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unconstrained optimization problems. In this study, a new hybrid nonlinear conjugate gradient method that combines the features of
5 different conjugate gradient methods is proposed with the aim of combining the positive features of different non-hybrid methods.
Methodology: The proposed method was able to generate descent directions independent of line search procedures. By making
assumptions on the objective function, the global convergence of the method was established under the standard Wolfe line search
conditions. Results: Preliminary  results  showed  that  the  method  is very competitive and promising when subjected to comparison
with other non-hybrid methods based on numerical experiments with selected benchmark test functions. Conclusion: As a future study,
the proposed method will be tested against recently proposed related methods.

Key words: Unconstrained optimization problems, hybrid nonlinear conjugate gradient method, descent direction, global convergence, standard Wolfe
line search conditions, numerical experiment

Received:  August 10, 2017 Accepted:  December 12, 2017 Published:  March 15, 2018

Citation:  Olawale Joshua Adeleke and Idowu Ademola Osinuga, 2018.  A five-term hybrid conjugate gradient method with global convergence and descent
properties for unconstrained optimization problems. Asian J. Sci. Res., 11: 185-194.

Corresponding Author:  Olawale Joshua Adeleke, Department of Mathematics, Covenant University, Canaan land, PMB 1023, Ota, Ogun State, Nigeria
Tel: +2348036981967

Copyright: © 2018 Olawale Joshua Adeleke and Idowu Ademola Osinuga. This is an open access article distributed under the terms of the creative commons
attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. 

Competing Interest:  The authors have declared that no competing interest exists.

Data Availability:  All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/ajsr.2018.185.194&domain=pdf&date_stamp=2018-03-15


Asian J. Sci. Res., 11 (2): 185-194, 2018

INTRODUCTION

The field of optimization is growing at a very fast pace
due to it wide range of application to many industrial1 and
environmental2 problems. In this study, authors present a new
hybrid conjugate gradient method with it global convergence
results for solving unconstrained optimization problems. The
conjugate gradient (CG) method is an efficient gradient based
method that has been successfully applied to unconstrained
optimization problems of the general form:

Min [f(x): x0ún] (1)

where, f: ún ÷ ú is continuously differentiable and its gradient,
g(x), exists. The CG algorithm solves (1) iteratively using the
recurrence rule:

xk+1 = xk+αk dk (2)

In Eq. 2, "k is the step-length at the kth iteration and can
be computed using a suitable line search procedure (exact or
inexact), while dk is the search direction generated by the
following rules:

d0 = g0 for k = 0, dk = -gk+βk dk-1  for  k>1 (3)

where, $k is the CG update parameter and gk = Lf(xk). Different
values of $k correspond to different CG methods. For instance:
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k k k2 2T
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are the Fletcher and Reeves3, Hestenes and Stiefel4, Polak and
Ribiere5, Polyak6, Liu and Storey7 and Dai and Yuan8 methods,
respectively. In these methods, 2A2 is the Euclidean norm and
yk = gk-gk-1. For strict convex objective functions, the methods
are equivalent. However, for nonconvex functions, their
behaviours differ. Although, these methods represent the
earliest CG methods, other variants have also been proposed
recently with some exhibiting nice computational and
convergence properties.

The FR and DY methods have been identified as having
the best convergence results Al-Baali9 and Dai and Yuan8 for
comprehensive proofs. However, for general objective
functions, the two methods perform poorly computational-
wise. Conversely, the HS and PRP methods have good
computational   strength    even    though    they   exhibit  poor

convergence results. This contrasting standpoint is the main
motivation  behind the development of hybrid methods,
which  are  constructed  with  the  objective of overcoming
any deficiencies in two  or  more  methods. For instance, a
well-constructed hybrid method of FR and PRP should
perform well computationally as well as yield good
convergence properties.  In this  study, a new hybrid
conjugate gradient method is proposed and analysed. The
method was subjected to numerical test and compared to
classical non-hybrid methods. The remainder of this paper is
organized as follows. In section 2, a summary of related hybrid
methods is presented and the newly proposed method is
stated. A corresponding algorithm together with the result of
the descent property is given in section 3. The proposed
method is shown to be globally convergent in section 4.
Numerical results and comparison with other methods are
presented in section 5. The study is concluded in section 6
with direction towards possible future research.

