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ABSTRACT
The emergence of modern digitization has resulted in versatility to eradicate the divergence

among the forms of information travel flanked by the users. This paper presents a pliable approach
for the erratic block size selection in an impulsive mode to boost the level of sophistication in stego
algorithm. An ingrained formula for key exchange, suggested in the algorithm combines the benefit
of cryptography adjoining with steganography. In contrast to the usual implementations using
generic software and personal computers, the suggested software development has been intense
on an embedded device LPC 2378 with the RISC architecture that includes extensive support for
networking through on-chip modules supporting ethernet and CAN protocols. The focal plan of this
work includes elimination of key exchange for data encryption and improving the security to a
massive level without compromising the image quality and embedding capacity. This endeavor
shows the aptness of embedded hardware for stego implementations using an image carrier that
makes soaring demand on memory; the extremely inhibited resource of embedded devices. The
efficiency of the algorithm in maintaining image quality has been measured using the metrics MSE
and PSNR. The enhancement in performance of embedded software, in terms of speed and code size
have been analyzed under sophisticated compiler tools from KEIL MDK and IAREW.

Key words: Light weight steganography, hardware security, embedded security, ARM, compiler
optimization

INTRODUCTION
Private information sharing among the people in the current digital world through an assorted

number of electronic gadgets is rising every day. This includes text, audio, still images, video, etc.
Perceptible data voyage through any medium, although in illegible form may bid the eavesdroppers
and makes our data defenceless. Finding the very existence of data, when hidden behind a cover
becomes difficult and reduces the likelihood of vulnerability (Zaidan et al., 2010). The significance
of any sort of information, when represented in digital form diminishes dreadfully, as we progress
towards lower bit positions. Therefore, changes in the bit values present in LSB positions may not
upshot conspicuous differences, when converted back to its original form.

Bearing this fact in mind, embedding techniques using LSB substitution methods has become
accepted  in  steganography  (Amirtharajan  and  Rayappan,  2013;  Chan and Cheng, 2004;
Cheddad  et al., 2010). Variable number of data bits embedding on the LSB positions of a cover
pixel as dictated by the bits in the MSB positions of the same pixels are also in practice. The other
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form of LSB technique called LSB matching finds the best matching portion of the cover to embed
the data. Although, the matching technique helps in maintaining excellent image quality by
minimizing the distortions, it slows down the pace of the algorithm on producing the stego image.
Inclusion of randomization during the selection of cover pixel sequence for data embedding has
been a means to improve security.

Few of these methods oblige sending of sequence numbers that serves as a key to the receiver
end, prior to the transfer of storage cover. Efforts have been taken to make a trade-off with
embedding capacity that makes room in the stego cover to clutch the needed key information. In
addition, procedures for dividing the data into blocks of equal sizes and encrypting the data ahead
of embedding were as well exercised for improved protection of data. Scrambling the data prior to
embedding on a cover provides a two fold security level (Amirtharajan  et al., 2013). The use of
encryption can be made at the augmented cost of key exchange algorithms apart from data
exchange (Abomhara  et al., 2010; Muda  et al., 2010; Salem  et al., 2011). The majority of these
implementations  were  made  by  means  of  software  platforms (Salem  et al., 2011;
Praveenkumar  et al., 2014a-d, 2015).

Embedded processors and reconfigurable devices are the prime choices for the implementation
of security on hardware platforms (Wang  et al., 2007; Yalla and Kaps, 2009; Rajagopalan et al.,
2014a-c). Limitations on memory in embedded processors invite the special kind on crypto
algorithm called Light Weight Cryptography (LWC) (Eisenbarth  et al., 2007, 2012). These
algorithms curtail the demand on memory to be the most apposite option for low end embedded 
devices  such  as  8-bit  and 16-bit embedded processors (Hong et al., 2006; Janakiraman et al.,
2014a, b). On the other hand, security implementations using steganography with widely used
covers like still images needs large store area. This requirement makes the reconfigurable devices
like FPGAs to win the battle and forces the embedded processors to quit.

