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Abstract
Objective: This study derives a goodness-of-fit test based on chi-square statistic using simulation and examines the values of the χ2 test
statistic behavior with the level of skewness for two different distributions, namely chi-square and inverse Gaussian. Methodology:  For
this purpose, simulation estimation was conducted to generate random numbers from different skewed distributions. Different sample
sizes and skewness values were considered and the corresponding values of the χ2 test statistic were derived. Results: The results show
a statistically significant evidence for an inverse relationship between the value of χ2 test and the level of skewness for all distributions,
i.e. the value of χ2 test statistic decreases as the value of skewness increases and vice versa. The research results also show that the method,
estimation by simulation, produces an estimator which is shown to have asymptotic assumed distribution with large sample size.
Conclusion: These results are relevant to theories in which shape and skewness measure can be used to determine the validity of the
assumed right skewed distribution to fit the data well. The results also have practical implications for portfolio managers who are
managing funds to optimize risk-adjusted performance and individual investors who prefer positive skewness in rates of return.
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INTRODUCTION

A goodness-of-fit test based on a chi-square statistic for
distribution fitting is a vital aspect of statistical hypothesis
testing and model validation. Numerous are those articles on
goodness-of-fit tests that provide a theoretical basis for
studying  empirical  distribution  functions,  such  as
Kolmogorove-Simirnov1 and Cramer-Von Mises type tests2-6.

Power7 and Mayer and Butler8 address issues related to
model validation. They found that validation is a yes or no
proposition in the sense that a model does or does not meet
the specified validation criteria. These criteria may include
requirements for statistical properties goodness-of-fit of the
data generated by the model and thus are not necessarily
deterministic.

Goncu and Yang9 have validated the goodness-of-fit
results via bootstrapping experiments to the empirical
distributions of Chinese index returns. They found that as the
time scale of log-returns decrease Normal Inverse Gaussian
(NIG) model outperforms the Variance Gamma (VG) model
consistently and the difference between the goodness-of-fit
statistics  increase.  They  also  conclude  that  for  returns at
high-frequency at different time scales, the NIG model
provides significantly better fit to the empirical returns
distributions.

Since, Pearson10 have investigated the properties of
various statistics of skewness, measuring skewness combined
with  the  effects  of  the role of sample size are becoming
more  paramount. Several empirical studies have examined
the degrees of skewness, power for various samples sizes
extracted  from  different  populations  and  distributions.
Tabor11 has used simulation estimation to investigate different
ways to measure skewness. It has ranked eleven different
statistics in terms of their power for detecting skewness in
samples from populations with varying levels of skewness. It
concludes that the students should think creatively far beyond
a classroom and see things in an entirely different way about
measuring characteristics of distributions.

The purpose of this study is two-fold: First to derive a
goodness-of-fit test based on a chi-square statistic using
simulation. Second, this study examines the behavior of the
values of the  χ2  test  statistic  with  the  level  of  skewness  for
two different distributions, namely chi-square and inverse
Gaussian. To our knowledge, not much empirical study has
been exists addressing this relationship. Few studies have
derived a goodness-of-fit test based on a chi-square statistic
using simulation12. This study has supplements the existing
literature13-15 and extends the previous researches of Elobaid16

who investigated the behavior of the χ2 test statistic values
with the variation of the skewness of Weibull distribution.

MATERIALS AND METHODS

The  study  uses  the  following  methodology  structure.
The data from  χ2 and inverse Gaussian distributions were
generated via simulation using SAS programs for different
sample  sizes.  The  random  variable  x  was   generated   for 
χ2 distribution, which characterized by one parameter that is
its degrees of freedom υ and has the probability density
function:
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and the cumulative distribution function:
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where, γ (s,t) is the lower incomplete gamma function.
Similarly a random variable x was generated for Inverse

Gaussian  distribution,  which  has  the  probability  density
function:

(3)1/2 2 2
3

λf (x;μ,λ) ( ) exp λ (x - ) / 2 x ;x 0, 0
2 x

        

where, μ is a measure of location and  λ is a reciprocal measure
of dispersion. The corresponding cumulative distribution
function is given by:

(4) 
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Figure 1 and 2 show the pdfs for χ2 and inverse Gaussian
distributions, respectively.

For each sample of each distribution, corresponding
measure of skewness were calculated. Various degrees of
skewness  were  obtained  by  changing the degrees of
freedom for the χ2 distribution and by controlling the
reciprocal measure of dispersion λ (shape parameter) for the
inverse Gausian distribution.

