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ABSTRACT

Cognitive radio network is a new communication paradigm to address spectrum under
utilization and scarcity problems by sharing the spectrum holes (unused licensed frequency bands)
opportunistically. Spectrum sensing which determines spectrum holes by detecting the presence of
licensed user, also known as primary user, on the associated spectrum, 1s a primary function of the
cognitive radio. The performance of spectrum sensing greatly influences the overall performance
of cognitive radio network. In this study, we have analyzed the performance of cooperative
spectrum technique by employing wavelet transform to dencise the primary user signal to improve
SNR value received at the cognitive radio, the secondary user. This improves the accuracy of the
sensing algorithm as reflected in the simulation results presented here. The performance has been
analyzed for AWGN and rayleigh fading channel models under different SINR conditions and for
varying number of cooperating users for both without and with wavelet transform. Simulation

results show significant improvement in the spectrum sensing performance.
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INTRODUCTION

Motivations for cognitive radio: Recent studies show that most of the assigned spectrum is
underutilized; spectrum measurement taken in New York City has shown that the maxamum total
spectrum occupancy is only 13.1% from 30 MHz to 3 GHz (Letaief and Zhang, 2009),

All of the frequency bands are exclusively allocated to specific services and no spectrum
available for future wireless applications. Hence, the increasing number of higher data rate
wireless applications will lead to spectrum secarcity. Cognitive Radio (CR) technology can solve
spectrum scarcity and spectrum underutilization problems by identifying unused licensed
frequency bands and using them opportunistically without harmful interference to the licensed
users.

The Federal Communications Commission (FCC) has passed the proposal on spectrum reuse,
allowing unlicensed operation in the bands of licensed users to motivate the research on CR

technology.
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Spectrum sensing: In cognitive radio, spectrum sensing i1s done to locate unused spectrum
segments and optimally use these segments without harmful interference to the licensed users, also
known as Primary Users (PU). The best way to detect the availability of some portions of the
spectrum is to detect the PU that is receiving data within the range of a CR.

The wvarious spectrum sensing methods proposed in literature are: Knergy detector based
sensing, waveform based sensing, cyclostationary based sensing, matched filter based sensing, radio
identification based sensing, multitaper spectrum estimation and wavelet transform estimation
based sensing.

Among the existing spectrum sensing algorithms for CR, energy detection has heen widely
applied sinece it is simple in terms of computation, less complex to implement and it dees not require
any prior knowledge of the licensed user’s signal (Liang et al., 2008).

ENERGY DETECTION BASED SPECTRUM SENSING
The spectrum sensing for primary signal detection can be formulated as a binary
hypothesis-testing problem (Eq. 1):

y(t) = n(t), HO: Primary user is absent
y(t) = h(t)»x{t) + n(t), H1: Primary user is in operaticn (1

where, v(t) represents received signal at CR, x(t) represents transmitted signal by PU, hit) is the
channel gain of the sensing channel between the PU and the CR, n(t) 1s the zero-mean Additive
White Gaussian Noise (AWGN),

The energy detection method 1s optimal for detecting any unknown zerc-mean constellation
signal (Ghasemi and Sousa, 2005). In energy detection approach, the radio frequency energy in
the channels or the Received Signal Strength Indicator (RSSI) 1s measured in a fixed bandwidth
W over an cbservation time window to determine whether the channel is occupied or not. The
received energy 1s compared with a prefixed threshold. The decision is made based on the above
hypothesis-testing (Pandharipande and Linnartz, 2007).

The sensing performance is measured in terms of probability of detection P, or the probability
of missed detection P and probability of false alarm.

Probability of detection (P,) is defined under hypothesis H1 as the probability of correctly
detecting the presence of the primary signal.

Probability of false alarm (F;) is defined under hypothesis HO as the probability of falsely
declaring the presence of primary signal (Eq. 2-3):

P, =P{decision=HI |H1} = P{Y>A|H1} (D
P;=P{decision = H1 |HO} = P{Y>A|HO} )

From the primary user perspective, higher the probability of detection better will be the primary
user protection. From the secondary user perspective, lower the probability of false alarm better will
be the oppoertunity for unlicensed access.