The development of advanced embedded processors, such as devices with ARM core satisfies
the memory requisite for multimedia based security algorithms bringing them back in to the battle
(Janakiraman  et al., 2014d, e). Initially using the benefit of interfacing external memory devices,
the  concept  of  image  steganography  on RGB images was proved with ARM processor by
Stanescu  et al. (2009). As an alternative, the effectual use of on-chip RAM and images with grey
scale pixel values were recommended to realize block based random image steganography with
LPC2136 a 32-bit RISC device (Rajagopalan et al., 2012).

In this study a novel scheme is presented that embeds the data in encrypted form to perk up
the security. The algorithm provides flexibility to the user to divide the image in to blocks of diverse
measuring and to make use of dissimilar keys that encrypts the data to be embedded on each block.
Every block gets 10-bit header information embedded in it that comprises of block size, encryption
key and a seed for LFSR thereby eliminating the supplementary algorithm for key exchange in
contrast to customary approaches. In order to satisfy the memory requirement, the device LPC2378
a quad byte RISC architecture with synthesizable ARM7TDMI core is used. The device supports
512 KB of non-volatile flash ROM with In-System Programming (ISP) and total of 58 KB Static
RAM for In-Application Programming (IAP). The use of unique key that encrypts the data
embedded in each block has been considered as a means to improve the security. To keep the image
quality in a level comparable with LSB matching, The error reduction has been done with OPAP
technique that greatly improves the error metrics MSE and PSNR and maintains the
imperceptibility of the stego images.
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MATERIALS AND METHODS
This work suggests a fiction block based on fixed embedding procedure on grey scale images,

where, the secret data will be encrypted before the embedding process. In this sequential
embedding approach, the use of different keys for the encryption of secret bytes to be embedded in
each block makes the same secret to appear differently at every point of embedding, even, when
same data gets embedded in multiple places. The user can decide on the number of chunks to be
made in every cover image. Also the number of Cover Bytes (CB) in each block for embedding is
selectable by the user. In the beginning, the user has to select the Block Size (BS), a 10 bit integer
number as given in Eq. 1.

[(BS-5) mod 4] = 0 (1)

The lower 8 bits are extracted from the selected BS value of the ith block and taken as the Base
Key (BKi = BSi and 0×FF) for encrypting the data for the ith block. Since, we go for fixed ‘K’ bit LSB
embedding on each pixel, the number of secret data bytes to be encrypted using the selected key
can be given as j = (BS-HB)/4, when, K = 2 and Header Bytes, HB = 5. A 3-bit LFSR circuit shown
in Fig. 1, is used to transposition each bit of BKi to obtain a Bit Shuffled Key (BSKi). The 3-bit
LFSR with an EX-NOR gate in its feedback path generates pseudo random numbers in the range
of 0 to 6 as given in Table 1. As the LFSR circuit with a feedback path through EX-OR gate by no
means output all zeros, a feedback set by an EX-NOR gate on no account produce all ones.
Therefore, prior to the start of embedding the data in every block, the LFSR is made to run 7 times
and the value 7 is inserted at the end to complete a cycle.

Table 1: Output of 3-bit LFSR with EX-NOR feedback
LFSR stage 
--------------------------------------------------------------------------------------------------------------------
D0 = (D2 v D1) D1 = D0 D2 = D1 Value f (x) = x3+x+1) 
0 0 1 1 (seed)
0 0 0 0 
1 0 0 4 
0 1 0 2 
1 0 1 5 
1 1 0 6 
0 1 1 3 

Fig. 1: LFSR (3-bit) with EX-NOR feed back

280



Asian J. Sci. Res., 8 (3): 278-290, 2015

The pseudo random output of the LFSR in one cycle, PSi for the respective seed value Sdi

dictates the sequence by which the bit positions of the 8-bit key, are to be rearranged to get a Bit
Shuffled Key (BSKi) that scrambles the data to be embedded in the ith cover block. The LFSR seed
value for the ith block is agreed as Sdi = Bki mod 8. The simple symmetric encryption for each
secret byte  comprises of a transposition mechanism followed by an Ex-or operation given by the
Eq. 2 and 3, respectively.

