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ABSTRACT

Independent Component Analysis (ICA), a statistical signal processing technique, separates the
independent source signals from their cbserved mixtures by maximizing the statistical
independence of the components. Since the ICA algorithm is so complex to implement on the FPGA,
implementation of this algorithm leads to excessive area and power consumption. This study
presents FPGA implementation of a novel area and power efficient Fast Confluence Adaptive
Independent Component Analysis (FCAICA) technique with reduced number of recursive
iterations. This method occupies less area, less power and provides the high convergence speed. The
reduction in area is achieved by hardware optimization and high convergence speed is achieved
by a novel optimization scheme that adaptively changes the weight vector based on the kurtosis
value. To increase the number precision and dynamic range of the signal, the Floating-point (FP)
arithmetic units are used. To validate the performance of the propesed FCAICA, simulation and
synthesis are performed with super-gaussian mixtures and experimental results are compared with
FastICA and SFLO-ICA (Shuffled Frog Leap Optimization ICA). The proposed FCAICA processor
separates the super-Gaussian signals with maximum operating frequency of 2.91 MHz.

Key words: Adaptive independent component analysis, blind source separation, contrast function
optimization, field programmable gate array, floating point independent component,
analysis, very large scale integration

INTRODUCTION

[CA 15 one of the most commonly used algorithms in blind source separation. The term “blind”
means that both the original independent sources and the way the sources were mixed are all
unknown. Kstimates of the source signals are found only from the observed signal mixtures. [CA
recovers source signals from their mixtures by finding a linear transformation that maximizes the
mutual independence or non-gaussianity of the mixtures regardless of the prebability distribution.
It plays an important role in a variety of signal processing, image processing techniques and
communication networks. Though different ICA algorithms have been reported, the FastICA
algorithm has been shown to have advantages in terms of convergence speed (Oja and
Yuan, 2008). It measures the non-Gaussianity using kurtosis to find the independent sources from
their mixtures (Hyvarinen ef ai., 2001). Most ICA algorithms that are based on the Maximum
Likelihood (ML) or the Maximization of Negentropy (MIN) principle are equivalent when the
demixing matrix is constrained to be unitary (Adali et «f., 2008). The most popular FastICA
algorithm (Hyvarinen, 1999) uses the principle of maximization of negentropy and has the unitary
constraint on the separating matrix. The simplest algorithm for maximizing the likelihcod uses
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stochastic gradient methods. Nonlinear decorrelation algorithm has been proposed in order to
reduce the computational overhead and to improve stability (Cichocki and Unbehauen, 1996).
Another appreach to ICA that is related to PCA is the non-linear method. Since learning rule uses
higher order information in the learning when nonlinearities are introduced, this method indeed
performs [CA, if the datai1s whitened. Algorithms for exactly maximizing the nonlinear PCA criteria
are introduced in (Pham and Garat, 1997). Simple algorithms are derived from the one-umt
contrast functions using the principle of stochastic gradient descent. Hebbian like learning rule 1s
obtained by taking instantaneous gradient of contrast function with respect to w (Hyvarinen and
Oja, 1998). Joint Approximate Diagonalization of Eigenmatrices (JADE) is based on the principle
of computing several cumulant tensors. With low dimensional data, JADE is a competitive
alternative to most popular FastICA algorithms. Other approaches include maximization of squared
cumulants (Herrmann and Nandi, 2000) and fourth-order cumulant based methods (Nandi and
Zarzoso, 1996). Fourth-Order Blind Identification (FOBI) method deals with the Kigen Value
Decomposition {(EVD) of the weighted correlation matrix (Cardeso, 1989). A Frequency-Domain
method of Blind Source Separation (FD-BSES) is able to separate acoustic sources under highly
reverberant challenging conditions (Nesta et al., 2011). In Frequency-Domain BSS, the separation
is generally performed by applying ICA at each frequency envelope. ICA 1s also done by entropy
bound minimization (ICA-KBM) (Li and Adali, 2010).