OVERVIEW OF RELATED METHODS AND 
NEW HYBRID METHOD

One of the earliest developed hybrid methods may be
found in Gilbert and Nocedal10, where the positivity of PRP

k

was considered   crucial   in  establishing   the   convergence  
of the method. The $k of the  method was given by

and was shown to be globally convergent PRP PRP
k kmax 0,  

with the standard Wolfe line search condition. In Xu and
Kong11, carried  out  a  linear  combination  of andDY

k

methods to obtain an hybrid method with $k as follows:HS
k

DY HS
k 1 k 2 ka a    

In this case, "1 and "2 are non-negative numbers and
atleast one is not equal to zero and they satisfy:

1 2
2

1
0 a 2a 1

1
   

 

Kaelo12  proposed   a   hybrid  method that was borne out of
the hybrid methods of Gilbert and Nocedal10 and Dai and
Yuan13 which are  represented as    GN FR PRP FR

k k k kmax ,min ,    

and  ,    respectively,     where,  HS DY DY HS DY
k k k kmax c , min ,     

c = 1-γ/1+γ>0 and γ0[½, 1]. This method is given as:

    KK PRP FR FR PRP
k k k k kmax min c , ,min ,      

with the search direction given as:
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k
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g
   

and the search direction dk satisfies the descent condition
independent of any line search.

In Dai and Yuan13,  combined the methods in Hestenes
and Stiefel4 and Dai and Yuan8 to obtain two hybrid methods.
The  in this case are:ks

  1 DY HS DY
k k k kmax c ,min ,     

and:

  2 HS DY
k k kmax 0,min ,   

For strictly convex quadratic functions and the use of
exact line search, the method with   reduces to the FR1

k
method. This establishes the claim of the authors that 1

k
method is a CGM. Two results prompted the authors'
suggestion of . The first relates to the restart condition2

k
proposed by Powell14 where restart was enabled if the
following inequality holds:

(4)2T
k k 1 kg g 0.2 g 

Definitely  if . This makes it2T
k k 1 kg g 0.2 g  HS

k 0 
appropriate to set $k. In this case, the restart procedure will be
along -gk. The second reason given is connected to the fact
that dk+1 may tend to the opposite of dk if $k = 0 and 2dk2>2gk2.
Thus enforcing that $k>0 will prevent two consecutive search
direction from tending to be almost opposite.

Convex combination of CG algorithms is another
common technique for obtaining hybrid CGM. Andrei15 used
the procedure to construct a hybrid method of DY and HS
methods such that:

  HS DY
k k k k k1       

The value of 2k is computed in a way that the direction
corresponding to the CG algorithm is the Newton direction
and the secont equation is also satisfied. The algorithm was
implemented with the standard Wolfe line search condition.
More recently, Liu and Li16 considered the convex combination
of   and  to  obtain  a  hybrid  CG  method  of the formLS

k
DY
k

with 2k 0 [0, 1] and satisfies the D-L HLSDY LS DY
k k k k k1 ,       

conjugacy condition of Dai and Liao17.

Wei et al.18 proposed a new nonlinear CG method which
is given by:

2 Tk
k k k 1

WYL k 1
k 2

k 1

g
g g g

g

g







 

Shengwei et al.19 extended the study Wei et al.18 to the HS
and LS methods and came up with a new version of the CG
algorithm with the $k given as:

 

2 Tk
k k k 1

MHS k 1
k T

k 1 k k 1

g
g g g

g

d g g




 


 



and:

2 Tk
k k k 1

MLS k 1
k T

k 1 k 1

g
g g g

g

d g




 


 



These two methods combined together give the YWH
method. A number of hybrid methods have been constructed
based on Wei et al.18 and Shengwei et al.19. For instance, Li and
Zhao20 proposed a hybrid algorithm featuring  and PRP

k
WYL
k

and given by:

 P W PRP WYL
k k kmax ,   

This method possesses the tendency to move in the
steepest descent direction if a small step is generated away
from the solution, thus preventing the occurrence of a
sequence of small steps. More recently, Jiang et al.21 proposed
a four term hybrid CG method with $k obtained as:

 

2 T Tk k
k k k 1 k k 1

k 1 k 1JHJ
k T

k 1 k k 1

g g
g max 0, g d , g g

g g

d g g

 
 

 

    
   



Building on this idea, Jian et al.22 introduced another four
term hybrid method with the $k in this case computed as:

  