[DBj >>(BSKi mod 8) ] | [DBj <<(8-(BSKi mod 8))] (2)

DBj^BSKi where, -1<j>(BS-HB)/4 (3)

In this approach, the selected BS value for each block is embedded in the five foregoing cover
bytes of the respective block, which are called Header Bytes (HB) and the remaining cover bytes
of the relevant block will get embedded with encrypted secret data block, to obtain the stego block,
SB (BSi). Block size of any selected block is given by Eq. 4.

BSi#[(RSB×4+HB)] (4)

where, RSB is the Remaining Secret Bytes to be embedded.
In practical cases, the final block that gets the secret data embedded is called the residual block.

It may not follow the size given by Eq. 1 due to the fact that the size of the cover image will usually
be more than the size of secret data. Once the left over secret data bytes got embedded, the next
cover  block  is  embedded  with  10  zeros  in the place of header bytes called as Concluding Bits
(CCB = 00 00 00 00 00) indicating the closing stage of secret data embedding.

Pseudo code for embedding:
Embedding bits per pixel, K = 2;
Header Bytes per block, HB = 5;
Cover image = (Cm×Cn); 
Secret data image = (Dx×Dy) 
Select, Number of Blocks ‘r’;
Select, Block Sizes  = ;  r

m n i 0 iC C BS  
for (i = 0; i< r ; i++)
{
 Block Size, BSi: [(BS-HB) mod 4] = 0
 Base Key, BKi = BSi/256;
 LFSR seed value, SDi = BKi mod 8;
 LFSR output for ith block,  PSi = LFSR(SDi);
 Bit Shuffled Key, BSKi = Bit shuffling (BKi, PSi);
 Size of Data block to Encrypt, j = (BS-HB)/4;
 Encrypted Data block, EDBj

Encrypt (DBj, BSKi) 
 { While ( j != 0 )
 {
EDBj =  [DBj>>(BSKi mod 8) ] | [ DB<<(8 - (BSKi  mod 8)) ] ^BSKi;
 }
 }

 Where, ;   r
m n j 0 jED ED EDB  

 Stego Block, Sbi = Embed(CB[BSi,], EDBj);
  Where, ;   r

m n i 0 iS S SB  
 }

 for (i = 0; i< HB ; i++)
 {
Embed (CBi+1, CCB) ;
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 }
 Display_cover (Cm×Cn);
 Display_secret (Dx×Dy);
 Display_encrypted_secret (EDm×EDn);
 Display_ stego (Sm×Sn);

The retrieval process starts with the extraction of block size from the Header bytes in the first
block of the stego image. The extracted BS value is used to reconstruct the Base Key and 3-bit
LFSR seed, SDi used at the encryption side. The output sequence of LFSR and Bit Shuffled Key,
BSKi to decrypt the secret data bytes in the encrypted form from every ith stego block is conceded
in a way similar to the encryption process. This extraction and decryption are sustained until we
attain the concluding bytes in the header. Finally, the retrieved secret image, (RDx×RDy) is
reconstructed using the decrypted data. The overview of the entire process is depicted in Fig. 2.

Pseudo code for retrieval:
Embedding bits per pixel, K = 2
Header Bytes per block, HB = 5
do
{
 for (i = 0; i< HB; i++)
{ 
 Block Size, BSi = Extraction (SBi)-HB;
 }
 Base Key, BKi = BSi/256;
 LFSR seed value, SDi = BKi mod 8; 
 LFSR output for ith block, PSi = LFSR(SDi);
 Bit Shuffled Key, BSKi = Bit shuffling (BKi, PSi);
 Size of Data block to Decrypt,  j = (BS-HB)/4
 Extracted Data block in Encrypted form, EDBj = Extraction (SB[BSi]);
 Where, ;  r

m n j 0 jED ED EDB  
 Decrypted Data block,

 Decrypt (DBj, BSKi) 
 { While( j ! = 0 )
 {
 DBj =  [EDBj>>(BSKi mod 8) ] | [ EDB<<(8 - (BSKi mod 8)) ] ^BSKi;
 }
 }

