


Asian Journal of Scientific Research 8 (3): 264-277, 2015
ISSN 1992-1454  /  DOI: 10.3923/ajsr.2015.264.277
© 2015 Asian Network for Scientific Information

Prediction  of  Strength and Slump of Silica Fume Incorporated
High-Performance Concrete

1M.F.M.    Zain,   2M.R.   Karim,   2M.N.   Islam,   1M.M.   Hossain,   1M.   Jamil  and
3H.M.A. Al-Mattarneh
1Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Selangor, 43600, Malaysia
2Department of Civil Engineering, Dhaka University of Engineering and Technology, Gazipur, 1700,
Bangladesh
3College of Engineering, Najran University, Najran, 11001, Saudi Arabia

Corresponding Authors: M.F.M. Zain, Centre for Research and Instrumentation (CRIM), Universiti Kebangsaan Malaysia
(UKM), Selangor, 43600, Malaysia and M.R. Karim, Department of Civil Engineering, Dhaka University of Engineering
and Technology (DUET), Gazipur, 1700, Bangladesh

ABSTRACT
This study describes the development of statistical models to predict strength and slump of

silica fume incorporated High-Performance Concrete (HPC). Experimental data of silica fume
incorporated HPC mixes were used to develop and validate models. The HPC having compressive
strength range of 40-113 MPa and slump range of 180-250 mm were used. Statistical models were
developed by regression analysis. The results of prediction by the models showed good agreement
with those of experiments and other researchers. The developed models can be used to predict
slump and 28 days compressive strength of silica fume incorporated HPC. 

Key words: High-performance concrete, silica fume, strength, slump, statistical model, prediction,
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INTRODUCTION
High-Performance Concrete (HPC) is defined as concrete, which meets special combinations of

performance and uniformity requirements that cannot always be achieved routinely using
conventional constituents and normal mixing, placing and curing practices (Zia et al., 1991). The
requirements may involve enhancement of characteristics such as placement and compaction
without segregation, long-term mechanical properties, early-age strength, volume stability or
service life in severe environments. The HPC is a relatively new product and its characteristics
differ from that of normal concrete (Zain et al., 2002).

In HPC mix design and quality control, compressive strength and slump are regarded as
important properties. Many other properties of HPC, such as elastic modulus, water tightness or
impermeability, resistance to weathering agents, etc., are directly related to the strength. A
majority of HPC elements are designed to take advantage of the higher compressive strength of the
material. Most often, an ultimate target in the mixture design is the 28 days compressive strength.
The 28 days compressive strength is usually determined based on a standard uniaxial compression
test and are accepted universally as a general index of concrete strength (Patel, 2003; Kim et al.,
2004, 2005). However, a typical compression test is performed about 28 days after placing the
concrete. Should the test results fall short of the required strength, costly remediation efforts must
be  undertaken.  Therefore,  it  is  important  to  be  able  to  estimate  the compressive strength of

264



Asian J. Sci. Res., 8 (3): 264-277, 2015

concrete before placing it at construction sites (Kim et al., 2004, 2005). The more we know about
the concrete composition versus strength relationship, the better we can understand the nature of
concrete and how to optimize the concrete mixture (Popovics, 1990; Yeh, 1998). Statistical
regression analysis techniques can be used to utilize experimental results and to estimate concrete
strength from the mix components. Although several models were developed for prediction and/or
optimization of concrete properties (Bouzoubaa and Fournier, 2003; Gupta et al., 2006; Hossain and
Lachemi,  2006;  Lee,  2003; Lim et al., 2004; Muthukumar et al., 2003; Nataraja et al., 2006;
Simon, 2003; Sobolev, 2004; Tesfamariam and Najjaran, 2007), few of them includes the prediction
of slump of fresh HPC (Patel, 2003; Baykasoglu et al., 2009; Marcia et al., 1997; Sonebi, 2001, 2004;
Yeh, 1999), very few of them deal with silica fume incorporated HPC. Some of them consider only
linear models and do not consider nonlinear models. Most of the statistical models were developed
considering less than six concrete ingredients, though the making of HPC usually requires six or
more ingredients. This study presents the application of statistical regression analysis for
predicting the compressive strength and slump of HPC using both linear and nonlinear models.
Models were developed using six common ingredients of  HPC mix (i.e., cement, silica fume, water,
fine aggregate, coarse aggregate and superplasticizer) as input. The HPC specimens were prepared
and tested in the laboratory and the obtained data were used to develop the models. The strengths
and slumps predicted by the models were compared with those of the experiments and other
researcher (Marcia et al., 1997). Thus, using these models, sustainable development can be
achieved by producing HPC incorporating silica fume as it reduces use of cement, consumes
industrial waste, increases strength and durability of concrete. Finally, the use of these models will
allow the concrete industry to avoid the risk of faulty or deficient concrete that often entails
durability and safety problems.