2 Tk
k k k 1

k 1N
k 2 T

k 1 k 1 k k 1

g
g max 0, g g

g

max g ,d g g




  

    
   



This  method  is  simply  one  of  DY/FR/WYL/YWH  as it
can be reduced to any of these methods with various
assumptions.
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The efficiencies of the hybrid methods constructed with
the ideas in Wei et al.18 and Shengwei et al.19 serve as a
motivation to develop a new method with 5 terms. The $k of
the proposed method is given by:

(5)
  

2 Tk
k k k 1

k 1hAO
k 2 T T

k 1 k 1 k k 1 k 1 k 1

g
g max 0, g g

g

max g ,d g g , d g




    

    
   

 

Independent of any line search process, this method will
always satisfy the descent direction criterion, that is,  .T

k kd g 0

This will be shown in a moment from now. Observe that the
proposed method is a hybrid of the FR, DY, WYL, MHS and MLS
methods. Hence, the method is capable of exhibiting the
positive characteristics of these methods. A CG algorithm to
implement the proposed method is presented in the next
section.

HYBRID CG ALGORITHM AND DESCENT PROPERTY

The algorithm to implement the proposed hybrid
nonlinear CG method is as described below:

Hybrid CG algorithm:

Step 1: Initiate x00Un, g > 0. Set d0 = -g0 and k = 1
Step 2: While 2gk2< g, continue to step 3, otherwise, stop
Step 3: Obtain "k by a suitable line search technique (in this

study, the standard Wolfe line search technique was
used)

Step 4: Generate the sequences {xk}, {gk} and {dk}, where,
hAO

k k  

Step 5: Set k = k+1 and return to step 2

In what follows, authors establish the descent property of
their method.

Theorem 1: Let dk and gk be generated by the hybrid CG
algorithm above. Then, the search direction dk satisfies the
descent condition:

for each k > 0 (6)T
k kd g 0

Proof:  For k = 0, it can be shown that .  Suppose2T
0 0 0d g g 

its assume that  for each k-1 and k > 2 and thatT
k 1 k 1d g 0  

 it  will  be  obvious by the inner product of Eq. 3 withhAO
k 0 

gk that .  Thus, it will always2 2T T
k k k k k 1 k kd g g d g g 0     

assume that .  Five different cases are of interest andhAO
k 0 

considered as follow:

Case I: If  and .  FromT
k k 1g g 0   2 T T

k 1 k 1 k k 1 k 1 k 1g d g g d g       

Eq. 5 it can be deduce that .  Therefore, fromhAO FR
k k  

Eq. 3:

(7)

 
2

2FR Tk
k k k k 1 k k 1 k2

k 1

2TT
2 2T k 1 k kk 1 k

k k k k2 2

k 1 k 1
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g g
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g g
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
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 

 

 
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 
 

    
              

 
    
 

The  first   inequality   uses   the   fact  that
,  while the second inequality uses the 2 T

k 1 k 1 k k 1g d g g    

assumption at the beginning of this proof and the fact that
.FR

k 0 

Case II: If and , thenT
k k 1g g 0    2T T

k 1 k k 1 k 1 k 1 k 1d g g g d g       

Eq. 5 reduces to .  Therefore:hAO DY
k k  

(8)
   

 

2
2FR Tk

k k k k 1 k k 1 kT
k 1 k k 1T

k k T
2k 1 k 1
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d g

d g
g 0
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 

 
      

   
    

since, and the assumption that 2 T
k 1 k 1 k k 1g 0 d g g 0     

.T
k 1 k 1d g 0  

Case III: If  and , thenT
k k 1g g 0   2 T T

k 1 k 1 k k 1 k 1 k 1g d g g d g       

. The fact that 0  means we canhAO WYL
k k   T

k k 1g g 0 

get an inequality 0<cos 2k<1 where, 2k is the angle
between gk and gk-1. Therefore, following the same
process as in cases I and II:

(9)

 

 

   
   

2 Tk
k k k 1

2WYL Tk 1
k k k k 1 k k 1 k2

k 1

2 2T T
2 k k 1 k k k k 1 k

k 2

k 1

2 TT
2 k k k 1 kk k

k 2

k 1

2
2 2 Tk k

k k 1 k 1 k 12

k 1

2
2 Tk k

k 1 k 1 k 12

k 1

g
g g g

g
g g d g d g

g

g d g g cos d g
g

g

1 cos g d gd g
g

g

1 cos g
g g d g

g

1 cos g
g d g 0

g




 