Where, Retrieved secret image  and  r
x y j 0 iRD RD DB  

 ‘r’ - Number of Blocks.
}
 Display_Retrieved_secret (RDx×RDy); 

Where, (RDx×RDy) = (Dx×Dy)

Hardware implementation: The algorithm focuses on grey scale images that can be fit in to the
existing  on-chip  SRAM  of  32  KB  in  the  embedded  processor  LPC 2378 chosen for hardware 

Fig. 2: Block diagram of stego system
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implementation. The real cover image, stego cover, secret image in its actual plus encrypted form
and the retrieved secret image as well are stored in local on-chip SRAM of 32KB. The algorithm
was developed as an embedded software using the Embedded-C language. The embedded code was
compiled with ARMCC compiler of KEIL MDK version 4.7 and IAR C compiler of IAR Embedded
Workbench version 6.5 (IAREW). The impact of both compilers in the reduction of code size and the
time taken to execute the algorithm are compared.

RESULTS AND DISCUSSION
The grey scale images with size (Cm×Cn) = 100×100 and (Dx×Dy) = 50×50 are taken as cover and

secret image, respectively so as to analyze the quality of stego image at full embedding capacity.
In order to store all the images in its various forms with the above said sample image sizes in
addition to the memory required for any temporary data storage, the algorithm demands around
85% of the available 32 KB on-chip local SRAM. The embedding scheme seems virtually fixed,
because of the fixed number of bits embedded in each pixel of the cover image (K = 2). In reality,
the total data embedding capacity for the taken image size is always depends on the number of
header bytes to be sacrificed. Table 2 shows the sample values for multiple number of blocks with
diverse sizes, number of header bytes to be spared and the respective embedding capacity.

The use of different keys to encrypt various blocks of secret data gives a linear rise to the
number of blocks in the cover image thereby demanding more cover bytes to embed header
information. Trade-off can be made between the rise in security level and reduction in data
embedding capacity up on dividing the cover and data in to more number of segments. The various
error metrics and performance metrics of the proposed method are compared in Table 3. The error
metrics MSE and PSNR were calculated as said in the Eq. 5 and 6.

(5)
M N

i, j i, ji 1 j 1

1Mean Square Error, MSE = (X Y )2
MN  

 

Table 2: Sample block numbers, sizes, cover bytes and  embedding capacity
(BS-HB)×No. of blocks =

Total CB for header (5 per block)+ CB for embedding secret data Embedding capacity
No. of blocks concluding bytes (5 per image) (Cover image = 100×100) [Bits/Pixel] (when K = 2)
12 60+5 1000×9+600×1+300×1+35×1 = 9935 1.987
20 100+5 1000×5+500×7+250×4+100×3+95×1 = 9895 1.979
100 500+5 1000×1+500×9+100×20+50×20+20×49+15×1 = 9495 1.899
200 1000+5 200×10+100×20+50×20+30×100+20×49+15×1 = 8995 1.799
Data embedding capacity is given by {[(Cm×Cn)-(r×HB)-CCB]×K} bits, where, number of blocks and HB = CCB = 5

Table 3: Error metrics of proposed method 
MSE PSNR (dB)
------------------------------------- ----------------------------------------

No. of blocks (r) Cover image (100×100) Before OPAP After OPAP Before OPAP After OPAP Cover pixels altered (%)
12 Cameraman 2.4556 1.4932 44.23 46.39 75.19 

Boat 2.4499 1.5083 44.24 46.34 74.81
House 2.5205 1.4757 44.11 46.44 74.40

20 Cameraman 2.5991 1.5111 43.98 46.33 75.03
Boat 2.6050 1.5194 43.97 46.31 74.93
House 2.7060 1.5092 43.80 46.34 74.66

100 Cameraman 2.9941 1.5061 43.36 46.35 74.68
Boat 3.0150 1.5222 43.33 46.30 75.06
House 3.0836 1.4924 43.24 46.39 74.72

200 Cameraman 3.2854 1.4822 42.96 46.42 74.39 
Boat 3.2651 1.4955 42.99 46.38 74.85
House 3.3541 1.4973 42.87 46.37 75.09
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where, Xi, j-Stego pixel value Yi, j-Cover pixel value.