Evolutionary computation techniques which are population search based optimization methods
like genetic algorithms, Particle swarm optimization are used in ICA (Rojas et al, 2004)
{(Palaniappan and Gupta, 2008)., The only disadvantage of evolutionary computation based ICA
technique is that it has heavy computational complexity. But with the advent of highly parallel
processors and new technologies like VLS, these methods provide competitive solutions to the
problems. Fixed-point VLSI architecture was proposed for 2-Dimensional Kurtotic FastICA with
reduced and optimized arithmetic units (Acharyya et al., 2009). Implementation of ICA algorithm
on a fixed point platform and floating point processor shows that the accuracy and speed of fixed
point platform were found to be acceptable. In addition, the fixed point processor needs less space
and consumes less power. But fixed point processor can handle only smaller range of values
(Patil ef al., 2011). Due to the computation complexities and convergence rates, ICA is very
time-consuming for high volume or high dimensional data set like hyperspectral images. In Parallel
ICA (pICA), ICA module 1s partitioned into three temporally independent funectional modules and
each of them is synthesized individually. All these modules are developed for reuse and retargeting
purpose. It provides optimal parallelism environment, a potential faster and real-time sclution
(Du and @i, 2008). FPGA implementation of ICA in digital chip is reported with modular design
concept in (Celik et al., 2005) and with systolic architecture in (Jeong ef af., 2010}, A mixed-signal
VLSI system that operates on spatial and temporal differences of the acoustic field at very
small aperture to separate and localize mixtures of traveling wave sources is presented in
{(Du et al., 2007),

ICA techniques are mostly used to solve BSS problems. Speech-recognition technologies are not
so popular though they are successful for clean speech signals. This is because of their poor
performance in real-world noisy environment. FPGA implementation of 32-channel convolutive ICA
chip is reparted for real world signals (IKim ef al., 2003). Pipelined FastICA which can process the
real time sequential mixed signal is reported with its FPGA implementation (Shyu et al., 2008).
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To analyse the convergence speed, two different ICA methods named as shuffled frog leap
optimization based ICA and fast confluence adaptive ICA are proposed in floating point arithmetic
in this study. The most commonly used FastICA algorithm that provides high convergence speed
is also developed for comparisen purpose. In order to enable the real-time ICA processing in VLSI
and to speed up the computation, the ICA algorithms are written by hand coding HDL code.
Various analog VLSI implementations of I[CA also exist in the literature. Since digital adaptation
offers the flexibility of reconfigurable ICA learning rules, digital implementations are common
practice 1n this field. Though there 1s software that translates the high-level languages such as
C code, MATLAB and even Simulink into HDL code, hand coding gives the optimized performance.

The originality of the proposed FCA-ICA is summarized as follows:

*  The early determination of converging weight vector and demixing matrix reduces the number
of operations required for convergence
+  Convergent speed is improved by changing the weight vectors according to fitness value

+  Floating point arithmetic improves the precision and dynamic range of the signals

BACKGROUND OF ICA

A long-standing problem in statistics and related areas is to find a suitable representation of
multivariate data. Representation here means that data is transformed so that its hidden, essential
structure 1s made more visible or accessible. Blind source separation 1s a problem of finding a linear
representation of hidden data from the mixture in which the components are statistically
independent. In practical situations, we cannot in general find a representation where the
compoenents are really independent but we can at least find components that are as independent
as possible. Independent component analysis is a major task in signal processing to extract the
source signals from the observed mixtures. The relationship between source signals 5 and cbserved

mixtures X is given in matrix notation as in Kq. 1.
X=AS (1)

Ais afull rank matrix which is called mixing matrix. Under some assumptions, ICA solves the
BSS problem by finding inverse linear transformation such that, it maximizes the statistical
independence between the observed mixtures. In doing this, ICA finds unmixing matrix B. Then

the estimate of the source signal (S_est) 1s found from Kq. 2:
S est=BX=58 (D

ICA preprocessing: In order to simplify the ICA process, it is necessary to perform preprocessing
before applying the mixtures to the ICA algorithm. The preprocessing of mixed signal involves
finding the mixing matrix P. The first step in preprocessing is called centering.

