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Abstract
Background and Objective: In the recent decades several algorithms have been proposed to solve optimization problems. Among these
algorithms, heuristics and meta-heuristics are much better than others. On the other hand, the multi-level programming problems are
attractive for many researchers because of their application in several areas such as transportation, information technology, engineering
and so on. The objective of this study was to solve tri-level programming problem, which was more important, by a heuristic approach.
Materials and Methods: In this study, an approach based on bi-section algorithm would be proposed for solving the linear tri-level
programming problem. Using Karush-Kuhn-Tucker conditions the tri-level programming problem was converted to a non-smooth single
problem and then the problem would be smoothed by proposed smoothing function. Finally, bi-section algorithm was applied to solve
the smoothed problem. Results: Main findings of this study were converted tri-level programming problem to a single problem,
smoothing the converted problem, linearization the smoothed problem and solved the last problem by bi-section algorithm. It has been
shown that, bi-section algorithm was efficient and feasible solution by solving some problems. Conclusion: Therefore, it is concluded that
by comparing with the results of previous methods, this proposed algorithm has better numerical results and present better solutions.
The best solutions produced by this algorithm were feasible unlike the previous best solutions. Solving large size of the problem would
be significant for future works. Also extension of the problem to other kinds of multi-level programming problems would be interesting.
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INTRODUCTION

Even to seek for the locally optimal solutions, the bi-level
programming problem (BLPP) is an NP- Hard problem1,2. In fact
the BLPP is an practical problem and a suitable tool for solving
decision making problems. It is used in different areas such as
information technology, transportation, computer science,
engineering and so on. Therefore proposing the optimal
solution is significant researchers. 

There are different approaches to solve the BLPP3-8. These
all algorithms would be divided into the following classes:
Global techniques9,10, fuzzy methods11-13, meta heuristic
approaches14-20, transformation methods21-27, enumeration
methods28, However there is just an algorithm for solving
TLPP29.

Linear  bi-level and  tri-level  programming  problems: The
bi-level and tri-level programming problems would be
introduced in this study. 

The  BLPP  is   defined   as   the   following   problem   by
Lv et al.1:

(1)

 
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min F x,y a x b y

s.t ming x, y c x d y

Ax By r

 

 

 

x,y 0

where, 1 2 1 2 1 2n n m n m n n nma, c R . b,d R ,A R . B R ,r R ,x R ,y R       

and F(x, y) and g(x, y) are the objective functions of the leader
and the follower, respectively. 

Because a tri-level decision reflects the principle features
of multi-level programming problems, the algorithms
developed for tri-level decisions can be easily extended to
multi-level programming problems which the number of
levels is more than three. Hence, just tri-level programming is
studied in this study. 

In a TLPP, each decision entity at one level has its
objective and its variables in part controlled by entities at
other levels. To describe a TLPP, a basic model can be written
as follows by Zhang et al.29: 

(2)
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y

2 2 2 2
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z
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min F x, y,z = a x + b y + c z

A x + B y + C z r

s.t min F x,y,z = a x + b y + c z

A x + B y + C z r

s.t min F x,y,z = a x + b y + c z

A x + B y + C z r







x,y,z 0

where,  Ai0Rq×k, Bi0Rq×l, Ci0Rq×p, ri0Rq, x0Rk, y0Rl, z0Rp, ai0Rk,
bi0Rl, ci0Rp, i = 1, 2, 3 and the variables x, y, z are called the top-
level, middle-level and bottom-level variables respectively,
F1(x, y, z), F2(x, y, z), F3(x, y, z), the top-level, middle-level and
bottom-level objective functions, respectively. In this problem
each level has individual control variables, but also takes
account of other level’s variables in its optimization function.

To obtain an optimized solution to TLP problem based on
the solution concept of bi-level programming6, here first
introduce some definitions and notation.

Definition 1: The feasible region of  the  TLP  problem  when
i = 1, 2, 3 is:

(3) i i i iS = (x,y,z) | A x + B y + C z r ,x,y,z 0 

On the other hand, if x be fixed, the feasible region of the
follower can be explained as:

(4) i i i iS = (y,z) | B y + C z r - A x,y,z 0 

Based on the above assumptions, the follower rational
reaction set is:

(5)     P x {(y,z) argming x, y,z ,(y,z) S x }  

Where the inducible region is as follows: 

(6)   IR { x, y,z S,(y,z) P x }  

Finally, the tri-level programming problem can be written
as:

(7)min{F(x,y,z) | (x,y,z) IR}

If there is a finite solution for the TLP problem, we define
feasibility and optimality for the TLP problem as:

(8)i i i iS {(x,y,Z) | A x B y C z r ,x, y,z 0}    

Definition  2:  Every  point  such  as  is  a feasible solution to
tri-level problem if (x, y, z) 0IR.