Peak signal to noise ratio, PSNR = 10 log10 {2552/MSE} dB (6)

As per the literature, the worst case PSNR value for K = 2 is noted as 38.59dB (Chan and
Cheng, 2004). Improvements in image quality can be achieved by introducing the technique
Optimum Pixel Adjustment Process (OPAP) on LSB substituted image, when K$2. The algorithm
was tested on 3 different standard cover images Cameraman, boat and house with same data image
at full embedding capacity. Table 3 shows the error metrics MSE and PSNR values along with
percentage of cover pixels altered in cover image for 4 different sample block sizes as given  in
Table 2.

The results obtained after the OPAP shows the apparent enhancement in error metrics. This
is obtained at the cost of few bytes in code memory and a slight hike in cycles taken for execution.
On an average 75% of the cover pixel values are getting altered after embedding. It is also clear
from the results that the percentage of pixels altered in the cover does not contribute directly in
picture quality rather, it depends only on the maximum possible number of pixels that can be
adjusted to bring down the difference between the cover and stego pixels.

The performance of embedded code on any target device is analyzed with 2 major factors the
memory footprint and speed. The prime constraint in the selection of target device is that the
existing memory size should be large enough to fit in the application code and data as well. The
data memory requirement is always application dependent and no programming technique can
serve better in reducing this demand. The use of embedded processors for image staganography is
typically restrained by its claim on data memory (RAM) the storage place for the cover and stego
cover images. Some algorithms that wants to keep the cover image as static data may use a portion
of program memory as the storage area for cover image. On the other hand storing the cover image
in RAM helps the user for the dynamic selection of cover images before data embedding. The
required amount of RAM memory for this algorithm is calculated as:

Cover image : 100×100 : 10,000 bytes
Data image : 50×50 : 2,500 bytes
Encrypted data : 50×50 : 2,500 bytes
Stego cover : 100×100 : 10,000 bytes
Total RAM memory required : 25,000 bytes (<25KB)
Available on-chip SRAM of LPC 2378 : 32KB

This calculation ensures the suitability of LPC2378 in satisfying the RAM requirement for the
image steganography implementation with the above said image sizes.

The program memory size required for the application code is based on the compiler efficiency
in generating the optimal output. The compilers of IDEs for embedded systems are tailored with
the option for the selection of various optimization levels that can produce results favouring speed
or space. Compiler based optimization techniques were previously analyzed for LWC by
Janakiraman  et al. (2014a, b). Here two well known IDEs KEIL MDK 4.7 and IAREW 6.5 are used
to compile the code with 4 different levels of optimization. The snap shots of IDEs KEIL MDK and
IAREW are shown in Fig. 3 and 4, respectively. The various optimization levels in KEIL and IAR
compilers used are described in Table 4.
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Fig. 3: Snapshot of IDE-KEIL MDK 4.7

Fig. 4: Snapshot of IDE-IA REW 6.5

285



Asian J. Sci. Res., 8 (3): 278-290, 2015

Table 4: Optimization levels of compilers 
Optimization level KEIL MDK4.7 ARMCC compiler IAREW6.5 IAR C compiler
Level 0 O0-minimum optimization  for space Low-minimum balanced speed and space optimization
Level 1 O1-more optimization for z space Medium-more balanced speed and space optimization
Level 2 O2-maximum optimization for space High-maximum optimized for space
Level 3 O3-maximum optimization for speed High-maximum optimized for speed (with no space constraint)

Table 5: Compiler based optimization result analysis
Optimization levels
---------------------------------------------------------------------------------------------------------------------------
Execution time (cycle count) Code size (bytes)