Let N statistically independent sources be mixed through NxN nonsingular mixing matrix A
so that we obtain the observed signal mixtures given by x,(t), %,t), ...x (t) which are the amplitudes
of the recorded signals at time point t. For N = 2, representation of original source signals is given
by s,(1), s,(t) and mixtures are x,(t) and x,{t). Centering consists of subtracting the mean from each

observed mixtures X () and X,(t) to produce zero mean outputs C_X, and C_¥X, as shown in Fig. 1.
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Fig. 2: Implementation of whitening

The second step is called whitening and consists in linear transformation of the centered
mixtures, to obtain new vectors which are white. Figure 2 shows the whitening process. The
components of a whitened vector are uncorrelated and their variances equals to unity. This means
that the covariance matrix of whitened data is equal to the identity matrix. One way to perform
whitening is to use Eigen Value Decomposition (EVD). The whitening matrix can be found by using
Eq. 3:

P=EDET (3)

where, [t is the orthogonal matrix of eigenvector found from the covariance matrix B {XX%}. D is
the diagonal matrix of the eigenvalues associated with each eigenvector. The efficiency of ICA is
based on the selection of cost functions, also called objective functions or contrast functions. The cost
function in some way or other is a measure of independence (Adali ef al., 2008). Some measures
of independence are kurtosis, negentropy and mutual information. Though there are different
contrast functions, the most popular contrast function used in ICA is kurtosis.

FLOATING POINT ARITHMETIC

Based on the storage area available, there are two varants of floating point representation of
a real numberi.e.,, IEEE single-precision representation and IEEE double-precision representation.
IEEE single precision format, that uses 32 bits, has been used for this proposed ICA algorithm.
Format of 32 bit floating point representation is shown in Fig. 3.

The sign field S 1n Fig. 1 is used to specify the sign of the real number. Exponent field K is a
8 bit quantity represented by using a bias of 127. Bits 22 down to O in field M are used to store the
binary representation of the floating point number. Since leading one in the mantissa 1s implicit,
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31 30.....23 22...0

Fig. 3: Thee to thirty two bit floating point format representation

it does not appear in the representation. Addition, subtraction, multiplication, division and square
root operations are carried out following the appropriate algorithms of single precision IKEE 754
standard.

FAST-ICA

FastICA algorithm: Due to simplicity and fast convergence, FastICA is considered as one of the
most popular solutions for linear [CA/BSS problem. The VLSI implementation of this algorithm
involves the preprocessing and iteration scheme,

+ Iteration for one unit: The FastICA algorithm for one unit estimates one row of the demixaing
matrix as a vector that is an extremum of contrast functions. FastICA 1s an iterative algorithm,
derived from kurtosis based contrast function. Assuming 7 as the whitened data vector and
w'(k+1) as one of the rows of the separating matrix, estimation of w'(k+1) is done iteratively
until convergence is achieved. The FastICA algorithm involves the following steps:

Step 1: Choose an initial random vector of unit norm (w,,)
Step 2: Find norm of vectors and divide by corresponding norms
Step 3: Update the vector using whitened data vector Z to find w__:

w,_, < B{Z(w()Z")’}-3w(k)

Step 4: If W _ -w_,<eis not satisfied then go back to step 2. Where, £ 1s a convergence parameter

new

(~107% and w_, is the value of before it‘s replacement by the newly calculated value w__,

+ Fixed-pointiteration for finding several ICs: More than one independent components are
estimated using deflationary approach one by one or estimated simultanecusly by symmetric
approach. In order to prevent that the algorithm estimates the same component more than one
time, the orthogonalization is made using Eq. 4 and 5. This verification is done by subtracting
the projections of all previously estimated vectors from the current estimate after every iteration
step and before normalization

Wp < (Wp-(Wp W)W (4)

In the symmetric approach the iteration step is computed for all w, and the matrix W is
orthogonalized as:

we(wa)féw (B)

The results are obtained in FastICA following the deflationary approach.
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SFLO-ICA