Definition 3: Every point such as (x*, y*, z*) is an optimal
solution to the tri-level problem if:
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(9)     * * *F x y ,z F x,y,z x,, y,z IR 

Smooth method for TLPP: Using KKT conditions for both of
last levels in problem 2, the following problem is constructed: 

(10)
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Problem 10 is not convex and it is not differentiable. In
this study, we proposed a smooth method for smoothing
complementary constraints in problem 10. Using the following
smooth method, problem 10 will be smoothed and then
presented two algorithms based on Taylor theorem and
hybrid algorithm to solve it. 

Theorem 1: Let:

 2 2 2: R R, m,n 2m n 4m n      

or:

 3 2 2: R R, m,n, 2m n 4 n         m

where, m>0, n>0, then:

 
.
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. . .
2 2 2 2
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4
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
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Using the proposed function:

  2 2m,n, 2m n m n       

in problem 10, we obtain the following problem:

(11)

 

   

   

1 1 1 1x

1 1 1 1

2 2 2 2

3 3 3 3

2 2
i i i i

3 3

2 2
i i i i

2 2

min F x,y,z a x b y c z

s.t

A x B y C z r 0

A x B y C z r 0

A x B y C z r 0

ε
2μ g x, y 4μ g x,y ε ,i 1, 2, ,l

4
µB b

ε
2β h x,y 4β h x,y ε ,i 1, 2, ,l,

4
βC c

  

   
   
   

      

 

      

 

i ix, y,z,µ ,β 0

Which  in  the  first  constraint m  = µi>0, n = -gi (x, y)>0,
gi (x, y) = aix+biy+ciz and ai, bi, ci are i-th row of A, B, C,
respectively and in the second constraint  m  =  $i>0,  n  = -hi
(x,  y)>0,  hi (x, y) = aix+biy+ciz-r and ai, bi, ci  are  i-th  row   of
A, B, C.
Let:

(12) 
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µ
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
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Problem 11 can be written as follows:

(15)

 

 
 

1 1 1 1x

1 1 1 1

2 2 2 2

3 3 3 3

3

2

min F x, y,z a x b y c z

s.t

A x B y C z r 0

A x B y C z r 0

A x B y C z r 0

G t 0

H t 0

µB b

βC c

  

   
   
   





 

 

'

'

x, y, z, µ, $>0

Where:

t = (x, y, µ)0Rk+2l

Because problem 10 equal to 15, used the following
method for solving problem 15. 

Proposed algorithm based on bi-section method 
Theoretical concepts: Nonlinear equations are difficult to
solve, therefore there are many algorithms to approximate of
the root these equations. Bi-section algorithm is one of the
most important methods to approximate the root. Necessary
condition to use this method, is the uniqueness root of the
nonlinear equation. The necessary definitions and theorems
have been proposed by Hosseini and Kamalabadi21.

By applying  the Taylor theorem to a feasible point such
as tk for functions  G’  and H’ taking only two linear part of
them in problem 15, the following linear functions are
constructed: 

(16)    k k k
i iG t G t t t 0,i 1,2, l    ' '

Let:

(17) 

    
    

    

k k k
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1 1
1

k k k
2

k
l

2 2

k kl

P

G t G t t tP (t)

G t G t t t
t

P (t)

P (t) G t G t t t

                        


 

' '
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(18)    k k k
i iH t H t t t 0,i 1,2, l    ' '

Let:

(19) 

    
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1
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Q

H t H t t tQ (t)
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t

Q (t)

Q (t) H t H t t t
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 
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Using Taylor theorem for G’ and H’ at tk and 17, 19, in
problem 15 obtained the following problem:

(20)

 

 
 

t

1 1 1 1

2 2 2 2

3 3 3 3

3

2

min F t

s.t

A x B y C z r 0

A x B y C z r 0

A x B y C z r 0

P t 0

Q t 0

µB b

βC c

   

   
   





 

 

t, µ, $>0

Steps of the bi-section algorithm: The steps of the bi-section
algorithm for f(x) = 0 as follows: 

Step 1: Input a,b
Step 2: let x = (a+b)/2:print x
Step 3: If ABS(f(x))<g then end
Step 4: If f(a)f(x)<0 then let b = x else let a = x
Step 5: GOTO 2
Step 6: End

g is a positive small number

Steps of the proposed algorithm: The steps of the proposed
algorithm are as follows: 

Step 1
Initialization: The feasible points a and b are created
randomly and according to theorem 1, error g is appropriate
given error and finishing the algorithm depends on g.