MATERIAL PROPERTIES
Ordinary Portland cement (Type I) was used that meets the ASTM C150-92 specifications. The

chemical and physical properties of the cement and silica fume are shown in Table 1. Natural river
sand and crushed limestone were used as aggregates. The gradation of both fine and coarse
aggregates met the ASTM C33-93 specification. The details of physical properties of both
aggregates  are shown in Table 2. Glenium 100 M superplasticizer complying with the
requirements of ASTM C494-92 and ASTM C1017-92 was used (solid content = 25.25% and specific
gravity = 1.28). Normal tap water (pH = 6.9) was used as mixing water and for curing.

Table 1: Chemical and physical properties of cement and silica fume
Chemical/physical properties Cement Silica fume
SiO2 (%) 21.54 93.09
Al2O3 (%) 5.99 1.42
CaO (%) 65.30 0.00
MgO (%) 0.77 0.93
MnO (%) 0.01 0.08
P2O5 (%) 0.31 0.23
SO3 (%) 1.41 0.10
TiO2 (%) 0.21 0.08
Fe2O3 (%) 4.45 4.09
C (%) 0.71 2.19
Loss on ignition (LOI) (%) 1.06 1.49
Specific gravity 3.16 2.23
Specific surface area (m2 kgG1) 402.00 -
Specific surface area, Blaine (m2 gG1) - 216.00
Fineness >45 mm (%) - 3.50
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Table 2: Physical properties of fine and coarse aggregates
Physical property Fine aggregate Coarse aggregate
Size (mm) 0-4.75 4.75-19
Bulk specific gravity 2.6 2.61
Absorption (%) 1.47 0.82
Fineness modulus 3.04 6.68

CONCRETE MIXES, SPECIMEN PREPARATION AND TESTING
Thirty nine series of silica fume incorporated HPC were prepared in the laboratory. Table 3

shows water-to-binder ratio (W/B), Cement (C), Silica Fume (SF), Water (W), Fine Aggregate (FA),
Coarse Aggregate (CA) and Superplasticizer (SP) contents of these mixes. 

A rotating pan-type mixer of 0.05 m3 capacity was used to mix concrete. Each batch included
sufficient concrete for three slump tests and four 100×200 mm cylinders for compressive strength
test. The cylinders were fabricated in accordance with ASTM C192. To obtain adequate
consolidation, the cylinders were rodded. The cylinders were covered with plastic and left in the
molds for 24 h, after which they were stripped and placed in limewater-filled curing tanks for moist
curing at 23±2°C. Slump test of fresh concrete was carried out as per ASTM C143. Compressive
strength tests (ASTM C39) were conducted on the cylinders at the age of 28 days. In most cases,
three cylinders were tested. A fourth test was performed in some cases if one result was
significantly lower or higher than the others. Before testing, the cylinder ends were ground parallel
to meet the ASTM C39 requirements using an end-grinding machine designed for this purpose. The
average  strength  of  three cylinders was reported as result of the test. Results of slump test
(range: 180-250 mm) and compressive strength test (range: 40.32-113.15 MPa) are also shown in
Table 3.

MODEL DEVELOPMENT
Six variables were selected to derive statistical models and ultimately to evaluate the properties

of silica fume incorporated HPC. The limits of the variables were decided by conducting some
preliminary tests performed in the laboratory and from past experience. The notations used and
limits of the variables are as follows:

C x1 is cement content (kg mG3) (range: 367.1-508.8)
C x2 is silica fume content (kg mG3) (range: 58.1-67.3)
C x3 is water content (kg mG3) (range: 137.2-195.5)
C x4 is fine aggregate content (kg mG3) (range: 588.4-685.5)
C x5 is coarse aggregate content (kg mG3) (range: 960.8-1088.5)
C x6 is superplasticizer content (l mG3) (range: 3.8-24.8)

The MATLAB software was used to derive eight models by the least square approach. The
general structure of the statistical model is as follows:

(1)
k k 2

0 i i ii 1 i j ij i ji 1 i 1
y x x x x 
            

where, y is the response (strength or slump); xi are the independent variables; β0 is the independent
term; βi, βii and βij are the coefficients of independent variables and interactions, representing their
contribution to the response; g  is  the  random  residual  error  term  representing  the  effects  of
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Table 3: Mix proportions and properties of silica fume incorporated HPC
Mix No. W/B C (kg mG3) SF (kg mG3) W (kg mG3) FA (kg mG3) CA (kg mG3) SP (l mG3) Slump (mm) 28 days strength (N mmG2)
1 0.40 430.0 65.0 195.5 641.3 960.8 5.8 200 40.32
2 0.42 367.1 67.2 180.5 670.3 1024.9 4.4 190 45.84
3 0.39 385.8 63.7 173.6 675.4 1018.5 6.9 195 49.51
4 0.39 384.7 64.0 174.0 684.9 1024.1 8.4 185 59.95
5 0.40 380.0 64.3 178.0 682.1 1020.4 3.8 180 45.03
6 0.40 379.8 64.3 177.9 682.6 1020.7 4.1 195 60.58
7 0.40 376.2 64.6 177.8 685.5 1020.8 4.0 190 59.01
8 0.37 391.9 67.3 170.9 658.1 1038.2 5.8 195 52.68
9 0.35 408.4 62.9 165.6 664.7 1027.1 9.0 195 62.07
10 0.35 407.7 64.1 165.7 670.8 1040.6 10.4 185 72.21
11 0.36 402.1 64.2 168.3 664.2 1032.9 5.7 195 64.27
12 0.36 402.0 64.2 168.2 665.5 1034.9 4.9 220 70.45
13 0.36 400.5 64.3 167.5 666.3 1034.4 5.9 210 68.64
14 0.33 455.0 60.0 167.4 660.0 989.0 10.2 205 62.96
15 0.33 418.3 67.1 161.8 644.1 1049.8 7.8 200 59.90
16 0.32 430.6 62.0 158.5 653.3 1033.5 11.5 220 71.91
17 0.32 430.4 64.0 158.3 657.0 1055.1 12.6 200 67.54
18 0.33 423.8 63.9 159.7 653.2 1042.3 8.3 205 85.61
19 0.33 423.8 63.9 159.7 654.7 1044.6 7.2 220 81.07
20 0.30 470.0 60.0 156.4 665.0 997.0 11.6 225 64.70
21 0.30 446.5 66.7 153.1 627.2 1057.7 10.5 210 78.02
22 0.30 452.6 60.9 152.0 642.8 1040.5 14.2 220 69.07
23 0.29 453.1 63.7 151.6 643.4 1067.7 12.6 205 78.60
24 0.30 445.7 63.4 151.9 641.6 1049.2 11.2 225 97.75
25 0.30 445.8 63.4 151.9 643.2 1052.0 9.8 230 93.67
26 0.30 443.4 63.2 152.0 642.2 1047.2 12.7 220 88.28
27 0.27 480.0 60.0 145.8 669.0 1002.0 15.6 210 71.32
28 0.27 476.7 66.0 144.9 608.6 1063.5 14.5 215 91.89
29 0.27 474.7 59.6 146.1 630.3 1043.5 17.7 223 81.79
30 0.27 476.0 63.3 145.4 629.7 1078.8 15.6 205 96.50
31 0.27 467.8 62.7 144.7 627.2 1050.5 16.7 230 100.67
32 0.27 468.1 62.8 144.8 631.6 1058.2 12.3 235 102.71
33 0.28 465.0 62.4 145.3 629.2 1050.2 16.9 230 102.20
34 0.24 508.8 64.9 137.2 588.4 1066.9 19.5 245 99.95
35 0.25 497.1 58.1 140.6 616.9 1044.7 22.4 215 70.64
36 0.25 499.3 62.8 139.6 615.8 1088.5 19.2 200 103.10
37 0.25 490.5 61.9 138.0 614.1 1053.0 20.7 225 103.56
38 0.25 491.0 62.0 138.1 615.1 1055.2 19.6 250 113.15
39 0.25 487.1 61.4 139.0 612.5 1045.7 24.8 230 108.90
W/B: Water-to-binder ratio, C: Cement, SF: Silica fume, W: Water, FA: Fine aggregate, CA: Coarse aggregate, SP: Superplasticizer

variables or higher order terms not considered in the model (Kutner et al., 2004). Using the data
of 39 mixes of HPC presented in Table 3,  four  different  statistical  models  were  developed for
28 days compressive strength prediction and four different statistical models were also developed
for slump prediction. The models are linear, interaction, pure quadratic and full quadratic models.
The mathematical expressions of the models and brief discussion about each model are given in the
following sections. Statistical summary e.g., RMSE (Root Mean Square Error), R2 (coefficient of
determination), R2 (adj) (adjusted coefficient of determination), F-value and significance (p) of each
model are also given in tabular form.

Statistical models for 28 days compressive strength: In design and quality control of concrete,
28 days compressive strength is normally specified. The 28 days compressive strength is a
universally accepted index to know the strength of concrete which is usually determined by a
standard axial compression test. The linear, pure quadratic, interaction and full quadratic models
for prediction of the 28 days compressive strength are described in the following sections. 
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Linear strength model: The linear strength model contains only linear and constant terms. 
Equation 2 shows the linear strength model:

(2)1 2 3 4 5 6Y = 364-0.057X -0.19X -1.15X -0.22X +0.08X -0.65X

Equation 2 shows that all the six variables such as cement (X1), silica fume (X2), water (X3), fine
aggregate (X4), coarse aggregate (X5) and superplasticizer (X6) have direct influence on the response
(28 days compressive strength, Y). Figure 1 shows plot of the residuals of linear strength model
versus the data order of concrete mix. The plot indicates that the errors are independent. The
residuals appear to be randomly scattered about zero. Table 4 shows the statistical summary of the
model. It  appears that the probability greater than “F statistic” (Fisher statistic) is less than
0.0005 (Table 4). The model is highly statistically significant with confidence level more than
99.95%. It indicates a good model for the data. Coefficient of determination (R2) of the model is
80.7%, which indicates a good fit. Figure 2 shows scatter plot of experimental and predicted
compressive strengths versus the data order of the experiments. It shows that the predicted values
are close to those of the experiments.