In this ICA method, contrast function optimization is performed based on SFLO for improving
the optimality and convergence performance. Mutation operator introduced in SFLO Algorithm
avoids the solution from getting trapped in local minima. It converges better in lesser time when
compared to other optimization algorithms. In this algorithm, initial weight vectors for estimating
the demixing matrix are assumed as frogs and updated by step 3 of the algorithm. Then fitness
valueis calculated and sorting 1s done according to fitness value. Based on the fitness values, total
population is partitioned into q groups (memeplexes) of p frogs,that search independently. In this
process, the first frog goes to the first memeplex, the second frog goes to the second memeplex, pth
goes to the pth memeplex and frog p+1 goes back to the first memeplex and so on. In each
memeplex, the frogs with the best and the worst, fitnesses are identified as Xb and Xw, respectively.
Also, the frog with the most qualified fitness level among all the memeplexes is identified as Xg.
Then improvement i1s done to improve only the frog with the worst fitness according to step 8. If this
process produces a better solution, it replaces the worst frog. Otherwise, a new population is
randomly generated to replace that population. This process continues for a specific number of
iterations (I__..). Then all memeplexes are combined and sorted. Then mutation operation is
), the search
procedure 1s stopped; otherwise it goes to step 5. The last Xg 1s the solution of the problem.

included using (11) to avoid local mimima. If the current iteration number reaches (I

max2

Floating point [teration: Estimation of w'(k+1) is done iteratively with following steps until a
convergence is achieved:

(1) Choose initial population of 1’ frogs (weights) at random

(2) Find norm of pair of frogs and divide by corresponding norms

(3) Update the frogs by the equation w(k+1)«E{Z(w(k)Z")?}-3w(k)

{4) Caleculate the fitness value from f = wik+1)-wi{k)

(5) Sort the initial population based on the fitness values with decreasing manner

{6y Partition the sorted population into p memeplexes of q frogs

{7y Belect the best frog (Xb), worst frog (Xw) in each memeplex and globally best frog (Xg)

(8) Update the position of Xw using Xw (new) = Xw ,+C. where, C =rand().(Xb-Xw)

{9 If it produces better solution, older frog is replaced by updated frog and this process continues
for a specific number of iterations (Imaxl). Otherwise a new frog is randomly generated to
replace Xw and algorithm goes to step 2

(10) All memeplexes are combined and sorted again

{11) Apply mutation

Ximut - Xi

+1"and(.) (Xib'Xi d) +rand(')(Xig-Xirand)

rand ran

(12) If the current iteration number reaches Imax2, the search procedure is stopped or it goes to
step B
{13) The last X g is the sclution of the problem

1
X rand

is a randomly generated vector, Nmem 1s the number of memeplexs,
i=12,.... Nmem, rand () is randoem number between (0 and 1) and e is a convergence parameter
(~107%. With the above steps, deflationary othogonalization is made to find second independent
component.
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NOVEL LOW POWER FAST CONFLUENCE ADAPTIVE ICA

Though the above algorithm which is based on MSFO improves the optimality performance,
it suffers from computational complexity due to large number of iterative calculations in floating
point iteration scheme. For reducing the number of manipulations and for improving the
performance of ICA algorithm in terms of convergence speed and power, adaptive optimization of
contrast function is proposed in floating point arithmetic. Here, initial weight vectors for estimating
the demixing matrix B in (2), are assumed as frogs and are described as memetic vectors. This
algorithm computes new weights (frogs) from the initial weights in adaptive manner based on
fitness value.

Floating point iteration for one unit: Having done the preprocessing to whiten the
mixed signal,this algorithms 1s used to find the independent components. The proposed fast
confluence adaptive ICA algorithm for one unit estimates one row of the demixing matrix.
Updation of weights continues in iterative manner with following steps until a convergence is
achieved.

{1) Choose initial frogs (w1) of ‘N’ numbers at random
{2) Find norm of frogs and divide by corresponding norms
(3) Update all the N frogs by using the equation

wkt)<E{Z(wk)Z")’}-3w(k)

{4y Calculate the fitness value f = {w(k+1)-w(k)} and sort the frogs according to the fitness values

(5) Divide the N frogs into M groups (N = 2*M) with 2 frogs in each group. The division 1s done in
such a way that 1st frog goes to 1st group, 2nd frog goes to 2nd group and continuous up te M
frogs. Then (M+1)th frog goes to 1st group and so on

(6} In each group, determine the best and worst individuals. Update the worst frogs using step 3

(7 If {wk+1)-w(k)<e is not satisfied, then go back to step 2 by adaptively taking a new ‘wi’ lesser
than that of worst frog where ¢ is a convergence parameter {(~107%

(8) When {wik+1)-w(k)<e is satisfied, move to next group of frogs and repeat from step 6 until
iteration limit is reached