Cover image (100×100) ----------------------------------------------------------------- --------------------------------------------------
IDE/compiler No. of blocks (r) 0 1 2 3 0 1 2 3
Keil MDK 4.7 12 1776358 900806 900609 493705 2456 1748 1720 1984
ARMCC 100 1842772 937478 935873 521891

200 1913944 977200 973995 552991
IAREW 6.5  for ARM 12 908815 428392 401510 390823 680 908 844 924
IAR C 20 911538 430328 402198 392595

100 935624 449994 410537 409312
200 970924 473524 432192 417394

Table 5 gives a detailed values of code sizes in terms of bytes and execution time in terms of
cycle count obtained with four different optimization levels on both compilers.

The embedded code was written in such a way that, the code size remains constant irrespective
of the image used as cover and when they are divided in to different number of blocks with various
sizes. The cycle count that decides the execution time being unvarying for all the 3 cover images
used in the testing. Change in number of segments (blocks) in cover images varies the execution
cycle count. The inference from the results Table 5 shows that in KEIL MDK, LEVEL-2 produces
lesser code size than any other levels and LEVEL-3 takes fewer cycles for execution at the
expenditure of few bytes in code size than in LEVEL-2. On the other side, IAREW results in more
rate values of code size and execution cycles with LEVEL-0. Using LEVEL-2 in IAREW brings more
than 50% reduction in execution cycles with a slight hike in code size than in LEVEL-0. As in the
case for KEIL, LEVEL-3 of IAREW becomes the most optimal choice to cut back the execution
cycles.

Analyzing the competence between the compilers of KEIL MDK and IAREW on footprint
reduction, KEIL takes around 5.5-7.5% whereas; IAREW outperforms KEIL by taking only 2-3%
of available on-chip FLASH memory of LPC2378. As given in the Fig. 5 using IAR C compiler helps
to achieve around 50% space reduction with all optimization levels.

Also in terms of execution cycles shown in Fig. 6, IAR takes 50% lesser number of cycles than
KEIL in all optimization levels except in LEVEL-3 where it atleast strives to get close with IAR.

All the results in Table 5 on execution time and code size are specified excluding the OPAP
function, time load input images in RAM memory (cover and data) and time to display the images
on GLCD. As the footprint of code without OPAP did not even require 10% of the existing FLASH
memory, we can ignore the memory overhead produced by the inclusion of OPAP technique. In
order to evaluate the timing overhead generated by the OPAP function we use the debugging aid,
the Performance Analyzer provided by the KEIL MDK tool.

On comparing the results obtained from performance analyzer, the data embedding function
consumes more than 80% of the total execution time with all the four different block numbers. The
secret image encryption process takes level of considerable time around 10% where, the remaining
modules altogether needs only less than 10%. The time that needs to complete the embed module
and info_encryp module are based on the size of cover and secret images respectively which are
considered as constant sizes in our implementation.
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Fig. 5: Code size KEIL vs IAR

Fig. 6: Execution time KEIL vs IAR

As a result of this, even when the cover image is segmented in to more number of blocks, there
is only a negligible amount of raise in execution time due to the function call overhead. The
algorithm expects an output from the modules LFSR_3NOR and key_shufl for every segment of the
cover image therefore, the execution time for these modules are decided only by the number of cover
blocks and not by the size of cover image. This aspect makes the execution time for these module
to raise linearly with the raise in number of cover blocks. On measuring the impact of OPAP, it is
found around 30% raise in the execution time with improvement in stego image quality with 2 to
3 dB hike in value of PSNR. Changing the cover image when using the OPAP technique may lead
to a slight difference in the total time taken by the code to complete the embedding process. This
is solely depends on the number of stego pixels that needs correction from OPAP for error
reduction.