Step 2
Finding  solution:  Using  in  step 1 and bi-section algorithm
for  in  problem  15,  two  non-linear equations P(t) = 0 and
Q(t) = 0 have been solved. Let t*1, t*2  are roots of P(t) = 0 and
Q(t) = 0, if t*1 = t*2  let t* = t*1 = t*2  and go to the next step
else go to step 4.

230



Asian J. Sci. Res., 10 (3): 227-235, 2017

Step 3
Making the present best solution: If t* solves the following
problem go to the next step else go to step 1:

1 1 1 1

2 2 2 2

3 3 3 3

3

2

A x B y C z r 0

A x B y C z r 0

A x B y C z r 0

µB b

βC c

   
   
   

 

 

Step 4
Termination: If d(F(t*1), F(t*2))<g then the algorithm is finished
and:

* 1 2t t
t

2




* *

is the best solution by the proposed algorithm. Otherwise, go
to the step 1. Which d is metric and:

      
1

n 2m 22
1 2 1i 2ii 1

d(F t ,F t ) (F t F(t ))



 * * * *

Following theorems show that the proposed algorithm is
convergent.

Theorem 2: Every Cauchy sequence in real line and complex
plan is convergent. 

Proof: Proof of this theorem was given by Rudin30.

Theorem 3: Sequence {Fk} which was proposed in above
algorithm is convergent to the optimal solution, so that the
algorithm is convergent. 

Proof: Let:

(l) (l) (l)
l l l1 l1 ln 2m) 1 2 n 2mF (F(t )) (F(t ),F(t ),..., F(t )) (F ,F ,...,F )   

According to step 4:

(21)        
1n 2m

k 1 k 2 2
k 1 k k 1 k i i 1

i 1

d F ,F d F t ,F t ( (F t F(t )) ) ε



 



   

Therefore:

    
n 2m

2 2
k+1i ki 1

i 1

( F t F t ) < ε






There is large number  such  as  N  which  k+1>k>N  and
j = 1, 2,..., 2m+n we have: 

(k 1) (k) 2 2
j j 1(F F )  

Therefore: 

(k 1) (k)
j j 1| F F |   

Now let m = k+1, r = k then we have:

   m r
m>r>N j j 1F - F ε 

This shows that for each fixed j, (1<j<2m+n), the
sequence (Fj(1), Fj(2),...) is Cauchy of real numbers, then it
converges by theorem 2.

Say, Fj(m) ÷ Fj asm ÷ 4. Using these 2m+n limits, we define
F = (F1, F2,..., F2m+n). From 18 and m = k+1,  r = k:

d(Fm, Fr)<g1

Now if r ÷ 4, by Fr ÷ F  we have d (Fm, F)<g1.
This shows that F is the limit of (Fm) and the sequence is

convergent by definition 3 therefore proof of theorem is
finished.

Theorem 4: If sequence {f(tk)} is converge to f(t) and f be linear
function then {tk} is converge to t.

Proof: Proof of this theorem is given by Rudin30.

Theorem 5: Problem 15 and 23 are equal therefore they have
same optimal solutions.

Proof:  It  is  sufficient  we  prove  that,  *G’(t)-P(t)*<g and
*H’(t)-Q(t)*<g for every arbitrary g>0. According to the
problem 19, 20 we have:

k k kP(t) G ' (t ) G '(t )(t t )  

            
2k

' ' k ' k k 2 ' k
n

t - t
G t = G t + G t t - t + G t + R t

2
 

             
2 2k k

' 2 ' k 2 ' k
n n

t - t t - t
G t - P(t) = G t + R t G t + R t

2 2
 
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Now if n ÷ 4, from 18:

 n

ε
R t <

2

and let *L2G’(tk)*<m  that m is an arbitrary large number, this
is possible because L2G’(tk) is a number.

If k ÷ 4 because  F is  linear  then  by  theorems  3  and 4
tk ÷ t therefore *tk-t*<g2, say: 

     

       

2k

' 2 k
2

2k

2 k
n n

t t
G t - P(t) G t

2

t t ε ε
R t G t R t m. + = ε

2 2m 2


    


   


'

'

εε
m

Now proved:

          

k k k

2k

k ' k ' k k 2 ' k
n

| H '(t) Q(t) |

Q(t) H '(t ) H '(t )(t t )

t - t
H '(t )= H t + H t t - t + H t + R t

2

  

  

 

             
2 2k k

' 2 ' k 2 ' k
n n

t - t t - t
H t - Q(t) = H t + R t H t + R t

2 2
  

Now if n ÷ 4, from 18:

 n

ε
R t <

2

and let *L2H’(tk)*<m that m is an arbitrary large number, this is
possible because L2H’(tk)  is a number.

