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Abstract
Kolb’s experiential learning theory has outlined that individuals possess unique learning preferences that comprise of diverging,
converging, assimilating and accommodating styles. Conventional approach to assess the learning styles however is susceptible to
reliability issues that arise from cultural and language variations. To overcome such limitation, a new learning style assessment technique
is proposed using EEG sub-band spectral centroid frequencies and artificial neural network. Sixty eight participants have volunteered in
for the study. Subjects are clustered into the respective learning style groups using Kolb’s learning style inventory. Subsequently, resting
EEG is recorded from the antero-frontal cortex and pre-processed for noise elimination. Alpha and theta spectral centroid frequencies
are then extracted and analyzed. Dataset enrichment is then performed using synthetic EEG. In general, the artificial neural network is
successful in classifying learning styles from the resting EEG. Network training and testing have attained 85.1 and 91.3% accuracies,
respectively. Albeit yielding satisfactory performance, findings have also suggested an extended research to enhance its capabilities for
learning style discrimination.
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INTRODUCTION

Kolb’s experiential learning theory defines that
knowledge is shaped by individual ability to absorb and
transform experience. The model is composed of four learning
modes that are arranged in cyclic manner, Concrete
Experience (CE), Reflective Observation (RO), Abstract
Conceptualization (AC) and Active Experimentation (AE). The
absorption dimension is constructed by the opposing modes
of CE and AE. Conversely, the dialectic modes of RO and AE
form the transformation dimension. Knowledge is then
created as a response to contextual demands; through an
ingenious process that requires interaction between the two
learning dimensions. Hence, the learning process can be
portrayed as a recursive cycle, in which individuals experience,
reflect, think and act1.

Learning style variations arise due to the unique
individual preferences to resolve the conflict of being concrete
or abstract and being reflective of active1. These are influenced
by  educational  specializations,  past  experiences,  context
and gender2. Hence, as individuals mature, the construct
represents  a  stable  personality  trait3.  Conventionally,
individual  learning  style  is  assessable  via  Kolb’s  Learning
Style Inventory (LSI). Technically, the method evaluates the
dominant modes on the absorption and transformation
dimensions and maps the individual into diverging,
converging, assimilating and accommodating styles1.

The EEG is a non-invasive recording of electrical activity in
the brain4. Apart from sleep studies, the technique has been
widely used to study various psychological conditions such as
bipolar disorders, schizophrenia5 and autism6. Separately,
implementation of EEG has also extended to bio behavioral
research; encompassing areas such as cognition and
development,  emotional  function  and intelligence7.  In
general, the frontal region of the brain is responsible for
cognitive-related abilities8. Hemispheric lateralization of the
frontal region has also revealed that the left side is dedicated
for sequential and logical processes, while the right side
specializes for emotion and social interaction capabilities9.

From an analytical perspective, the EEG can be
segregated  into  four  major  frequency  ranges,  the  delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz) and beta (13-30 Hz)
waves6. Each of these EEG band bear exclusive information
relating to different neurological behavior4. Studies have
shown that delta and theta waves are each inherently
associated with deep and light sleep10. Alpha rhythms
however, become evident when the mind is in conscious but
resting state. As the brain participates in intense mental
activity, the slower alpha rhythms are replaced by the beta
waves4.

Advanced signal processing methods are often
implemented to quantify spectral information within each
frequency bands. Evaluation of spectral features can be
conducted via parametric and non-parametric techniques.
Technically, parametric method estimates the model-based
power spectrum using auto-regressive, moving average or
auto-regressive moving average technique. Conversely, the
non-parametric approach includes Welch’s method for
estimation of power spectrum from the time series. Although
having limitations, the method has been extensively used in
various EEG studies11. Subsequently for analysis purposes, the
spectral information is usually processed into quantifiable
features such as the well-known band power12 and power
ratio13 descriptors.

Meanwhile, Spectral Centroid Frequency (SCF) is an
alternative form of feature, defined as the center of gravity
within the frequency spectrum. Its inherent advantages are
attributed to the robustness against white Gaussian noise and
reduced computational requirements. The feature has been
successfully implemented in speech recognition14. Being
relatively new, the SCF has recently been used to characterize
stress15 and intelligence16 from the resting EEG.