 







  



  






      


  
  



 
  

 
   

 
  












 
 
 
 
 
 
 
 
 
 

188



Asian J. Sci. Res., 11 (2): 185-194, 2018

Case IV: If and , thenT
k k 1g g 0    2T T

k 1 k k 1 k 1 k 1 k 1d g g g d g       

Eq. 5 becomes . Therefore, from Eq. 3, case IIIMHS
k

and the fact that :hAO
k 0 

(10)

 

 
 

 

   

 

MHS
k k k k 1

2 Tk
k k k 1

2 Tk 1
k k 1 kT

k 1 k k 1

2 T
2 k k k 1 kT

kk k T
k 1 k k 1

2 2 T
k k k k 1 k 1

T T
k 1 k k 1 k 1 k k 1

2 T
k k 1 k 1

T
k 1 k k 1

g g d

g
g g g

g
g d g

d g g

1 cos g d g
gd g

d g g

g cos g d g

d g g d g g

g d g
0

d g g







 



 

 

   

 

 

   
 
 

 
    
 
  
   




    

 
  










Case V: If and:2T T
k k 1 k 1 k 1 k 1g g 0, d g g     

 T T
k 1 k 1 k 1 k k 1d g d g g     

then  and the following process holds:hAO MLS
k k  

(11)

 

 

 

MLS
k k k k 1

2 Tk
k k k 1

2 Tk 1
k k 1 kT

k 1 k 1T
k k 2 T

2 k k k 1 k
k T

k 1 k 1

2 T
k k k 1 k
T
k 1 k 1

g g d

g
g g g

g
g d g

d g
d g

1 cos g d g
g

d g

1 cos g d g
0

d g







 



 



 

   
 
 

 
    
 
  
   

 
 

     

The second inequality follows the facts that
and . T T T

k-1 k-1 k-1 k k-1 k-1 k-d g d g g d g < 0   T T
k 1 k 1 k 1 k 1d g 0 d g 0      

Results in Eq. 7-11 confirm that the new method satisfies
the descent property in its approach to obtaining the optimal
value of the objective function.

Another important property of our hybrid method is that
it satisfies the inequality  for every k >1. The

T
hAO k k
k T

k 1 k 1

d g
0

d g 

  

proof to this may be established by following similar result in
Kaelo12.

GLOBAL CONVERGENCE

In this section, the proof of the global convergence result
of the five-term hybrid method is established under the
standard Wolfe line search conditions given by the following
pair of inequalities:

(12)    T
k k k k k k kf x d f x g d    

and:

(13) T T
k k k k k kg x d d g d   

with 0<δ< σ.
To do this, the following assumptions on the objective

function are stated.

Assumption:

C Level set Ω = {x0ún*f(x)<f(x0)} is bounded
C In some neighborhood N0Ω, f(x) is Lipschitz continuously

differentiable, i.e., there exists a positive constant L such
that:

2g(x)-g(y)2<L2x-y2, œx, y0N (14)

Assumptions (i)-(ii) imply that a positive constant m exists
such that 2g(x)2< m œx0N.

An important result for proving the global convergence
properties of nonlinear CG algorithms is the famous
Zoutendijk23 condition  which is stated as a lemma here.

Lemma 1: Suppose assumptions (i)-(ii) hold. Given any
iteration of the form (2), where dk is a descent direction and "k

satisfies Eq. 12,13, then the following result holds:

(15) 2T
k k

2
k 0 k

g d

d







A  straightforward  proof  of   this   lemma  can  be found
in Dai and Yuan8. Next  its state and proof the global
convergence result for the new hybrid method.

Theorem 2: If assumptions (i)-(ii) hold and {xk} is generated by
the Hybrid CG Algorithm, then:

(16)kk
liminf g 0




Proof: The proof is given by contradiction. Let .k
k
liminf g 0




Then, since 2gk2>0, there exists a constant n>0 such that
2gk2>n, œk. Squaring both sides of Eq. 3 gives:

 22 2 2hAO T
k k k 1 k k kd d 2d g g   

189



Asian J. Sci. Res., 11 (2): 185-194, 2018

Dividing both sides of the above equation by and 2T
k kd g

using  the  fact  that  for every k>1, the
T

hAO k k
k T

k 1 k 1

d g
0

d g 

  

following was obtained:

(17)
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d 1
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 
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

 

 
  

 
 
  
          
 
  
 
 

Since , Eq. 16 gives:
 

2

1
2 2T

11 1

d 1

gd g


 

2 k
k 1

2 2T
i 1 ik 1 k 1

d 1 k
,    k

ngd g



 

  

This implies:

 2T
k k

2
k 1 k

g d

d

 

which contradicts Eq. 15. Hence, the result is proved.