Pure quadratic strength model: The pure quadratic model contains pure quadratic (squared),
linear and constant terms. Equation 3 shows the pure quadratic strength model:

(3)
2

1 2 3 4 5 6 1
2 2 2 2 2

2 3 4 5 6

Y = 8766+2.18 X +64.2 X -10.1 X -4.05 X -16.3 X -3.01 X -0.00331 X -

0.517 X +0.0212 X +0.003 X +0.0078 X +0.071 X

Table 4 shows the statistical summary of the pure quadratic strength model. It can be seen that
significance  (p)  value  of  the  model  is  close  to  zero,  which  indicates  a good model for the data.

Fig. 1: Residuals vs. data order for linear strength model

Table 4: Statistical summary of strength models
Model RMSE R2 (%) R2 (adj) (%) F-value Significance (p)
Linear 9.302 80.7 77.4 24.40 3.80 e!11

Pure quadratic 6.998 91.0 87.2 24.29 6.43 e!12

Interaction 5.850 95.6 91.1 20.89 2.23 e!09

Full quadratic 5.533 97.3 92.0 18.47 5.25 e!07

RMSE: Root mean square error; R2: Coefficient of determination, R2 (adj): Adjusted coefficient of determination
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Fig. 2: Experimental and predicted compressive strengths vs. data order for linear strength model

Coefficient of determination (R2) of the model is 91.0%, which is higher than that of the linear
strength model. Root Mean Square Error (RMSE) of the pure quadratic model is 6.998, which is less
than that of the linear strength model (9.302). These are indications of better fit of the pure
quadratic model than linear strength model. This model fits the data in a better way than that of
the linear model because the adjusted determination coefficient is higher and the root mean square
error is lower for pure quadratic strength model.

Interaction strength model: The interaction model contains interaction (product), linear and
constant terms. Equation 4 shows the interaction strength model.

(4)
1 2 3 4 5 6 1 2 1 3

1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4

3 5 3 6 4 5 4 6

Y = -95331+35.2 X +1036 X +44 X +48.0 X +68.3 X +125 X -0.56 X X +0.094 X X
-0.01X X -0.009 X X +0.030 X X -0.68 X X -0.33 X X -0.47 X X +1.94 X X +0.05 X X

-0.07 X X - 0.52 X X -0.03 X X +0.10 X X -0. 5 624X X

Table 4 shows the statistical summary of the interaction strength model. It can be seen that
significance (p) value of the model is close to zero, which indicates a good model for the data.
Coefficient of determination (R2) of the model is 95.6%, which is higher than that of the pure
quadratic strength model (91.0%). Root Mean Square Error (RMSE) of the interaction strength
model is 5.85, which is less than that of the pure quadratic strength model (6.998). These are
indications of better fit of the interaction strength model than pure quadratic strength model. This
model fits the data in a better way than the pure quadratic model because the adjusted
determination coefficient is higher and the root mean square error is lower for the interaction
strength model.

Full quadratic strength model: The full quadratic model contains pure quadratic (squared),
interaction (product), linear and constant terms. Equation 5 shows the full quadratic strength
model:

(5)
1 2 3 4 5 6 1 2 1 3 1 4

1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6

4 5 4 6

Y = -715145+1189 X +8090 X +295 X +1312 X -485 X +1104 X -3.41 X X -0.73 X X -0.779X X
-0.085X X -1.62 X X -7.58 X X -3.25 X X -1.91 X X -8.68 X X -1.03 X X +1.01X X -1.18 X X

-0.110 X X -0.80 X X +0.8 2 2 2 2 2 2
5 6 1 2 3 4 5 607 X X -0.286 X -9.67 X +0.44 X - 0.373 X +0.263 X +0.477 X
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Fig. 3: Residuals vs. data order for full quadratic strength model

Fig. 4: Experimental and predicted compressive strengths vs. data order for full quadratic strength
model

Figure 3 shows that the residuals of the full quadratic strength model are randomly scattered
about zero. No evidence seems to exist that the error terms are  correlated  with  one  another.
Table 4 shows the statistical summary of the model. It can be seen that significance (p) value of the
model is close to zero, which indicates a good model for the data. Coefficient of determination (R2)
of the model is 97.3%, which is the highest among the determination coefficients of all the strength
models. Root Mean Square Error (RMSE) of the full quadratic strength model is 5.533, which is the
lowest of all the RMSE values of all the strength models. Thus the full quadratic strength model
best fits the experimental data. Figure 4 shows scatter plot of experimental and predicted
compressive strengths versus the data order of the experiments. It shows that the predicted values
are very close to those of the experiments. This model fits the data in the best way of all the
strength models discussed above.