The selected features are commonly used for pattern
recognition purposes via techniques such as the Artificial
Neural Network (ANN). The ANN is a supervised machine
learning classifier that mimics the functioning of neurons in
the brain17. The technique which integrates the training
dataset with the back-propagation learning algorithm allows
the network to iteratively update the weights between the
nodes until the error is minimized18. Meanwhile, a separate
dataset for testing is used to gauge the generalization ability
of the trained network. As an advanced technique, ANN has
been utilized for myriad of biomedical applications which
include physiological analysis19 and modelling13, as well as
disease recognition20.

Current methods to evaluate learning styles are
susceptible  to  inconsistency  issues  that  arise  from  cultural
and language variations2. To eliminate such drawback, an
innovative learning style assessment technique from the
resting EEG has been proposed. Albeit yielding excellent
performance with k-nearest neighbor classifier21, the potential
of EEG sub-band SCF features have yet to be verified using
other established methods. Hence, this paper extends such
study by classifying Kolb’s learning styles using ANN. The
study however, is limited to alpha and theta bands as the
inherent traits pertaining to working memory organization
and attentional requirements exist at these frequency
ranges22.
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MATERIALS AND METHODS

This elaborates extensively on the methods used in the
study. Figure 1 shows, the tasks comprise of subject clustering
and EEG acquisition, signal pre-processing and extraction of
sub-band SCF features, pattern observation and removal of
extreme outliers, dataset enrichment, network optimization,
training and testing of ANN, as well as correlation tests. It is
important to note however, that the initial phase of the study
has been reproduced from previous study21.

EEG acquisition and sample clustering: A total of 68
university students (male, right-handed, age range = 18-37
years, mean age/standard deviation = 23.9/3.1 years) from
various education specializations have participated in the
study. All procedures related to experimental protocol and
EEG recording have earlier been endorsed by the university’s
research ethics committee (600-RMI (5/1/6)). Initially, subjects
were briefed regarding the experimental procedure and have
given written consent. Subjects were then asked to relax in
seated position with both eyes closed. The EEG is then
recorded from positions AF3 and AF4 of the prefrontal cortex
via the emotiv neuroheadset. For each session, the resting EEG 
was recorded for three minutes. Subsequently, subjects were
required to complete the online Kolb’s LSI. These would allow
sample clustering into the respective learning style groups.

Signal pre-processing, extraction of Sub-band SCF features
and data enrichment: The EEG pre-processing was performed
offline using MATLAB 2014a using high-pass filter and
automatic electrooculogram rejection method. Subsequently,
only 2 min 30 sec EEG segment is considered for further
analysis. Samples were then filtered into the respective alpha
and theta waves using band-pass filters23. The power spectral
density for each frequency band was estimated through
Welch technique. As expressed in Eq. 1, each of the sub-band
SCF feature is computed as the average of amplitude
weighted frequencies, divided by the sum of amplitude:

(1)
   

   

N

ii = 1
i N

ii = 1

f ×S f w f
SCF =

S f w f




where, i represents the respective EEG band and N is the 
number  of  frequency  bins.  Conversely,  S[f]wi[f]  is  the 
power of the spectrum in relation to the frequency
component,  f,  at  bin   i.   Based   on   the  results  from   Kolb’s

LSI, the  obtained  alpha  and  theta  SCF  features  were  then
clustered into the diverger, converger, assimilator and
accommodator groups.

As  previously  reported,  the  converger  and
accommodator groups each comprise of 14 samples each,
while the assimilators and divergers each with 20 samples.
Two  extreme  outliers  have  been  identified  and  removed,
each  from  the  assimilator  and  accommodator  groups.
Hence, the total number of samples used prior to dataset
enrichment21 is 66.

Past studies have revealed that performance of intelligent
classifiers deteriorates with small class separation and
unbalanced sample size between the control groups. To
compensate for such limitation, the use of synthetic EEG has
been proposed. The technique is realized by adding white
Gaussian noise with sufficiently conditioned signal-to-noise
ratio to the original EEG. In this study, an SNR of 30 dB has
been adopted. A more detailed elaboration on the synthetic
EEG can be obtained elsewhere13. In this study, the sample size
has been increased to 40 per learning style group. It has been
observed that the mean and feature distribution between
both original (N = 66) and enriched (N = 160) datasets yielded
similar pattern21. Hence, the ensuing result will only focus on
the enriched dataset which is then implemented for ANN
classification.