We assume that the sensing channel is time-invariant during the sensing process. The energy
collected at the ith CR in the frequency domain is denoted by K, which serves as a decision statistic
and has the following distribution (Letaief and Zhang, 2009) (Eq. 4):
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2 Hs
Ei = ju (4)
qu (2Yx) H,

where, X;, denotes a central chi-square distribution with 2u degrees of freedom and X, (2y,)
denotes a non central chi-square distribution with u degrees of freedom and a non-centrality
parameter 2v,, respectively. The instantaneous Signal-to-Noise Ratio (SNR) of the received signal
at the ith cognitive radio is y; and u = TW is the time-bandwidth product.

For the ith cognitive radic with the energy detector, the average probability of false alarm, the
average probability of detection and the average probability of missed detection over AWGN
channel are given, respectively by Urkowitz (1967) (Eq. 5-9):

Pri= prob{E) >%n} (B)
Al
. M2 ®)
© ()
Pai= prob{Ei > %l} (7)
P - Q{E7AT) ®)
Pm,1=1'PrLI (9)

where, @ (a, b} is generalized Marcum funetion y(a) and v(a,b) are complete and incomplete
gamma functions, respectively, v 1s the instantaneous SNE and follows exponential distribution
with the mean value Y, 4 is the prefixed threshold, u is the time bandwidth product of the energy
detector.

If signal amplitude follows a Rayleigh distribution, then the SNE vy follows an exponential FDF
given by Kq. 10:

£) = Lexp(=1), y20 (10)
Y Y

The expression for probability of detection P, is given by Letaief and Zhang (2009) (Eq. 11):

dray

A -z % Ay-2 T
P, =e? L(&)“Jr(ﬂ)“'{e[ KJ —e? i( KY; )" (11)

SPECTRUM SENSING WITH WAVELET DENOISING

Wavelet transform: Wavelet transform is widely used in denocising signal processing applications.
The Continuous Wavelet Transform (CWT) 1s provided by Eq. 12, where y(t) is the signal to be
analyzed, Ji{t) is the mother wavelet or the basis function (Ricul and Vetterli, 1991) (Eq. 12):
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Fig. 1: 1D two-level discrete wavelet decomposition tree

Yur(a, by = Ljy(t) . l{!*(tb}dt (12
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The Discrete Wavelet Transform (DWT) is a sampled version of the CWT. The DWT is computed
by successive low pass and high pass filterings of the discrete time-domain signal as shown in
Fig. 1. The signal is denoted as X[n], where, n is an integer. The low pass filter is denoted by G
while the high pass filter is denoted by H,. At each level, the high pass filter produces detail
information d[n] while the low pass filter associated with scaling function produces coarse
approximations a[n].

Spectrum sensing with 1-D wavelet denoising: A CR node has to detect M consecutive

sampling points in the band of a licensed user each time (Kq. 13):

Y [i] = N[i], HO
Y[i] = h<X[iHN[i], H1 (13)

where, Y 1], X[1] and N[i] are the signal received at CR, signal transmitted by PU and the noise of
the 1-th sampling point respectively and ‘'h’ 1s the channel gain.

The objective of energy sensing is to decide whether HO or H1 is true by sensing the energy of
the signal Y which is given by M:

E = Z|Y[i]|2

As energy sensing requires very short detection period, the channel gain and primary user’s
signal are supposed to have few changes during each detection period. So, the system model in
Eq. 13 can be simplified (Wang et al., 2010) as:

N T b (1)
X+ N[l] H:
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Wavelet denoising 1s useful mainly based on the “concentrating” ability of wavelet. transform.
The signal always has its energy concentrated in a small number of wavelet dimensions and the
noise spreads its energy over a large number of coefficients. Equation 14 can be written in wavelet
transform domain as (Rioul and Vetterli, 1991) (Eq. 15):

[a, d.] = WY = W(XN) = WX+WN (15)

where, W denote a left invertible wavelet transformation matrix of the Discrete Wavelet Transform
(DWT), X equals [x, x,..., x] or a M length zero vector. Since X has few changes, the detail
information of WX is nearly zero. So, the detail information d, only contains the detail
information of noise in the wavelet transformation domain. After removing this detail information,
the desired signal can be retrieved by the inverse wavelet transform without any loss of the original
signal X; while the noise energy is significantly lowered. Higher SNE yields better sensing
performance.