Statistical models for slump: The slump is one of the most important properties of HPC. Based
on the experimental tests done in laboratory and it is also observed that if the slump of fresh
concrete  is  between  180  and  220  mm  without any segregation, the concrete can be qualified for
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HPC (Patel, 2003). Of course, other fresh concrete tests are also important to evaluate thoroughly
the fresh HPC properties. However, one can take decision from slum test, if other test set-ups are
not available. The linear, pure quadratic, interaction and full quadratic models for prediction of
slump of silica fume incorporated HPC are described in the following sections.

Linear slump model: Equation 6 shows the linear slump model.

(6)1 2 3 4 5 6Y = 2051-0.44 X -3.32 X -2.07 X -0.96 X -0.44 X -3.14X

The statistical details of this model are presented in Table 5. It appears that the probability
greater than “F statistic” (Fisher statistic) is less than 0.0005. The model is highly statistically
significant with a confidence level more than 99.95%. It can be seen that significance (p) value of
the model is close to zero, which indicates a good model for the data. Coefficient of determination
(R2) of the model is 76.4%, which indicates a reasonably good fit.

Pure quadratic slump model: The following Eq. 7 shows the pure quadratic slump model:

(7)
2

1 2 3 4 5 6 1
2 2 2 2 2

2 3 4 5 6

Y = -8332+0.81 X +47.3 X -12.2 X +0.79 X +15.8 X -2.65 X -0.0009 X

-0.39 X +0.033 X -0.001X -0.0078 X -0.028 X

Table 5 shows the statistical summary of the pure quadratic slump model. It can be seen that
significance (p) value of the model is close to zero, which indicates a good model for the data.
Coefficient of determination (R2) of the model is 83.5%, which is more than that of the linear
strength model. Root Mean Square Error (RMSE) of the pure quadratic model is 8.231, which is less
than that of the linear strength model (8.972). These are indications of better fit of the pure
quadratic model than linear slump model. This model fits the data in a better way than the linear
model because the adjusted determination coefficient is higher and the root mean square error is
lower for pure quadratic slump model.

Interaction slump model: The following Eq. 8 shows the interaction slump model:

(8)
1 2 3 4 5 6 1 2 1 3

1 4 1 5 1 6 2 3 2 4 2 5 2 6

3 4 3 5 3 6 4 5

Y = -15990+25.0 X +142 X +23 X +5.4 X +6.7 X +25 X -0.161 X X -0.0026 X X
-0.0013X X -0.0137 X X -0.032 X X +0.34 X X -0.21 X X -0.007 X X +1.25 X X

-0.0051X X -0.0432 X X +0.068 X X +0.0101 X X -0.14 4 6 5 65 X X -0.010 X X

Figure 5 shows that the residuals of the interaction slump model are randomly scattered about
zero. No evidence seems to exist that the error terms are correlated with one another. Table 5
shows  the  statistical  summary  of  the  interaction strength model. It can be seen that significance

Table 5: Statistical summary of slump models
Model RMSE R2 (%) R2 (adj) (%) F-value Significance (p)
Linear 8.972 76.4 72.3 24.40 3.77 e!11

Pure quadratic 8.231 83.5 76.7 12.24 2.60 e!08

Interaction 7.511 90.5 80.6 9.11 3.25 e!06

Full quadratic 8.288 91.9 76.4 5.91 5.64 e!04

RMSE: Root mean square error; R2: Coefficient of determination, R2 (adj): Adjusted coefficient of determination

271



Asian J. Sci. Res., 8 (3): 264-277, 2015

15

10

5

0

-5

-10

Re
sid

ua
l

1 5 10 15 20 25 30 35 39
Data order

Variable slump
Predicted slump

250

240

230

220

210

200

190

180

Sl
um

p 
(m

m
)

0 10 20 30 39
Data order

Fig. 5: Residuals vs. data order for interaction slump model

Fig. 6: Experimental and predicted slumps vs. data order for interaction slump model

(p) value of the model is close to zero, which indicates a good model for the data. Coefficient of
determination (R2) of the model is 90.5%, which is more than that of the pure quadratic strength
model (83.5%). Root Mean Square Error (RMSE) of the interaction strength model is 7.511, which
is less than that of the pure quadratic strength model (8.231). These are indications of better fit of
the interaction strength model than pure quadratic strength model. This model fits the data in a
better way than that of the pure quadratic model because the adjusted determination coefficient
is higher and the root mean square error is lower for interaction slump model. Figure 6 shows
scatter plot of experimental and predicted slumps versus the data order of the experiments. It
shows that the predicted values are very close to those of the experiments.