NUMERICAL TEST

In this section, a mild numerical experiment is presented
to investigate the efficiency of the new hybrid method
described above. The method with (7) as the CG parameter
was tested numerically on Windows 7 with installed RAM of
2GB. The code for the algorithm was written with MatLab 7.10
using  the  Wolfe   line   search   conditions   (12)-(13)   where,
δ = 0.0001 and σ = 0.9. The initial value of "0 is 0 and the
stopping condition is 2gk2<10G6. Since the hybrid method
combines the structures of the FR, DY, WYL, MHS and MLS
methods, it is computationally convenient to compare the
hAO method with any of the classical methods of FR, DY, WYL,
HS and LS. For this particular  study,  the  comparison  was
done in relation to FR and DY methods. The test functions
were drawn from the collection of Andrei24. The test was
conducted on 38 problems with different dimensions (n). In
Table 1, the numerical results were presented in the form
G/F/Itr/T, where G is the gradient evaluation, F is the function
evaluation, Itr is the number of iterations and T is the CPU
time.  Whenever,  a method fails to solve a problem, the cell is

designated with -/-/?/? meaning the gradient and objective
function values could not be obtained for the specified
tolerance even though the algorithm was able to run with the
problem producing the number of iterations and the CPU
time.

In order to compare these methods for efficiency, the
performance profile evaluation approach of Dolan and Moré25

was adopted. Specifically, this technique helps to compare the
performance of the hAO method against the FR and DY
methods according to the number of iterations (Itr), the value
of the objective function (F), the gradient norm (G) and the
CPU time of computation (T), respectively. The theory of the
performance profile is given as follows: Let M be the set of all
methods to be compared and P, the set of all benchmark
problems. Assume that M contains nm methods and P contains
np problems. For each problem p0P and method m0M,
suppose Ip,m is the number of iterations (or the objective
function value, etc) required for solving problem p0P by
method m0M, then the comparison between the different
methods is based on the ratio given by:

(18) 
p,m

p,m

p,m

I
r

Min I : m M




Equation 18 gives the required number of iterations for
solving  problem  p0P  with  method m0M. As a consequence,
if  there  exists a parameter, rk,  which  is large enough so that
rk > rp,m for all p, m. Equality holds, that is, rk = rp,m only when
the chosen  method  m does not solve the problem p. Based
on Eq. 18, the cumulative distribution function for the
performance ratio, rp,m, is defined by:

(19) m p,m
p

1
p P : log r

n
     

where, *A* represents cardinality, ρm(τ) is the probability, in
relation to method m, that rp,m is within a factor τ0Un. At τ = 1,
the value of ρm(τ) is  the  probability  that  the  method  will
out-perform the other methods.

The following performance profile figures (Fig. 1-4) were
obtained from the numerical values in Table 1.  Evidently from
Fig. 1, the proposed method outperformed the classical
methods based on the rate of convergence measured by the
number of iterations. In term of computational time (Fig. 2),
the proposed method also performed excellently well and
very competitive with other methods for function and
gradient evaluations (Fig. 3 and 4).
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Fig. 1: Performance Profile according to the number of iterations

Fig. 2: Performance profile according to CPU time (sec)
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Fig. 3: Performance profile according to the value of the objective function

