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Abstract
The purpose of this study is to model the asymmetric in conditional variance of Exponential Generalized Autoregressive Conditional
Heteroscedasticity (EGARCH) with Combine White Noise (CWN) model to obtain suitable results. Combine white noise has the minimum
information criteria and high log likelihood when compare with EGARCH estimation. The determinant of the residual covariance matrix
value indicates that CWN estimation is efficient. Combine white noise  has minimum information criteria and high log likelihood value
that signify suitable estimation. Combine white noise  has a minimum forecast errors which indicates forecast accuracy. Combine white
noise estimation results have proved more efficient when compared with EGARCH model estimation.
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INTRODUCTION

In high frequency data time series, the conditional
variance (volatility) in empirical analysis is asymmetric, as the
large negative shocks are traced by the raise in volatility than
the large positive shocks1,2,3. It is detected in the most high
frequency data that in conditional variance, the negative
shocks have more effect than the positive shocks1,4,5,3.

Engle6 uses lagged disturbances to capture the time
varying conditional variance, but cannot capture the large lag
length. To capture the dynamic behaviour of conditional
variance, it requires a high order of ARCH.

Bollerslev7 overcomes the weaknesses by generalized
ARCH model for the extension of the lag length, but cannot
effectively tackle the thick tails in the high frequency data
distribution of the time series. Bollerslev8 employs  student’s
t-distribution to take care of thick tails challenges.

Engle6 and Bollerslev7 establish linear ARCH and GARCH
models for conditional variance with interest on the
magnitude of returns, but ignore the information on the
direction of returns, whereas, volatility affects the direction of
return9,10,1. Vivian and Wohar11 and Ewing and Malik12 reveal
that the GARCH models exhibit excess kurtosis and volatility
persistence which is GARCH weakness.

This conveys the GARCH family. A reaction to news is a
shock which is the volatility. The observation of news time can
increase the expected volatility mechanism, like economic
announcements which may not be a shock13.

Integrated GARCH model is parallel to ARIMA (0, 1, 1)
model as the definition of an ACF of squared observations, if
the observations are stationary in first difference, then the
model is recognized as IGARCH. Exponential GARCH
overcomes the problem of conditional variance persistence
measurement10.

Threshold GARCH (TGARCH) and exponential GARCH
(EGARCH) capture the asymmetric effects of positive and
negative shocks of the same dimension on conditional
volatility in various ways. Leverage is a particular case of
asymmetry.  To  deal  with  asymmetry, positivity restriction
will be imposed on the parameters of the EGARCH
model9,1,2,4,5,3. 

It is a known fact, that positive shocks may have less
impact  on   volatility   than  the  negative  shocks  of  the same
magnitudes. As both the positive and negative shocks are
assigned equal degree of importance in simple GARCH model
which  cannot   take    care    of    leverage    effect9,1,4,5.   Nelson9

proposes the EGARCH to overcome the leverage effect, but it
can only capture the asymmetric volatility. While a negative
shock will add more volatility, as the coefficient of the
conditional variance will be negative. The positivity restriction
positioned on each conditional variance follows the simple
GARCH specification and the conditional variance without
restriction necessitates the conditional volatility to be
negative. Modeling leverage effect is not possible in EGARCH
as the general statistical properties to estimate the EGARCH
parameters to model the leverage effect are not available4,5.

The purpose of this study is to uplift the weaknesses of
asymmetry in conditional variance in EGARCH model with
Combine White Noise (CWN) model to have a reliable
estimation for accurate forecasting and to improve the
economy.

MATERIALS AND METHODS

Consider the autoregression model by Eq. 1:

(1) t t 1 ty y    

Permit the stochastic approach of a real-valued time to be
gt and the complete information through t time is I. The
GARCH model is by Eq. 2 and 3:
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The EGARCH specification is in Eq. 4:

(4) t t 1 t 1 t 1log h | z | z log h , | | 1         

where,    is  the  standardized  shocks,t t tz / h 

is when there is stability. The impact istz ~ iid(0, ), | | 1  

asymmetric if *…0, although, there is existence  of  leverage  if 
*<0  and  *<$<-*  while, both  $ and * must be positive which
the variances of two stochastic processes are, then, modeling
leverage effect is not possible4,5.

The unequal variances (heteroscedastic errors) behaviors
in the process of estimation being exhibited by GARCH models
can be simplified into combine white noise models. The
standardized residuals of GARCH errors which are unequal
variances are decomposed into equal variances (white noise)
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in series to deal with the heteroscedasticity. The regression
model is employed to transform each equal variances series to
model.

Moving average process is employed for the estimation
of these white noise series which is called combine white
noise as following Eq. 5-7:
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This Eq. 8 can be written as:

(8)  2
t t t cY U , U ~ (0,  

where, A(L)+B(L) + … = Q  which are the matrix polynomial, Ut
is the error term of combine white noise model and  is the2

c

combination of equal variances.
The combine variances of the combine white noise is in

Eq. 9:

(9) 2 2 2
c 1 2 ...     