Full quadratic slump model: The following Eq. 9 shows the full quadratic slump model:

(9)
1 2 3 4 5 6 1 2 1 3 1 4 1 5

1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5

4 6

Y = 185466-859 X -8807 X +324 X -688 X +919 X -483 X +3.52 X X +0.61 X X +0.56 X X -0.059 X X
+1.11 X X +9.6 X X +3.50 X X +2.61 X X +10.2 X X +0.60 X X -1.31 X X +0.03 X X -0.152 X X

+0.67 X X -1.03 2 2 2 2 2 2
5 6 1 2 3 4 5 6X X +0.264 X +5.23 X -0.69 X +0.218 X -0.355 X +0.033 X
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Fig. 7: Residuals vs. data order for full quadratic slump model

Fig. 8: Experimental and predicted slumps vs. data order for full quadratic slump model

Figure 7 shows that the residuals of the full quadratic slump model are randomly scattered
about  zero. No  evidence  seems  to exist that the error terms are correlated with one another.
Table 5 shows the statistical summary of the model. It can be seen that significance (p) value of the
model is close to zero, which indicates a good model for the data. The adjusted determination
coefficient (76.4%) is lower than that of the interaction model (80.6%), which indicates that
interaction model fits the data better than the full quadratic model. Root mean square error of the
model (8.288) is higher than that of the interaction model (7.511), which means interaction model
fits data in a better way. Thus the interaction slump model fits the experimental data in a better
way than the full quadratic model. Figure 8 shows scatter plot of experimental and predicted
slumps versus the data order of the experiments. It shows that the predicted values are very close
to those of the experiments. This indicates a reasonably good fit of the model.

MODEL VALIDATION
Model validation using concrete of same ingredients: Three HPC mixtures were prepared
and tested with the same ingredients to verify the ability of the proposed models to predict the
responses.  Table  6  shows  the  quantities  of  the ingredients, 28 days strength and slump of these
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Table 6: Data for validation of the models using concrete of the same ingredients
Mix No. W/B C (kg mG3) SF (kg mG3) W (kg mG3) FA (kg mG3) CA (kg mG3) SP (l mG3) Slump (mm) 28 day Strength (MPa)
1 0.36 440 65.0 181.1 650.0 974.0 7.5 180 44.64
2 0.33 422 63.8 159.4 655.2 1043.2 8.4 210 77.72
3 0.25 500 55.0 136.0 667.0 999.0 22.9 210 83.36
W/B: Water-to-binder ratio, C: Cement, SF: Silica fume, W: Water, FA: Fine aggregate, CA: Coarse aggregate, SP: Superplasticizer

Table 7: Model validation using the data of Table 6
Strength (MPa) Slump (mm) Variation (%)
---------------------------------------- ------------------------------------------ ---------------------------------------

Model used Mix No. Experiment Prediction Experiment Prediction Slump Strength
Linear 1 44.6 46.1 180 194.5 -8.1 -3.3

2 77.7 76.2 210 213.3 -1.6 1.9
3 83.3 84.7 210 219.0 -4.3 -1.7

Pure quadratic 1 44.6 44.4 180 190.8 -6.0 0.5
2 77.7 79.8 210 212.9 -1.4 -2.7
3 83.3 79.6 210 207.7 1.1 4.4

Interaction 1 44.6 44.7 180 181.2 -1.3 5.8
2 77.7 82.3 210 216.7 -3.2 -5.9
3 83.3 82.8 210 210.5 -0.5 1.0

Full quadratic 1 44.6 44.6 180 181.5 -2.0 -3.6
2 77.7 76.9 210 216.8 -4.1 1.1
3 83.3 83.3 210 212.0 -2.1 -0.5

Table 8: Data for validation of the models using concrete of different ingredients (Marcia et al., 1997)
Mix No. W/B C (kg mG3) SF (kg mG3) W (kg mG3) FA (kg mG3) CA (kg mG3) SP (l mG3) Slump (mm) 28 day Strength (MPa)
1 0.43 312.9 21.9 141.1 506.3 845.3 3.52 102 48.5
2 0.37 312.9 21.9 122.3 592.2 810.1 3.52 57 53.2
3 0.35 312.9 45.4 122.3 532.2 836.0 5.66 76 59.8
4 0.37 312.9 21.9 122.3 549.2 853.0 3.52 67 51.0
5 0.37 323.3 27.8 126.6 513.6 857.5 5.12 95 60.8
6 0.38 335.8 21.9 131.5 526.1 829.9 4.59 99 50.2
7 0.38 335.8 21.9 131.5 526.1 829.9 4.59 92 54.1
8 0.38 335.8 21.9 131.5 526.1 829.9 4.59 102 54.6
9 0.34 337.0 33.6 122.3 530.6 834.4 4.59 99 61.0
10 0.38 354.8 21.9 141.4 506.3 810.1 3.52 67 48.2
11 0.32 361.1 45.4 126.6 506.3 810.1 5.66 51 58.1
12 0.33 361.1 21.9 122.3 548.8 810.1 4.59 51 54.5
13 0.33 361.1 21.9 122.3 526.1 829.9 5.66 57 55.2
14 0.33 361.1 21.9 122.3 526.1 829.9 5.66 108 65.3
15 0.33 361.1 21.9 122.3 506.3 852.6 4.59 64 54.6
16 0.35 361.1 21.9 130.8 529.0 810.1 3.52 51 53.2
W/B: Water-to-binder ratio, C: Cement, SF: Silica fume, W: Water, FA: Fine aggregate, CA: Coarse aggregate, SP: Superplasticizer