(9) Then the two vectors with good fitness value can be used as row vectors of demixing matrix,
With the above steps, deflationary othogonalization is then made to find second independent
component

RESULTS AND DISCUSSION

For the verification of the validity and performance of the FastICA and the two proposed ICA
algorithms, two different super-gaussian signal mixtures are taken and applied to the algorithms.
The input signal to these ICA algorithms are speech and mike signals mixed with artificial mixing
matrix A. The mixing matrix is a full rank matrix of 2 rows and 2 columns. The experiment was
carried out first, for small-sized problem with 256 samples. Because the defined algorithm must be
capable of efficiently solving the real-world sized instances, another experiment. is carried out for

large-sized problem with 3000 samples each.
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Fig. 5: Speech signal 2

Parameter setting: For fine-tuning this category of problem to real world applications, extensive
experiments were carried out with parameters. The parameters set are;

*  Number of weight vectors is 2 since the dimension of the demixing matrixis 2
«  Maximum number of iteration for each weight vector 1s 100

Results of supergaussian mixture: The original supergaussian speech signals applied to the
ICA process are shown in Fig. 4 and 5, respectively. Supergaussian signals have kurtosis value
greater than zerc. It is less than zero for sub gaussian signals. When kurtosis is zero,the signal 1s
gaussian for which ICA cannct be applied. Most of the real world signals are supergaussian in
nature. Kxamples are speech signal, train sound, car noise etc. sine waves, sawtooth waves are
examples of subgaussian signals. The super-gaussian mixture signals are shown in Fig. 6 and 7,
respectively. Figure 8 and 9 shows the independent components obtained through proposed
systems.

Simulation and Implementation results of ICA algorithms: All the algorithms are written
in VHDL and implemented on FPGA ALTEREA using Quartus 10.0 Tool. The simulation results are
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obtained from Modelsim 10.0c Tool. Table 1 compares the performance of FastICA, SFLO-ICA and
FCA-ICA in terms of area, power and maximum operating frequency and convergence speed T.
Here, T represents the time taken for each of the algorithms to reach convergence.
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Fig. 10: Performance comparison of ICA algorithms

Table 1: Comparison of ICA algorithms

Parameters FastICA SFLO-ICA FCA-ICA
Resowrce utilization (%) 34.0 43.0 27.0
Power dissipation (mW) 270.76 307.27 246.94
F 2.85 2.21 2.91

max

Implementation of FastICA algorithm, SFLO-ICA and FCA-ICA algorithm shows that the
achievable speed is 2.85, 2.21 and 2.91 MHz for FastICA, SFLO-ICA and FCA-ICA, respectively.
This is the maxdimum value of frequency at which the circuit can be clocked. Figure 10 shows the
plot of area, Fmax, power and convergence time. The FCA-ICA based extraction of components
from their mixtures consumes lesser area, lesser power and provides faster convergence compared
to the other two. Further investigations of design implementation in FPGA for power, area and

timing performance shows that, area and power increases whereas time reduces in the order of
FCA-ICA, FastICA and SFLO-ICA,

Convergence analysis: The convergence analysis is done from the simulation results obtained
from Modelsim 10.0c Teol. Convergence speed T represents the time taken for each of the
algorithms to reach convergence. It 1s 300, 500 and 200 ps for Fast ICA, SFLO-ICA and FCA-ICA,
respectively. It shows that FCAICA converge faster than FastICA and SFLO-ICA due to increased
search space and adaptivity. Figure 11 shows the convergence plot.
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SNR analysis: Figure 12 shows that all the ICA algorithms have same Signal to Noise (SNE) for
a particular signal. Though SNER is same, FCAICA performance is better than FastICA and in terms
of convergence speed, operating frequency, area and power.,

CONCLUSION

In this study, new time-doemain approaches to estimate the independent components from their
observed supergaussian mixtures have been presented. Use of modularity and hierarchy simplifies
the design, reduces the area, power and speeds up the convergence process of [CA. The usage of
optimization algorithm enables finding optimal solution. Floating point manipulations enable
increased input signal range. The peculiarity of the resulting system is the capability of providing
faster convergence with improved precision. Further research includes the application of the
proposed method for other signals, such as KEG, spread spectrum signals and images under poor
SNR circumstances. Further improvement is possible by emploving this technique with sources
more than two.
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