Considering the best two variances in the best two
models produced by the Bayesian model averaging output.
The combine variance follows in Eq. 10:

(10)2 2 2
c 1 2    

The variance of errors,  in the combine white noise can2
c

be written in Eq. 11:
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where, the balanced weight specified for the model is W. The

least of  appearing, when the equation is differentiated2
c

with respect to W and equate to zero, obtaining from Eq. 12:
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where, D is the correlation; intra-class correlation coefficient is
used for a reliable.

RESULTS 

Materials and empirical analysis: The data of U.K. Real Gross
Domestic Product (GDP) quarterly data from 1960-2014 is
obtained from the DataStream of Universiti Utara Malaysia
library. The behavior of data in time plot is non-stationary with
an upward trend.

The data is transformed in returns series to observe the
volatility clustering, long tail skewness and excess kurtosis
which are the characteristics of heteroscedasticity. The graph
demonstrated unequal variances that showed the existence
of volatility.

In histogram normality test: Jarque-Bera test was highly
significant with probability value of 0.000000 which was an
indication of non-normality. There were right tail skewness
value of 0.375454, excess kurtosis value of 7.014953 and
standard deviation value of 0.966867 which was less than one.
These signified that the distribution was not normal.

The heteroscedasticity ARCH LM tests for the effect of
heteroscedasticity  in   the   data   series   indicated   that  the
F-Statistic and Obs*R-squared were not significant with
probability values of 0.8064 and 0.8053. These indicated the
presence of ARCH effect in the data. 

Table 1 showed that the AIC, BIC and HQ have minimum
information criteria with log-likelihood that were used to
select the appropriate model between ARCH and GARCH
models. Exponential generalized autoregressive conditional
heteroscedasticity model  was  choosing because it has 
minimum  values   of  AIC, BIC and  HQ with high log-likelihood
values.

Combine White Noise (CWN) has the minimum
information criteria with high log likelihood value. Combine
white noise model gave the best results with minimum
information criteria and high log likelihood when compared
with GARCH model estimation. The estimation of GARCH
model and Combine White Noise (CWN) model with their
forecasting values were in Table 2.

In GARCH modeling, the leverage is not possible because
any restriction imposed will be positivity restriction which has
no leverage effect4,5. Although, the data used in this study has
no leverage effect, it was asymmetric  which  GARCH  cannot
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Table 1: ARCH, GARCH and Combine White Noise (CWN) models
Parameters " $ * ( AIC BIC HQ LL
ARCH 0.334938 (0.0003) 0.424743 (0.0000) 2.68436 2.74646 2.70944 -288.60
EGARCH 0.291288 (0.0000) 0.218189 (0.0106) 0.09329 (0.1228) 0.98997 (0.0000) 2.35147 2.37644 2.46014 -249.31
CWN -0.4444 -3.3515  383.158
": Coefficient  of  the  mean  equation,  $  and  *: Coefficients of  the  variance  equations,  (: Coefficient  of  the  log  of variance equation, ARCH: Autoregressive
conditional heteroskedasticity, GARCH: Generalized autoregressive conditional heteroskedasticity, EGARCH: Exponential generalized autoregressive conditional
heteroskedasticity,  In the parentheses are the Probability Values (PV), AIC: Akaike information criteria, BIC: Bayesian information criteria, CWN: Combine white noise

Table 2: Summary of GARCH and Combine White Noise (CWN) models
estimation and forecasting evaluation

Parameters CWN GARCH
Estimation residual diagnostic
Stability test (Lag structure) Stable Stable
Correlogram (Square) residual Covariance stationary Stationary
Portmanteau tests No autocorrelation No autocorrelation
Histogram-normality tests Not normal Not normal
ARCH test No ARCH effect No ARCH effect
Dynamic forecast evaluation
RMSE 0.167297 0.653369 
MAE 0.040005 0.408789
MAPE 1.427953 169.7009 
Residual diagnostics
Correlogram (Square) residual Stationary Stationary
Histogram-normality tests Not normal Almost normal
Serial correlation LM tests No serial correlation No serial correlation
Heteroscedasticity test No ARCH effect No ARCH effect
Stability diagnostic
Ramsey reset tests  Stable Stable 
Determinant residual covariance 0.000104
RMSE: Root mean squared error, MAE: Mean obsolute error, MAPE: Mean
absolute percentage error, CWN: Combine white noise, ARCH: Autoregressive
conditional heteroskedasticity,  GARCH: Generalized autoregressive conditional
heteroskedasticity

model effectively as CWN did. No proposition has removed
heteroscedasticity completely14-16.