Fig. 4: Performance profile according to the value of the gradient norm
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Table 1: Result from numerical experiments
Problem-n Proposed hybrid method (hAO) Fletcher-reeves (FR) Dai-yuan (DY) Hestenes-stiefel (HS)
Ext. Rosenbrock-500 9.2e-7/8.2e-14/75/0.232 9.4e-7/2.4e-14/161/0.486 6.1e-7/7.0e-16/66/0.195 7.5e-7/7.0e-16/81/0.230
Ext. Rosenbrock-1000 3.9e-7/6.9e-15/56/0.185 9.8e-7/4.7e-13/136/0.473 8.7e-7/1.4e-15/66/0.246 6.0e-7/4.5e-16/83/0.270
Ext. Rosenbrock-5000 9.3e-8/4.0e-15/70/0.525 3.5e-7/8.6e-15/107/0.890 6.8e-8/2.3e-15/68/0.524 7.6e-7/7.2e-16/85/0.527
Ext. Rosenbrock-10000 4.7e-7/1.3e-14/93/1.149 7.9e-7/3.1e-13/520/8.106 9.7e-8/4.6e-15/68/0.914 6.1e-7/4.6e-16/87/0.802
Diagonal-4-500 5.8e-8/3.8e-18/18/0.085 7.4e-8/1.0e-17/17/0.077 9.5e-7/1.1e-15/14/0.051 -/-/4/0.053
Diagonal-4-1000 8.2e-8/7.6e-18/18/0.095 1.0e-7/2.0e-17/17/0.131 6.2e-8/4.8e-18/15/0.090 -/-/4/0.047
Diagonal-4-5000 1.8e-7/3.8e-17/18/0.195 2.3e-7/1.0e-16/17/0.201 1.4e-7/2.4e-17/15/0.155 -/-/4/0.141
Diagonal-4-10000 2.6e-7/7.6e-17/18/0.243 3.3e-7/2.0e-16/17/0.374 2.0e-7/4.8e-17/15/0.221 -/-/4/0.180
Ext. Himelblau-500 8.3e-8/7.6e-17/63/0.239 9.2e-7/1.6e-14/52/0.178 4.3e-7/2.0e-15/51/0.183 -/-/8/0.079
Ext. Himelblau-1000 1.2e-7/1.5e-16/63/0.276 2.5e-7/1.2e-15/53/0.229 6.1e-7/4.0e-15/51/0.258 -/-/8/0.105
Ext. Himelblau-5000 2.5e-7/7.1e-16/63/0.753 5.7e-7/6.0e-15/53/0.529 6.5e-7/6.4e-15/52/0.566 6.1e-7/7.4e-15/61/0.610
Ext. Himelblau-10000 3.9e-7/1.7e-15/63/1.111 8.0e-7/1.2e-14/53/0.863 9.1e-7/1.2e-14/52/0.978 -/-/16/0.591
Quadratic QF1-2 2.3e-7/-2.5e-1/55/0.530 4.4e-7/-2.5e-1/29/0.093 1.3e-7/-2.5e-1/11/0.046 7.6e-7/-2.5e-1/69/0.236
Ext. Beale-500 4.8e-7/3.6e-14/55/0.530 7.5e-7/2.2e-14/93/1.018 1.8e-7/2.7e-14/242/2.817 -/-/5/0.116
Ext. Beale-1000 5.8e-7/4.0e-14/55/0.791 9.9e-7/1.3e-12/119/1.981 2.5e-7/5.5e-14/242/4.384 -/-/5/0.176
Ext. Beale-5000 7.9e-7/4.5e-14/69/3.808 5.5e-7/1.8e-13/102/6.722 5.7e-7/2.7e-13/242/17.849 -/-/20/3.571
Ext. Beale-10000 4.4e-7/2.8e-13/63/6.658 5.8e-7/3.5e-14/178/25.461 8.0e-7/5.5e-13/242/34.652 3.2e-7/1.2e-15/59/13.769
Mod. Ext. Beale-500 7.7e-7/1.5e+1/219/2.822 2.2e-7/1.5e+1/152/2.315 8.9e-7/1.5e+1/162/2.312 1.4e-7/1.5e+1/55/1.116
Mod. Ext. Beale -1000 8.7e-7/3.1e+1/199/3.953 6.0e-7/3.1e+1/146/3.461 2.5e-7/3.1e+1/407/9.042 -/-/54/1.688
Mod. Ext. Beale -5000 8.9e-7/1.5e+2/380/31.922 3.1e-7/1.5e+2/189/18.828 9.1e-7/1.5e+2/1841/216.002 6.8e-7/1.5e+2/115/11.459
Mod. Ext. Beale -10000 8.8e-7/3.1e+2/767/126.476 8.1e-7/3.1e+2/890/225.586 4.7e-7/3.1e+2/693/199.019 8.4e-7/3.1e+2/66/18.559
Ext. Block Diagonal -500 7.0e-7/3.1e-14/50/0.303 -/-/97/1.153 -/-/28/0.314 8.8e-7/3.8e-14/80/0.535
Ext. Block Diagonal -1000 1.5e-7/1.6e-15/46/0.345 -/-/303/5.548 9.7e-7/8.6e-14/78/0.634 -/-/76/0.639