If k ÷ 4 because F  is  linear  then  by  theorems 3  and  4
tk ÷ t therefore *tk-t*<g2 , say:

     

       

2k

' 2 k
2

2k

2 k
n n

t tε
ε = H t - Q(t) H t

m 2

t t ε ε
R t H t R t m. + = ε

2 2m 2


   


   


'

'

This finished proof of theorem.

Computational results: To illustrate both algorithms,
considered the following examples:

Example 1: Consider the following linear tri-level
programming problem by Zhang et al.29:

x
min x - 4y + 2z

s.t

-x - y -3

-3x + 2y - z -10




y
min x + y - z

-2x + y - 2z -1

2x + y + 4z 14




z
min x - 2y - 2z

s.t

2x y z 2

x, y,z 0

  


Using KKT conditions, the following problem is obtained:

 
 

 
 

x

1

2

1 2

1 2

min x 4y 2z

s.t

x y 3

3x 2y z 10

2x y 2z 1

2x y 4z 14

β 2x y 2z 1 0

β 2x y 4z 14 0

β β 1

2x y z 2

µ 2x y z 2 0

µ 1 2

x, y,z,β ,β ,µ 0

 

   
  

    
  

    

   

 
  

   

  



By the proposed function, the above problem becomes:

x
min x 4y 2z

s.t

x y 3

3x 2y z 10

 

   
  

   

   

   

22
1 1

22
2 2

22

2β 2x y 2z 1 β 2x y 2z 1 0

2β 2x y 4z 14 β 2x y 4z 14 0

2µ 2x y z 2 µ 2x y z 2 0

             

           

           

 
1 2

1 2

β β 1

µ 1 2

x, y,z,β ,β ,µ 0

 

  


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Fig. 1: Behavior of variables with ε = 0.001 in example 1

Fig. 2(a-d): Dimensionless distribution at different axial positions, y, z, t, for fix ε in example 1

Table 1: Comparison of optimal solutions by Taylor algorithm-example 1
Optimal Best solution by our method with Best solution according
solution different values of , (, = 0.001) to Zhang et al.29

(x*, y*, z*) (4,6,0) (4,6,0)
F1 (x, y, z) -20 -20
F2 (x, y, z) 10 10
F3 (x, y, z) -8 -8

Using  the  Taylor   theorem,   we obtain  a  problem  in
the   form   of   problem  20  and  solve  it  using   the  proposed

algorithm.     Optimal    solution     is     presented    according
to   Table   1.   Behavior   of   the   variables    in   example    1
has    been   show   in   Fig.   1.    Dimensionless    distribution
at    different    axial     positions     has     been     shown     in
Fig. 2.

Example 2: Consider the following linear tri-level
programming problem by Zhang et al.29:
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Table 2: Comparison of optimal solutions by Taylor algorithm-example 2
Optimal Best solution by our method with Best solution according
solution different values of , (, = 0.001) to Zhang et al.29

(x*, y*, z*) (10,28.33,11.66) (10,28.33,11.66)
F1 (x, y, z) 146.66 146.66
F2 (x, y, z) 176.6 176.6
F3 (x, y, z) 343.3 343.37

x

y

z

min x 4y 2z

s.t

x 3y 9z 30

3x 5y z 100

min x + 7y - z

s.t

3x 5y z 160

min 7x + y + 21z

s.t

3x 4y 2z 212

x,y,z 0

 

  
    



  

  


Optimal solution for this example is presented according
to Table 2. Behavior of the variables has been showed that
variables x and y will be stable after 1000 and 4000 iterations
respectively.

CONCLUSION AND FUTURE RECOMMENDATIONS

In this study, KKT conditions were used to convert the
problem into a single level problem. Then, using the proposed
function, the problem was made simpler and converted to a
smooth programming problem. The smoothed problem was
been solved, utilizing the first proposed algorithm based on
Taylor theorem. Comparing with the results of previous
methods, this algorithm has better numerical results and
present better solutions. The best solutions produced by
proposed algorithm were feasible unlike the previous best
solutions by other researchers. 

In the future works, the following would be researched:

C Examples in larger sizes can be supplied to illustrate the
efficiency of the proposed algorithms

C Showing the efficiency of the proposed algorithms for
solving  other  kinds  of  TLP  such  as   quadratic  and
non-linear TLP
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SIGNIFICANCE STATEMENTS 

This study discovers an approach for solving the tri-level
programming problem which is efficient not only for tri-level
but also other kinds of multi-level programming problems. An
efficient and feasible method based on bi-section algorithm is
presented in this study. Most of the previous studies for BLPP
have used approximate method which has high complexity
order and has not efficient solution. The heuristic proposed
algorithm in this study is based on an exact method which has
never been proposed before. This study will help the
researchers to solve other NP-Hard problems of optimization
area. 
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