Artificial neural network: The ANN comprises of an input
layer, several hidden layers and one output layer18. However,
studies have revealed that a network with single hidden layer
is adequate to approximate an arbitrary function up to an
acceptable  level  of  accuracy24.  In  this  study,  alpha  and
theta SCF features from both sides of the antero-frontal region
are used as input to the neural network. Conversely, a single
node output is adopted to represent the corresponding
learning style indexes.

Theoretically, an input vector, xi is transformed into vector
of hidden variables, uj through an activation function, Γ1. The
procedure can be mathematically expressed by Eq. 2:

(2)
M

j 1 ij i j
i = 1

u = Γ w x + θ
 
 
 


where, M represents the number of input nodes, wij are the
weights between ith input to jth hidden node  and  2j  are  the 
biases and  Γ1 utilizes the hyperbolic tangent function.

Similar transformation is performed at the output node,
in which the vector of hidden variables  is  computed  into  the
resultant output, yk via an activation function, Γ2. As expressed
in Eq. 3:
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(3)
N

k 2 jk j k
j = 1

y = Γ w u + θ
 
 
 


where, N represents the number of hidden nodes, wjk are the
weights between jth hidden node to kth output node, 2k is the
bias and  Γ2 employs the pure linear function.

As expressed by Eq.  4, the output error, e is then obtained
as the difference between the computed, yk and the desired
output, yd:

e = yk-yf (4)

The  computed   error   is   then   integrated   into  the
back-propagation weight update procedure via the
Levenberg-Marquardt algorithm. During network training, the
forward and back-propagation learning is repeated with
different sets of data until the error sufficiently converges.
Convergence of error is evaluated in the form of mean square
error (MSE). MSE is represented by Eq. 5:

(5) 
2N

k dt = 1
y (t) y (t)

MSE =
K



where, K represents the total number of iterations25.

To avoid over-fitting, early-stopping criterion has been
adopted. Via such approach, a separate dataset for validation
is used to intermittently assess the generalization ability of the
network. Should the validation error increase, network training
is stopped to avoid over-fitting. Separately, testing dataset is
used to assess the generalization ability of the trained
network, in which error convergence is no longer monitored,
but is used to assess performance of the trained network26. For
the purpose of this study, the 160 samples dataset have been
randomly segregated for training, validation and testing with
70:15:15 ratios27.

Separately, the number of nodes in the hidden layer is
determined by combining the constructive and pruning
methods28. The optimization procedure effectively utilizes the
constructive algorithm while considering the rules of thumb
for selection of boundary conditions and thus, the minimum
and maximum limits have been set at 3 and 7, respectively. As
illustrated in Fig. 2, network training starts with minimum
number of hidden nodes.

For  each   configuration,   the   process   is   repeated   for
40  epochs.  Such  approach  is  based  on  the  notion  that
network training will restart at varying initial weights and
biases. Thus, an ideal number of hidden nodes would induce
the best average performance, regardless of the Mersenne
pseudorandom twister settings. The procedure is then
repeated with increasing  number  of  hidden  nodes  until  the
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maximum limit of 7 is reached. Consequently, optimum
selection will be based on the highest average training
accuracy with the lowest MSE.

Correlation tests have been selected to validate the
unbiasedness of the ANN model. The ANN is considered to be
unbiased if the residuals are uncorrelated with all linear and
non-linear combinations of past outputs and inputs. In this
study, the Auto Correlation Function (ACF) test computes the
correlation between residuals and itself. The Cross Correlation
Function (CCF) test however, computes the correlation, but
between the residuals and the outputs. In ideal condition, the
model is assumed to be representative of the modeled
relationship  when  the  correlation  at  all  lags  lie  within  the
95% confidence limit, with the exception of lag 0 for
autocorrelation29.

