file size 1s 4 kBytes

80.8%

this optimal cut, domain 1s partitioned inte two subdomains and depending upon the situation
vertex set of only one child or both children is found. This process is repeated until entire bit stream

is read.

EXPERIMENTAL RESULTS

The proposed algorithm is tested on the still image of Liena of bit depth 8 and of size B12x512,
The implementation 1s done using MATLAB. The Peak Signal to Noise Ratio (PSNR) based on
Mean Square Error (MSE) is used as a measure of “quality”. MSE and PSNE are given by the
following relations:

— L m n _ 2 15
MSE = m)mz]:l PNRENESA 45
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2
PSNR = 10log,, {(;ISSSE) } (18)

where mxn is the image size, x;; is the original image and y,; is the reconstructed image. MSE and
PSR are inversely proportional to each other and higher value of the PSNR implies better quality
reconstructed image. The performance of proposed method with and without tiling is compared
against six algorithms. The PSNR values cobtained by this method for the Lena image are compared
with those obtained by the EZW, the SPIHT, the KBCOT and the Bandelets algorithms. Data
presented in Table 1 shows that the proposed method outperforms the EZW, the SPIHT, the
EBCOT and the Bandelets methods (e Pennec and Mallat, 2005) at low and medium bit rates.

The proposed method without tiling reports a gain of 1.4 dB over the SPTHT method, 1.48 dB
over the EBCOT method and £.24 dB over EZW algorithm at the compression ratio of 128:1 for the
Lena test image. The presented algorithm shows an increase of 1.06 dB over the original GW
method and 1 dB over the improved GW algorithm at a bit rate of 0.0625 bpp for the Lena
image.

The PSNR comparison with other algorithms on the cameraman test image 1s shown in
Table 2. At the compression ratios of 128, 64 and 32, proposed method performs better than the
SPIHT, GW and the improved GW algorithms. The proposed methoed with tiling reports a gain of
1.24 dB and without tiling shows a gain of 1.07 dB over the GW method at the compression ratio
of 64 for the cameraman image.

Figure 8 shows the graphical representation of the effect of tiling on PSNR at different, bit-rates
for the Lena and cameraman test image.

Different variations of the Geometric gorithm namely, the basic GW (Alani et al., 2007) which
uses the normal form of straight line for partitioning the image domain in the BSP scheme,
Improved GW (Chopra and Pal, 2011) that uses the slope-intercept representation of straight line
in the BSP scheme, hybrid GW (Eehna and Jeyakumar, 2013a) that uses the polar co-ordinate
form of straight line and the propesed method are compared in Fig. 9.

Table 3 shows the execution times for BSP tree generation for all four tiles of the cameraman
image. The simulated results presented are for the computer specifications of Intel core 15 processor,

3GEB DDR3 memory and a speed of 1.64 GHz (Rehna and Jeyakumar, 2013h).

Table 1: Comparison of PSNR in dB with other state of the art algorithms on test image, Lena

Proposed method

Compression ratio  Bit rate (bpp) EZW SPIHT EBCOT Bandlets GW Improved GW Tiling Na tiling
256:1 0.03125 25.38 26.1 - - 26.64 26.67 27.84 27.90
128:1 0.0625 27.54 28.38 28.30 - 28.72 28.78 29.73 20.78
64:1 0.125 30.23 31.10 31.22 30.63 30.73 30.82 31.45 31.49
Tahble 2: Comparison of PSNR in dB with other state of the art algorithms on cameraman test image

Proposed method
Compression ratio Bit rate (bpp) SPIHT GW Improved GW Tiling No tiling
128:1 0.0625 22.8 22.93 23.04 24.55 24.63
64:1 0.125 25 25.07 25.29 26.31 26.36
32:1 0.25 28 27.48 27.62 28.38 28.42
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Table 3: Time complexity analysis of BSP tree generation for different tiles of the cameraman image

Execution time

Tile No. Tile size Sec Min
1 128x128 4325.26 72.08
2 128x128 5960.23 99.37
3 128x<128 2632.43 43.87
4 128x<128 3460.47 57.66
329 () —e— Tiling 297 (b)
No tiling )
31 - 287
2 =)
g £ 271
§ 30 4 2
= =] v
g T 26
2 29 - b
E 2 25
3 78 @ ¢
- v 5 o
)54 o 24
=%
27 4 234
26 T T T 1 22 T T T 1
0.03125 0.0625 0.125 0.25 0.03125 0.0625 0.125 0.25

Bit rate (bpp)

Bit rate (bpp)

Fig. 8(a-b): Effect of tiling on PSNR for (a) Liena and (b) Cameraman image

32 ~ —o— Basic GW
—— Improved GW
31 4 Hybrid GW
Proposed method

g 30 4
5
2 29 -
g
£ 28 ~
=
<
227 4
b L 4
& 26

25 A

24 T T T 1

0.03125 0.0625 0.125 0.25

Bit rate (bpp)

Fig. 9: Performance comparison for different. variations of the GW algorithm

The total time required to generate BSP tree for the image with tiling is about 4.54 h. When the
algorithm is applied to the entire image, 1.e., without tiling, the execution time 1s found to be around

11.36 h. It can be seen from Table 3 that the peak signal to noise is very minimally affected without

tiling. In other words, there is no considerable reduction in the coding efficiency due to tiling. It can

be inferred from the results that image tiling significantly reduces the time complexity of the

algorithm without reducing its coding efficiency. Figure 10 shows the reconstructed images of Lena

using the GW algorithm with and proposed method without tiling, at the compression ratio of 128:1
and PSNR 28,72 and 29.78, respectively.
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(d) (e) ®

Fig. 10{a-f): (a) Original Lena. (512x512), (b) Reconstructed Lena using the GW algorithm (with
tiling), 0.0625 bpp, PSNR = 2872, (¢} Reconstructed Lena using the proposed
method (without tiling), 0.0625 bpp, PSNE = 29.78, (d) Original cameraman.
(256x258). (e) Reconstructed cameraman using the GW algorithm (with tiling),
0.0625 bpp, PENR = 22.93, (f) Reconstructed cameraman using the proposed methoed
(without tiling), 0.0625 bpp, PSNE = 24.63

SUMMARY AND CONCLUDING REMARKS

The performance of a hybrid algerithm for image compression using the geometric wavelets and
the tree-structured binary space partition scheme is explored in this research. We have improved
the coding efficiency of the GW algorithm by using the polar coordinate form of straight line for
best bisection in the partitioning procedure. A novel pruning algorithm 1s tried to optimize the rate
distortion curve and achieve the desired bit rate. A new “geometric” context modeling scheme
combined with arithmetic coding 1s designed to boost the performance of the algorithm. The
algorithm is extremely complex in computation and has very high execution time. The time
complexity of the BSP scheme is analyzed in this work. In addition, the algorithm is implemented
with the concept of no tiling and its effect in PSINR and computation time is explored. Image tiling
is found to reduce considerably the computational complexity and in turn the time complexity of
the algorithm without affecting its coding efficiency. The presented method produced PSNR values
that are competitive with the state-of-art coders in literature. The algorithm works well with
geometrically rich content images at low bit-rates. Our results provide some weak evidence that
show, hybrid techniques do help in improving the performance of image coding algerithms. We
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suggest future researchers to apply the concepts of soft computing techniques, especially the
artificial neural networks with the geometric wavelets which may help in reducing the time

complexity of the algorithm.
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