To compute χ2 test statistics the observations in each
sample were  classified  into  intervals.  The  observed  and  the
expected values were computed. Table 1 and 2 of χ2  statistic’s
values versus skewness measures were then constructed for
each distribution.  Figure 3 show the schematic diagram of the
procedures.
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Generation of random variates

Selection of samples and their level of skewness

Computing values of the  test statistics2

Constructing  statistics and skewness tables2

Fig. 1: An    example    of    probability    density    function    of
χ2 distribution using different degrees of freedom

Fig. 2: An    example    of    probability    density    function    of
IG distribution using different values of mean µ and
shape parameter λ

RESULTS AND DISCUSSION

The values of χ2 test statistic and skewness measures (Sk)
were tabulated for the distributions selected. The results given
in Table 1 and 2 are for χ2 and inverse Gaussian distributions,
respectively.

Table 1 reports the results of skewness (Sk) and χ2 test
statistics for χ2 distribution using different sample sizes. The
results show that the value of χ2 test statistic decreases as the
value   of   skewness   increases.   Using   significant   level   of
0.05 the values of χ2 statistic shows that distribution of the
population  from  which  the  data  sets  was  originate  is  the
χ2 distribution indicating that χ2 test statistic become more
significant and sufficient when the values of skewness
measure increase16.

Fig. 3: Schematic representation of the procedures employed
to examines the values of the χ2 test statistic behavior
with the level of skewness

Table 1: Behavior of (Sk) and χ2 test statistics values for χ2 distribution using
three sample sizes and different values of degrees of freedom

Values of df sample size df = 20 df = 10 df = 5
n = 20
Sk 0.114 0.874 1.203
χ2 17.050 7.649 2.818
n = 50
Sk 0.113 0.669 1.243
χ2 15.777 9.346 4.014
n = 100
Sk 0.354 0.957 1.257
χ2 11.133 8.500 7.735

Table 2: Behavior of (Sk) and χ2 test statistics for inverse Gaussian distribution
using  3  different  sample  sizes  and  different  values  of  shape
parameter λ

Values of λ sample size λ = 32 λ = 8 λ = 0.5
n = 20
Sk 0.374 0.750 2.917
χ2 94.719 33.373 4.829
n = 50
Sk 0.850 1.384 3.378
χ2 186.618 48.714 5.913
n = 100
Sk 0.474 0.933 2.358
χ2 331.854 91.109 18.559

Similar trend of skewness and χ2 test statistics results for
inverse Gaussian distribution has been observed in Table 2.
The  results  show  that  with  small  values  of  the  shape
parameter (λ = 8 and λ = 0.5) the values of skewness increase
while the  χ2 test statistic values decrease. Moreover,
increasing the sample size produces an estimator, which is
shown to have asymptotic assumed distribution.

These results indicate that for different sample sizes of
right skewed distributions the value of χ2 test statistics is
inversely proportional to the values of Sk. This finding has
practical implications in many areas such as in finance. It has
very important implications for individual as well as
institutional  investors.  It  is  important  for individual investors
who prefer positive skewness17. It can also help institutional
investors to construct portfolios with high skewness18-20.
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CONCLUSION AND FUTURE RECOMMENDATIONS

In  this  study,  we  have  investigated  the  behavior  of
the  values  of  the  χ2  test  statistic  with  the  level  of 
skewness  for  chi-square and inverse Gaussian distributions.
A goodness-of-fit test based on a chi-square statistic was also
derived using simulation estimation. Using three different
sample sizes for each distribution, the degrees of  skewness
are considered by changing the degrees of freedom  for  the
χ2 distribution and controlling the shape parameter for inverse
Gausian distribution.

The results shows that χ2 test statistics is affected by the
measurement of skewness, that is to say the value of χ2 test
statistic decreases as the value of skewness increases and vice
versa. In addition, the study results show that the method,
estimation by simulation, produces an estimator which is
shown to have asymptotic assumed distribution with large
values  of  skewness  for  both  χ2  and  inverse  Gausian
distributions.

These findings are relevant to researcher’s wishes to study
the implications of shape parameters and skewness measure
to assess the validity of how well different distributions fit the
data. The study can also help investors to examine skewness
in stock returns distribution.

Few studies have derived a goodness-of-fit test based on
a chi-square statistic using simulation. This study has
supplements the existing literature and extends the previous
researches by examining the relationship between χ2 statistics
and skewness measures for chi-square and Inverse Gaussian
distributions. To the best of our knowledge, not much
literature exists addressing this relationship.
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