three concrete mixes. The slump and the 28 days compressive strength were also predicted by the
respective models and compared with those of the experiments. The experimental and model
predicted values of slump and 28 days compressive strength are shown in Table 7. The tests were
carried out with the same materials and under the same testing conditions. Table 7 shows that the
variations among model predicted and experimental values for slump and strength were not
significant. The percentage errors of full quadratic model were the least for predicting the 28 days
strength, which is an indication that the full quadratic model for predicting strength is the best
model. Table 7 also shows that percentage variations in slump in case of interaction slump model
were the least, which is an indication that the interaction model for predicting slump is the best
model. Thus, the models predict 28 days strength and slump with reasonable accuracy.

Model validation using concrete of different ingredients: The developed models were used
to predict strength and slump of HPC incorporating ingredients having slightly different physical
properties.  The  data  (Table  8)  was obtained from Marcia et al. (1997). The validation results are
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Table 9: Model validation using the data of  Table 8
Strength (MPa) Slump (mm) Variation (%)
---------------------------------------- ------------------------------------------ ---------------------------------------

Model used Mix No. Experiment Prediction Experiment Prediction Slump Strength
Full quadratic 1 48.5 44.0 102 110.0 7.8 -9.2

2 53.2 50.0 57 61.5 7.9 -6.0
3 59.8 56.0 76 80.0 5.2 -6.3
4 51.0 47.0 67 62.5 -6.7 -7.8
5 60.8 63.0 95 93.0 -2.1 3.6
6 50.2 46.5 99 92.5 -6.5 -7.3
7 54.1 50.5 92 96.0 4.3 -6.6
8 54.6 51.5 102 107.5 5.4 -5.6
9 61.0 66.0 99 104.0 5.1 8.2
10 48.2 53.0 67 71.0 5.9 9.9
11 58.1 62.0 51 53.0 3.9 6.7
12 54.5 49.0 51 55.5 8.8 -10.1
13 55.2 51.0 57 60.5 6.1 -7.6
14 65.3 70.0 108 101.0 -6.4 7.1
15 54.6 60.0 64 68.0 6.2 9.8
16 53.2 48.5 51 48.5 -4.9 -8.8

shown in Table 9. Table 9 shows that the variations among predicted and experimental values for
slump were from 2.1-8.8% and those for strength were from 3.6-10.1%. These variations may be due
to the variations in the properties of the ingredients and experimental conditions. However, the
variations were not significant. Thus, the models can be used for prediction of strength and slump
of HPC having different ingredients but within the range of properties considered for the
development of the models.

LIMITATIONS OF THE MODELS
The proposed statistical models were derived from thirty nine HPC mixes with ingredients

described earlier (Table 1-3). It is very important to note that derived models are material specific.
The absolute responses from the models can differ if the properties of materials vary considerably
from the materials used to derive the models. The method is not applicable to extrapolation beyond
the domain of the data used in the development of the models. However, the models may be useful
for prediction of strength and slump of silica fume incorporated HPC having different ingredients
in future.

CONCLUSION
The following conclusions can be drawn from the present study:

C Using statistical analysis and experimental data, eight models for predicting strength and
slump of silica fume incorporated HPC were developed. The best models for strength and slump
were indicated within the ranges of the properties of materials used (Table 7, 9)

C Developed models were evaluated. The results of prediction were reasonably accurate and
reliable. The derived statistical models are useful tools in understanding the effect of various
variables (ingredients) and their interaction on the HPC properties

C Like other data-fitting techniques, the regression analysis only processes predictive capability
within the range of data employed for model fitting. The range of applicability of the present
work is limited to the range of the various parameters of experimental data used for the
development of the models. The models can substantially reduce time, effort and cost associated
with selection of trial batches

275



Asian J. Sci. Res., 8 (3): 264-277, 2015

ACKNOWLEDGMENTS
The research study reported in this paper was funded by the Ministry of Science, Technology

and Innovation, Malaysia and University Kebangsaan Malaysia (UKM). Materials were supplied
by Ready Mixed Concrete (M) Sdn Bhd, Malaysia. The authors would like to express sincere
gratitude  for  all  the  supports  provided.  The  second  author (M.R. Karim) and third author
(M.N. Islam) express their sincere gratitude to Dhaka University of  Engineering and Technology
(DUET), Gazipur, Bangladesh for granting him leave for the research.