Ext. Block Diagonal -5000 5.6e-7/5.8e-14/45/0.968 -/-/688/40.809 9.8e-7/4.7e-14/817/30.772 8.8e-7/2.6e-14/85/2.569
Ext Block Diagonal -10000 3.7e-7/4.3e-15/35/1.395 9.3e-7/4.3e-14/234/14.392 9.6e-7/3.6e-14/163/7.622 -/-/7/0.253
Gen. Tridiagonal-1-2 1.0e-8/5.7e-10/683/2.099 4.6e-7/6.6e-12/43/0.186 9.2e-7/3.8e-11/37/0.106 -/-/28/0.098
Gen. Rosenbrock-500 8.9e-7/4.0/63/0.431 9.5e-7/4.0/81/0.555 9.9e-7/4.0/49/0.342 2.5e-7/4.0/77/0.542
Gen. Rosenbrock-1000 8.9e-7/4.0/63/0.605 9.5e-7/4.0/81/0.857 9.9e-7/4.0/49/0.478 2.5e-7/4.0/77/0.748
Gen. Rosenbrock-5000 8.9e-7/4.0/63/2.235 9.5e-7/4.0/81/2.961 9.9e-7/4.0/49/1.815 2.5e-7/4.0/77/2.757
Gen. Rosenbrock-10000 8.9e-7/4.0/63/4.356 9.5e-7/4.0/81/5.764 9.9e-7/4.0/49/3.624 2.5e-7/4.0/77/5.400
Gen. White & Holst-2 7.9e-7/3.6e-13/78/0.333 3.9e-7/1.7e-13/108/0.453 7.9e-7/1.5e-12/281/1.168 3.3e-7/2.4e-13/87/0.483
Generalized PSC1-500 9.1e-7/5.0e+2/1386/6.168 8.3e-7/5.0e+2/1876/14.131 9.4e-7/5.0e+2/993/6.460 5.1e-7/5.0e+2/557/2.669
Generalized PSC1-1000 9.5e-7/1.0e+3/1570/9.248 8.6e-7/1.0e+3/4374/63.256 8.0e-7/1.0e+3/1216/12.194 9.7e-7/1.0e+3/721/4.829
Generalized PSC1-5000 9.4e-7/5.0e+3/2843/50.265 8.5e-7/5.0e+3/2709/127.930 7.4e-7/5.0e+3/3550/188.882 9.2e-7/5.0e+3/608/11.789
Ext. Tridiagonal-1-500 1.0e-6/3.6e-9/4337/18.802 8.0e-7/1.7e-9/49/0.311 2.4e-7/1.7e-11/269/1.166 -/-/25/0.228
Ext. Tridiagonal-1-1000 1.0e-6/4.6e-9/5467/31.015 9.6e-7/3.3e-9/49/0.436 3.4e-7/3.3e-11/269/1.517 -/-/28/0.322
Ext. Tridiagonal-1-5000 1.0e-6/7.8e-9/9353/160.967 4.6e-7/2.8e-9/93/2.596 7.5e-7/1.7e-10/269/4.667 -/-/14/0.718

CONCLUSION

Based on two previous works on the construction of
hybrid CG algorithm, a new hybrid method was proposed in
this paper. An interesting feature of the method is that it
comprises of five different terms corresponding to five
different CG methods. The descent and global convergence
properties of the method were established under the standard
Wolfe line search. Numerical tests with the five-terms hybrid
method revealed  that  the  method  can  really  compete  with
the well-established methods. As part of future study, the
method will be compared comprehensively with the WYL,
MHS and MLS methods which are recently proposed. Doing
this will afford us the opportunity to compare the
performance of the method according to certain features.

SIGNIFICANCE STATEMENT

This study proposes a new conjugate gradient (CG)
method as a hybrid of 5 existing methods thereby improving
a method known to be efficient for large-scale unconstrained
optimization  problems. This  study  will  help the researcher
to uncover the descent property as well as the global
convergence property of a new CG method. Thus, a new
theory on this method may be arrived at and added to what
is already known among CG analysts.
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