The procedure of spectrum sensing with 1-D wavelet dencising (Wang et «l., 2010) is
summarized as follows:

+  Caleculate the discrete wavelet transform coefficients of signal ¥ = [y1, ¥2,..., yM] and get the
detail information d, and coarse approximation a,

*  Set the detail information vector d, =0, calculate the inverse wavelet transform with coarse
approximation a, and new detail information d, and get the new signal Y

« Calculate the energy of the new signal Y'

+ Compare energy with the threshold value and make a decision on the presence or absence of

FU

COOPERATIVE SPECTRUM SENSING

One of the most challenging issues of spectrum sensing is the hidden terminal problem which
happens when the cognitive radio is shadowed or in deep fade. To address this issue, multiple
cognitive radios can be coordinated to perform spectrum sensing. Several recent works have shown
that cooperative spectrum sensing as shown in Fig. 2 can greatly increase the probability of
detection in fading channels (Letaief and Zhang, 2009).

Cooperative spectrum sensing can be classified into centralized, distributed and relay-assisted,
based on how cooperating CR users share the sensing data in the network (Akyildiz et al., 2011).
These three types are illustrated in Fig. 3.

Centralized cooperative spectrum sensing: In centralized cooperative sensing, a central entity
called Fusion Center (FC) controls the three-step process of cooperative sensing. First, the FC selects
a channel or a frequency band of interest for sensing and instructs all cooperating CR users to
individually perform local sensing. Second, all cooperating CR users report their sensing results via
the control channel. Then the FC combines the received local sensing information, determines the
presence of PUs and informs the decision back to cooperating CR users. As shown in Fig. 3a, CRO
is the FC and CR1-CR5 are cooperating CR users performing local sensing and reporting the results

back to CRO. For local sensing, all CR users are tuned to the selected licensed channel or frequency
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Fig. 3(a-c): Classification of cooperative spectrum sensing, (a) Centralized, (b) Distributed and

(c) Relay-assisted

band where a wireless point-to-point link between the PU transmitter and each cooperating CR

user, known as sensing channel, is used for observing the primary signal. For data reporting, all

CR users are tuned to a control channel called a reporting channel.
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Distributed cooperative spectrum sensing: Distributed cooperative sensing does not rely on
a FC for making the cooperative decision. In this case, CR users communicate among themselves
and converge to a unified decision on the presence or absence of PUs by iterations. Figure b
illustrates the cooperation in the distributed manner. After local sensing, CR1-CR5 share the local
sensing results with other users within their transmission range. Based on a distributed algorithm,
each CR user sends its own sensing data to other users, combines its data with the received sensing
data and decides whether or not the PU 1s present by using a local eriterion. If the eriterion is not
satisfied, CR users send their combined results to other users again and repeat this process until
the algorithm is converged and a decision is reached. In this manner, this distributed scheme may
take several iterations to reach the unanimous cooperative decision.

Relay-assisted cooperative spectrum sensing: Since both sensing channel and report channel
are not. perfect, a CR user observing a weak sensing channel and a strong report channel and a CR
user with a strong sensing channel and a weak report channel, for example, can complement and
cooperate with each other to improve the performance of cooperative sensing. In Fig. 3¢, CR1, CR4
and CR5, who observe strong PU signals, may suffer from a weak report channel. CR2 and CR3,
who have a strong report channel, can serve as relays to assist in forwarding the sensing results
from CR1, CR4 and CR5 to the FC. In this case, the report channels from CR2 and CR3 to the FC
can also be called relay channels. Note that although Fig. 3¢ shows a centralized structure, the
relay-assisted cooperative sensing can exist in distributed scheme also. In fact, when the sensing
results need to be forwarded by multiple hops to reach the intended receive node, all the
intermediate hops are relays. Thus, if both centralized and distributed structures are one-hop
cooperative sensing, the relay-assisted structure can be considered as multi-hop cocperative
sensing.
In this study, we have used centralized cooperative sensing technique.