To avoid the above challenges, the standardized residuals
graph of the GARCH model (GARCH errors) with unequal
variances and zero mean are decomposed into equal
variances series (white noise series). There were some graphs
of equal variances (white noise series) with mean zero being
obtained from graph of GARCH errors. These white noise series
were fit into regression model to make each a model.

The first best models out of the five best models from the
output of Bayesian model averaging (BMA) produced two best
models17. Fit linear regression with autoregressive errors to
confirm the BMA output with 220 the number of observation,
with zero mean and variance one18. Therefore, the best two
models were the white noise models.

Table 3 indicated that an independent samples test
revealed that the variability in the distribution  of  the  two
data sets was significantly different  value  which  was  less 
than the p-value 0.05. Thus, the two models have unequal
variances19-22.

Table 2 showed that Combine White Noise (CWN)
emerged as a better model for estimation and forecasting
when compared with the convention EGARCH model which
modeled the asymmetric in GARCH family model.

DISCUSSION

Mutunga et al.23 demonstrated that the first order
asymmetric EGARCH model outperformed the first order
Glosten-Jagannathan-Runkle GARCH model in forecasting
volatility with lower mean square error and mean absolute
error. But, CWN model outperformed the first order
asymmetric EGARCH model with minimum information criteria
and minimum forecast errors.

Bekaert et al.24  improved on the conventional asymmetric
volatility models by setting in the conditional shock
distribution with time varying heteroscedasticity, skewness
and kurtosis called Bad Environment-Good Environment
(BEGE) model. Bad environment good environment model
incorporated in standard asymmetric GARCH model
outperformed the standard asymmetric GARCH model.
Decomposition of standardized residual errors of the standard
asymmetric GARCH model into white noise series were
modeled to give combine white model. Combine white noise
model results out performed the standard asymmetric GARCH
model results.

Chuffart25 argued that logistic smooth transition GARCH
and Markov-Switching GARCH models were employed to
confirm that Bayesian Information Criteria (BIC) can lead to
wrong specification. Combine white noise model employs
Akaike Information Criteria (AIC), Bayesian Information Criteria
(BIC) and log likelihood for specification of the model to obtain
the right model specification.

Chang et  al.26 developed  ample  conditions of strict
stationary and ergodicity for three nonlinear models of Self-
Exciting Threshold Auto-Regressive (SETAR)-GARCH process,
the    multiple-regime      logistic      transition    auto-regressive
(STAR) model with GARCH errors and Exponential STAR-
GARCH model. They considered the STAR-GARCH models
estimation  results  to  be  vital  in financial econometrics. The
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Table 3: Levene’s test for equal variances 
95% confidence interval

t-test for equality of means of the difference
---------------------------------------------------------------------------------------------------------------------- ----------------------------------

Levene's test for equality of variances F Significant t df Sig. (2-tailed) Mean difference SD Lower Upper
Independent samples test
B equal variances assumed  5.504 0.019 1.133 438 0.258 0.01545 0.01364 -0.01135 0.04226
Equal variances not assumed 1.133 255.502 0.258 0.01545 0.01364 -0.01140 0.04231
df: Degree of freedom, SD: Standard deviation

development of CWN model was from GARCH family errors.
Combine white noise was tested using different countries data
set with outstanding performance when compared with
family GARCH model (EGARCH) which23 considered to be
suitable.

McAleer4 described the asymmetry and leverage to be
indistinguishable and that leverage is asymmetry. The
challenge was that there were no statistical properties for the
estimation of this leverage effect. The estimation was only
possible through positivity restriction of the parameters,
which was not an estimate for the leverage effect. Combine
white noise model estimated with available statistical
properties of maximum likelihood estimation to obtain
efficient estimation and proved better than the estimation of
the existing models.

McAleer and Hafner5 introduced one line derivation of
EGARCH to model the asymmetric leverage effect, but in this
process, stationarity and invertibility conditions were not
determined. This made it impossible to model the leverage
effect. Combine white noise model stationarity and
invertibility were possible.

Therefore, from these discussions, CWN model is suitable
for efficient estimation.

CONCLUSION

Exponential GARCH models have been able to model the
asymmetric but cannot model leverage effect. The CWN
estimation proved more efficient in modeling asymmetric.

The standardized residual EGARCH errors were
decomposed into Combine White Noise (CWN). The
estimation of combine white noise model passed stability
condition, serial correlation, the ARCH effect tests, but failed
normality test. 

The minimum information criteria and high log likelihood
values revealed that CWN model yielded better results when
compared with the conventional EGARCH model. Equally, the
minimum forecast errors showed that CWN has better results.
The determinant of the residual of covariance matrix value
indicated that CWN was efficient.

Combine white noise was a suitable model based on the
reports from the empirical data analysis. For these
explanations, CWN is suggested for the modeling of data that
exhibits asymmetric conditional variances and leverage effect.
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