RESULTS AND DISCUSSION

Initially,  results   will   briefly  focus  on  the  replicated
sub-band SCF feature pattern with synthetic EEG. This is
subsequently followed by an analysis on optimization of ANN
structure. Finally, results pertaining to classification of learning
styles via EEG sub-band SCF features and optimized ANN are
elaborated. ACF and CCF tests are also included to verify that
the model sufficiently represents the relationship between the
SCF features and learning styles.

Pattern of alpha and theta SCF features: Results in Fig. 3
indicate that there is distinguishable pattern of mean alpha
and theta SCF among the learning style groups. The feature
distribution within the 95% confidence interval has revealed
a significant overlap between the learning style groups21.

Optimization of ANN structure: Figure 4 shows the effects of
hidden node variations on network training. Findings have
revealed that the highest average training accuracy and the
lowest MSE has been attained with 7 hidden nodes.

Subsequently, the ideal network structure is as
summarized in Table 1. The ensuing work then adopts the
optimized ANN for classification of learning styles from the
EEG sub-band SCF features.

Classification of kolb’s learning styles: The ANN has been
successfully  trained  to  classify  Kolb’s  learning  styles  from
the resting EEG. Table 2 shows the classification accuracy and
MSE during both training and testing. Results have shown
satisfactory performance with 85.1 and 91.3% accuracies for

Fig.  2: Modified constructive algorithm for optimal number of
hidden nodes

Fig. 3(a-b): Mean (a) Alpha and (b) Theta SCF with 95%
confidence interval (N = 160)

Table 1: Optimized ANN structure
ANN layer No. of nodes
Input 4
Hidden 7
Output 1
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Fig. 4(a-b): Effects of hidden node variations on average training (a) Accuracy and (b) MSE

Fig. 5(a-b): ACF tests for network (a) Training and (b) Testing

training and testing, respectively. Meanwhile, error was
minimal for both training and testing with MSE of less than
0.1. Consequently,  Table  3  shows  the  positive  predictivity
and sensitive for all learning style groups. Comparatively,
results  have  revealed  that  during  training  and  testing,  the
classifier  has  attained  highest  positive  predictivity  and
sensitivity toward the accommodator group, followed by
convergers and then the divergers and accommodators.

The classification performance for each learning style
group can be correlated to the pattern of alpha and theta SCF,
in which the overlapping of features in the accommodator
group is relatively minimal and hence, indicating good class
separation. For the assimilators however, the distributions of
features in both sub-bands have a comparatively higher
degree of correlation, particularly with both the convergers
and divergers. These explain the classifier behavior towards
each of the learning style groups.

Meanwhile, Fig. 5 shows the results of ACF tests for
network training and testing. With the exception of lag 0,
majority  of   other   lags   is  within  the  95%  confidence  limit.

Table 2: Classification performance
Performance Training Testing
Accuracy (%) 85.1 91.3
MSE 0.0995 0.0901

Table 3: Positive predictivity and sensitivity measures during training and testing
Training Testing

Learning style ------------------------------- ---------------------------
group Pp (%) Se (%) Pp (%) Se (%)
Diverger 73.9 77.3 100.0 77.8
Assimilator 79.4 77.1 50.0 100.0
Converger 88.5 85.2 100.0 100.0
Accommodator 96.8 100.0 100.0 100.0

Hence,  this   indicates    that    the    correlation    is   almost
non-existent between the original and lagged residuals.

Subsequently, Fig. 6 shows the results for CCF tests for
network training and testing. Similarly with the ACF tests,
majority of the correlation is also within the 95% confidence
limit. It is important to note that for network testing, moderate
correlation has been attained at lag 0. Albeit negligible, future
investigation is still needed to model a perfect relationship.
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Fig. 6(a-b): CCF tests for network (a) Training and (b) Testing

CONCLUSION

The ANN has successfully been implemented to classify
Kolb’s learning styles from the sub-band SCF features of the
resting EEG. Albeit yielding satisfactory performance, further
investigation would be required since the proposed SCF
features has yet to fully represent its relationship to the
learning styles. Future study may propose EEG sub-band
spectral centroid amplitude to complement the SCF features
for an improved ANN model. For comparative purposes,
implementation of alternative classification techniques is also
recommended.
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