DATA FUSION

In cooperative sensing, data fusion is a process of combining local sensing data for hypothesis
testing. Depending on the control channel bandwidth requirement, reported sensing results may
be of different forms, types and sizes. In general, the sensing results reported to the FC or shared
with neighboring users can be combined in three different ways in descending order of demanding
control channel bandwidth:

+  Soft combining: CR users can transmit the entire local sensing samples or the complete local
test statistics for soft decision

*  Quantized soft combining: CR users can quantize the local sensing results and send only
the quantized data for soft combining to alleviate control channel communication overhead

* Hard combining: CR users make a local decision and transmit the one-bit decision for hard
combining. Hence, using soft combining at the F'C can achieve the best detection performance
among all three at the cost of control channel overhead while the quantized soft combining and
hard combining require much less control channel bandwidth with possibly degraded
performance due to the loss of information from quantization (Akyildiz ef al., 2011)

Hard combining and decision fusions: When binary local decisions are reported to the FC, it
is convenient to use linear fusion rules to make a final decision about the presence of PU. The
commonly used fusion rules are AND, OR and majority rules,
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Fig. 4: Sensing performance with different SINE values over AWGN channel

In this study, we have used OR fusion rules because given a targeted probability of false alarm
P, the individual secondary users’ threshold can be easily derived and the sensing performance can
be evaluated. In OR fusion rule, when at least one out of k secondary users detect the PU, the final
decision at the FC declares as PU is present. The overall probabilities of false alarm Qf and missed
detection @m are therefore, respectively:

Qf :1715[17(13“) (18)

k

Qm =[]1-(P,)

i=1

SIMULATION RESULTS AND ANALYSIS
Numeriecal simulations were carried out for a centralized cooperative spectrum sensing with OR
fusion rule for the following cases:

Case 1: We plotted the Complementary Receiver Operating Characteristics (CROC) curves, P vs.
P. for different SNE wvalues to prove the improvement in performance when SNE
increases. The probability of missed detection, P, decreases with increase in SNR as
shown in Fig. 4. The simulation scenaric for this case is tabulated in Table 1

Case 2: CROC curves have been plotted without and with wavelet denoising technique. Graphs
in Fig. 5 show reduction in P with wavelet denoising because of improvement in the
SNR. The parameters considered for this case are indicated in Table 2

Case 3: CROC curves have been plotted with different cooperative users for both without and
with wavelet denoising. The scenario for this case 1s highlighted in Table 3. The plots in
Fig. 6 show reduction in P_ for increased number of cooperative users with wavelet
denoising technique
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Fig. 5: Sensing performance without and with wavelet dencising over rayleigh fading channel
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Fig. 6. Cooperative sensing performance for different numbers of secondary users (K) without and
with wavelet denoising over rayleigh fading channel

Table 1: Simulation parameters for case 1

Parameters Value
Time bandwidth product (1) 5

SNR (dB) -3,1,3
No. of cooperating users (K) 1
Senging channel model AWGN

544



Asian J. Sect. Res., 7 (4): 586-545, 2014

Tahle 2: Simulation parameters for case 2

Parameters Value

Time bandwidth product (1) 5

SNR (db) 4

No. of cooperating users (K) 1

Sensing channel model Rayleigh fading

Table 3: Simulation parameters for case 3

Parameters Value

Time bandwidth product (w) 5

No. of cooperating users (K) 1,5 10

SNR (db) 4

Sensing channel model Rayleigh fading
CONCLUSION

In this study, we have analyzed the performance of a cooperative spectrum sensing technique
over AWGN and rayleigh fading channel models by employing 1D wavelet transform to increase
the accuracy of spectrum sensing algorithm. Simulations were carried ocut under different SNR
conditions and with varying numbers of cooperative users for both without and with wavelet
denoising technique. Simulation results show improvement in performance in terms of reduction
in the probability of missed detection in all the cases.
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