REFERENCES
Baykasoglu,  A.,  A.  Oztas  and  E.  Ozbay,  2009.  Prediction  and  multi-objective  optimization

of  high-strength  concrete  parameters  via  soft  computing  approaches.  Exp. Syst. Applic.,
36: 6145-6155.

Bouzoubaa,  N.  and  B.  Fournier,  2003. Optimization  of  fly  ash  content  in  concrete Part I:
Non-air-entrained concrete made without superplasticizer. Cem. Concr. Res., 33: 1029-1037.

Gupta,  R.,  M.A.  Kewalramani  and  A.  Goel,  2006.  Prediction  of  concrete strength using
neural-expert system. J. Mater. Civ. Eng., 18: 462-466.

Hossain, K.M.A. and M. Lachemi, 2006. Time dependent equations for the compressive strength
of self-consolidating concrete through statistical optimization. Comput. Concr., 3: 249-260.

Kim, J.I., D.K. Kim, M.Q. Feng and F. Yazdani, 2004. Application of neural networks for estimation
of concrete strength. J. Mater. Civil. Eng., 16: 257-264.

Kim, D.K., J. Lee, J. Lee and S.K. Chang, 2005. Application of probabilistic neural networks for
prediction of concrete strength. J. Mater. Civ. Eng., 17: 353-362.

Kutner, M.H., C.J. Nachtsheim and J. Neter, 2004. Applied Linear Regression Models. 4th Edn.,
McGraw Hill, New York, ISBN: 978-0256086010.

Lee,  S.C.,  2003.  Prediction  of  concrete strength using artificial neural networks. Eng. Struct.,
25: 849-857.

Lim,  C.H.,  Y.S.  Yoon  and  J.H.  Kim,  2004.  Genetic  algorithm    in    mix   proportioning  of
high-performance concrete. Cem. Concr. Res., 34: 409-420.

Marcia, J.S., E. Slagergren and K.A. Snyder, 1997. Concrete mixture optimization using statistical
mixture design method. Proceedings of the International Symposium of Height Performance
Concrete, October 20, 1997, New Orleans, Louisiana, pp: 21-32.

Muthukumar, M., D. Mohan and M. Rajendran, 2003. Optimization of mix proportions of mineral
aggregates using Box Behnken design of experiments. Cem. Concr. Comp., 25: 751-758.

Nataraja, M.C., M.A. Jayaram and C.N. Ravikumar, 2006. Prediction of early strength of concrete:
A fuzzy inference system model. Int. J. Phys. Sci., 1: 47-56.

Patel, R., 2003. Development of statistical models to simulate and optimize self-consolidating
concrete mixes incorporating high volumes of fly ash. M.Sc. Thesis, Ryerson University,
Canada.

Popovics,  S.,  1990.  Analysis  of  concrete  strength  versus   water-cement   ratio  relationship.
ACI Mater. J., 87: 517-529.

Simon, M.J., 2003. Concrete mixture optimization using statistical methods. Final Report, Report
No: FHWA-RD-03-060, Federal Highway Administration, McLean, USA.

Sobolev, K., 2004. The development of a new method for the proportioning of high-performance
concrete mixtures. Cem. Concr. Comp., 26: 901-907.

Sonebi, M., 2001. Factorial design modelling of mix proportion parameters of underwater composite
cement grouts. Cem. Concr. Res., 31: 1553-1560.

276



Asian J. Sci. Res., 8 (3): 264-277, 2015

Sonebi, M., 2004. Medium strength self-compacting concrete containing fly ash: Modelling using
factorial experimental plans. Cem. Concr. Res., 34: 1199-1208.

Tesfamariam, S. and H. Najjaran, 2007. Adaptive network-fuzzy inferencing to estimate concrete
strength using mix design. J. Mater. Civ. Eng., 19: 550-560.

Yeh, I., 1999. Design of high-performance concrete mixture using neural networks and nonlinear
programming. J. Comput. Civ. Eng., 13: 36-42.

Yeh, I.C., 1998. Modeling of strength of high-performance concrete using artificial neural networks.
Cem. Concr. Res., 28: 1797-1808.

Zain, M.F.M., H.B. Mahmud, A. Ilham and M. Faizal, 2002. Prediction of splitting tensile strength
of high-performance concrete. Cem. Concr. Res., 32: 1251-1258.

Zia, P., S. Ahmad and M. Leming, 1991. High-Performance Concrete: A State-of-Art Report.
Strategic  Highway  Research  Program,  National  Research  Council,  Washington,  DC.,
Pages: 251.

277


	AJSR.pdf
	Page 1