Janakiraman  et al. (2014c) proposed a byte wise XOR based encrypted embedding of secret
image on gray scale cover image in method 2. The method 2 named as “Key Embedding and
Encrypted Hiding” embeds the four trailing image pixels of cover image with the 8-bit key used for
encrypting the secret image. In contrast, this method proposed in this study embeds the data, key
and block size as well in to the cover image. On comparing the results from Table 6, the better
imperceptibility on stego image achieved by the proposed method is represented with grater PSNR
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Table 6: Image quality vs embedding capacity (proposed method Vs Janakiraman et al., 2014c-Method 2)
Without OPAP With OPAP
--------------------------------- --------------------------------

No. of blocks (r) Cover image MSE PSNR (dB) MSE PSNR (dB) Embedding capacity (%)
Janakiraman et al. (2014c) Cameraman 17.516 35.696 NA NA 25.0
(Method 2) (128×128)
Proposed (r  = 12)  Cameraman 2.4556 44.23 1.4932 46.39 24.8

(100×100)
Proposed (r  = 20) Cameraman 2.5991 43.98 1.5111 46.33 24.7

(100×100)
Proposed (r = 100) Cameraman 3.2854 42.96 1.4822 46.42 23.7

(100×100)
Proposed (r = 200) Cameraman 2.9941 43.36 1.5061 46.35 22.5

(100×100)

Fig. 7: Hardware implementation with image results displayed on GLCD, Top row: Boat (100×100)
Left: Original cover, Right: Stego cover, Bottom row: Peppers (50×50), Original data
Centre: Encrypted data and Right: Retrived data

values with and without the use of OPAP technique. On the other side, the flexibility of the
proposed  algorithm  which  was  not present  in  the Quad block embedding algorithm
(Rajagopalan  et al., 2012) in making tradeoff between the embedding capacity and algorithm
complexity (using more number of blocks) has been also marked. 

The code was actually targeted for smaller ARM devices with small RAM area in disparity to
the work done by Stanescu  et al. (2009) in a similar ARM device with external RAM interface. By
utilizing the code compatibility among the various ARM versions, the code was also implemented
on a board with CORTEX-A8 ARM processor. The processor is wired with a high resolution Colour
Graphical GLCD, that provides 2, 30 and 400 dots with an active color matrix comprising 320 RGB
columns and 240 rows. All the grey scale images were displayed on the 3.5 inch diagonally wide
TFT LCD panel (GLCD) to test the intensity of scrawling on the encrypted secret image and visual
imperceptibility on stego image. This was carried out only for the purpose of instant verification.
In contrast, the GLCD was used as core module to provide security through user authentication by
Janakiraman  et al. (2014d). The snapshot of the embedded target board together with projected
view of GLCD showing original and stego cover images of size 100×100 on the top row, along with
plain, encrypted  and  retrieved  secret  data  images  of  size  50×50 in bottom row is provided in
Fig. 7.

CONCLUSION
The results obtained for the implementations shows the possibility of embedding encrypted data

on grey scale images without the exchange of a separate key prior to the exchange of stego cover.
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The image quality on stego image can be boosted to a considerable extent using OPAP method when
K>1. Dividing the cover image into any number of blocks does not have any impact on the footprint
or code size of the program. The implementation concentrated only on the use of on-chip memory
resources for the purpose of implementing steganogarphy on grey scale images. This will result in
the significant reduction of the memory accessing time when compared to external memory
accesses and also helps in minimizing the cost and space of embedded hardware. On comparing the
results, this study recommands the use of IAR C compiler (IAREW version 6.5) for better
optimization in terms of both space and time. On the other hand, KEIL MDK version 4.7 provides
more debugging mechanisms like Execution profiler, Performance analyzer, etc. that facilitates
better result analysis. This paper shows a practical method to provide a low cost dual level of
security through a combination of crypto and stego algorithm on data communication network
using ethernet or CAN module built in the LPC2378 embedded device with ARM7 core, without any
demand on additional resources. Based on the demand on speed by the application, the LPC2378
can run upto the maximum frequency of 72 MHz. Finally, the error metrics to compare the quality
of stego image with cover image and performance metrics with respect to execution time are found
to be in pahse with the ranges suggested in literatures.
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