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Abstract
Background and Objective: The Chebyshev-Halley is an third order iterative method that be used to find the roots of a nonlinear
equation.  This  study  is  presented a  new  variant  of Chebyshev-Halley’s method without second derivative with two parameters.
Methodology: In order to avoid the second derivative, it is approximated by using an equality of two methods, namely, use of a circle
of curvature that has the same tangent line and to equate to the Potra-Ptak’s method. Results: The results show that the method requires
two evaluation of functions and one its first derivative per iteration with the efficiency index equal to  . 1.5874.  The convergence1

34
analysis shows that the proposed method has the fourth-order convergence for 2 = 1 and $ = 1 and requires three evaluation of functions
per iteration. Conclusion: The final results show that the proposed methods has better performance as compared some other kind of
methods. A numerical simulation is presented to show the performance of the proposed method by using several functions.
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INTRODUCTION

The problems of determining the roots of a nonlinear
equation constitutes one of the very important problem in
numerical analysis. It is well-known that the following
Newton’s method, i.e:

(1)n
n+1 n

n

f(x )x = x
f (x )




constitutes  as  classical  iterative  method  that can be used to
find a simple  root  of  a  nonlinear  equation  f(x)  =  0, where
f : D d U÷ U is a scalar function. As Ostrowski1 is stated that
this method is quadratically convergent with efficiency
indexes equal to 2 2 1.4142.
In order to improve the local order of convergence, many

modification of the method have been proposed. A family of
iterative method with third order-convergence has been
reported by Amat et al.2 and Hernandez and Salanova3 as
follows:

(2)f n n
n+1 n

f n n

L (x ) f(x )x = x 1+
2(1-βL (x )) f'(x )

 
   
 

Where:

(3)n n
f n 2

n

f''(x )f(x )L (x ) =
f'(x )

The Eq. 2 is known as Chebyshev-Halley’s method for
some $. In particularly, the Eq. 2 becomes the Chebyshev’s
method if $ = 0, Halley’s method if $ = 1/2  and super Halley’s
method if $ = 1, according to Gutierrez and Hernandez4.
Note that the Eq. 2 requires a second derivative of f. It is

evident that the Eq. 2 can not be used in the cases in which
the second derivative of f is not exist. Recently, some
modification of Eq. 2 have been studied to avoid the second
derivative by using several approximation such as Taylor’s
series expansion5-8, finite different quotient9-11, cubic
polynomial12, quadratic function13, linear combination14 and
hyperbola15.
Motivated by the recent study, in this paper is presented

a new variant of the classical Chebyshev-Halley’s method that
contain two real parameters using a new approximation to
avoid  the  second  derivative  o f  f  in Eq. 2. It is shown that for
2 = 1, this new method constitutes a generalization of several
previous methods that be proposed in Ostrowski1, Chun16,
Potra and  Ptak17 and Sharma18. In the end of this study, a
numerical simulation is presented for comparing several
methods.

NEW METHOD

To derive this method, let us consider the Chebyshev-
Halley’s method in Eq. 2 in the following form:

(4)n n n
n+1 n 2

n n n n

f(x )f''(x ) f(x )x = x 1+
2(f'(x ) βf''(x )f(x )) f'(x )

 
    

The iteration scheme of Eq. 4 has the third order of
convergence and contains a second derivative function. In
order to avoid the second derivative, f ’’(xn) is approximated by
using an equality of two methods.
To derive an approximation for f ’’(xn) in Eq. 4, firstly use a

circle of curvature that has a same tangent line at (xn, yn) of the
curve y = f(x) that given by:

(5)
2 2

2 2 2 2 3
n n n n

n n 2
n n n

y (1+ y ) 1+ y (1+ y )x x + + y y + =
y y y

   
       

   

' ' ' '

'' '' ''

The circle of curvature in Eq. 5 that throughout at
intersection at point (xn+1, 0) is:

(6)
2 2 2

n n n n2 2
n+1 n n+1 n n 2

n n

2y (1+ y ) 2y (1+ y )(x x ) + (x x ) + y + = 0
y y

 
' ' '

'' ''

Let f(xn) = yn , f '(xn) = y’n and f ''(xn) = y”n, then (6) can be
written as:

(7)
   

 
* 2 2 2
n+1 n n n n n

n+1 n 2
n n

(x x ) + f(x ) f  ''(x ) + 2f(x ) 1+ f '(x )
x = x

2f  '(x ) 1+ f '(x )




Where:

(8)n*
n+1 n

n

f(x )x = x θ ,θ
f '(x )

 

By substituting (8) into (7), one have:

(9)
   

 
2 2 2 2

n n n n n n
n+1 n 3 2

n n

2f(x )f  ' (x ) 1+ f  '(x ) + 2f(x ) f  '' (x ) θ + f(x )
x = x

2f  ' (x ) 1+ f  '(x )


Furthermore, consider the following Potra-Ptak’s
method17:

(10)n n*
n+1 n

n

f(x ) + f(y )x = x
f '(x )



where yn is a Newton’s method that defined by (8):
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Based on Eq. 9 and 10, one get a new expression of f''(xn)
that given by:

(11)
 

 
2 2

n n n
n 2 2 2

n n

2f(y )f  ' (x ) 1+ f  ' (x )
f  '' (x ) =

f(x ) θ + f '(x )

By  subtituting   Eq. 11   into   Eq. 4,  one   obtained   a  new
two-parameters family of Chebyshev-Halley’s method which
free of second derivative, that is:

(12)
 

   
2 2

n n n n
n+1 n 2 2 2

n n n n n

f(y )f  ' (x ) 1+ f  ' (x ) f(x )x = x
f(x ) θ + f  ' (x ) 2βf(y ) 1+ f  ' (x ) f'(x )

 
 
  

The Eq. 12 is a variant of Chebyshev-Halley’s method with
two parameters 2 and $ that requires three evaluation of
functions f(xn), f '(xn) and f(yn).
One can see that for 2 = 1 and $0U, the family of Eq. 12

constitutes a generalization of Chebyshev-Halley’s method.
For $ ÷±4, one get the Newton’s method as defined by Eq. 1.
For $ = 0, one get the Potra-Ptak’s method17:

n n
n+1 n

n n

f(y ) f(x )x = x 1+
f(x ) f  '(x )

 
   
 

For $ = ½, one get the Newton-Steffensen’s method18:

n n
n+1 n

n n n

f(y ) f(x )x = x 1+
f(x ) f(y ) f  ' (x )

 
    

For $ =1, one get the Ostrowski’s method1:

n n
n+1 n

n n n

f(y ) f(x )x = x 1+
f(x ) 2f(y ) f '(x )

 
    

For $ = -1/2, one get the Chun’s method16:

n n
n+1 n

n n n

f(y ) f(x )x = x 1+
f(x ) + f(y ) f '(x )

 
   
 

Furthermore, it will be shown that this new method has
the fourth-order convergence.

Theorem:  Let " 0 D be a simple root of a differentiable
function f : D d U ÷ U. If the initial value x0 is sufficiently close

to ", then the method defined by Eq. 12 has fourth order
convergence for 2 = 1 and $ =1 with error:

(13)2 4 5
n+1 2 2 3 n ne = c (c c )e + O(e )

Proof: Let  "  is  the  root  of  nonlinear   equation   f(x)  = 0. If
en = xn-" and ,  then the expansion of  Taylor’s

(j)

j
1 f (α)c =
j f  '(α)

series for f(xn) and f '(xn) around " is given by:

(14) 2 3 4 5
n n 2 n 3 n 4 n nf(x ) = f  ' (α) e + c e + c e + c e + O(e )

and:

(15) 2 3 4 5
n 2 n 3 n 4 n 4 n nf  ' (x ) = f  ' (α) 1+ 2c e + 3c e + 4c e + 5c e + O(e )

because:

 2 2 2 2 3 5
n 2 n 2 3 n 2 3 4 n nf  ' (x ) = f  ' (α) 1+ 4c e + (4c + 6c )e + (12c c + 8c )e + + O(e )

(16)

Using the Eq. 14 and 15, one get   as follows:n

n

f(x )
f  ' (x )

(17)n 2 2 3 5
n 2 n 2 3 n n

n

f(x ) = e c e + 2(c c )e + + O(e )
f  ' (x )

  

Furthermore, using the Eq. 17 and xn = " + en, one get:

(18)2 2 3 5
n n 2 n 3 2 n ny = α + (1 θ)e + θc e + 2θ(c - c )e + + O(e ) 

and using the expansion of Taylor’s series around ", f(yn) can
be written as:

(19)


2 2 2 3
n n 2 n 3 2 n

2 3 2 4 5
2 2 3 4 n n

f(y ) = f  ' (α) (1 θ)e + (θ θ +1)c e + 2θ(c c )e
+ ((5θ 8θ)c (4θ + 3θ)c c + 3θc )e + O(e )

  
 

By using the Eq. 16 and 19, one get:

  
    
   
   

2 2 2 2
n n n 2 n

2 2 2 2 2 3
2 3 n

2 2 2 3 2 2 2
2 2 3

2 2 4 5
4 n n

f(y )(1+ f '(x ) ) = f  ' (α) (1 θ)(1+ f  ' (α))e + (θ 5θ + 5)f  ' (α) + (1 θ) c e

+ 2(θ 2) f  ' (α) 2θ c + (6 4θ)f  ' (α) + 2θ c e

+ (θ 2) f  ' (α) + 5θ c + (2θ 13θ +18)f  ' (α) (4θ + 3θ) c c

+ ( 5θ + 8) f  ' (α) + 3θ c e + O(e )

  

  

  



(20)


  

2 2 2 2 2 2 2 2 3
n n n 2 n 2 3 n

2 3 2 2 2 4 5
2 2 3 4 n n

f(x )(θ+ f  ' (x ) ) = f  ' (α) (θ + f  ' (α) )e + (θ + 5f ' (α) )c e + (8c + (θ + 5f  ' (α))c )e

+ 4f  ' (α) c + 22f  ' (α) c c + (θ + 9f ' (α) )c e + O(e )

(21)
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and:

  
    

   
   

2 2 2 2
n n n 2 n

2 2 2 2 2 3
2 3 n

2 2 2 3 2 2 2
2 2 3

2 2 4 5
4 n n

2βf(y )(1+ f'(x ) ) = 2βf  ' (α) (1 θ)(1+ f  ' (α))e + (θ 5θ + 5)f  ' (α) + (1 θ) c e

+ 2 (θ 2) f  ' (α) -θ c + 2 (3 2θ)f  ' (α) +θ c e

+ (θ 2) f  ' (α) + 5θ c + (2θ 13θ+18)f  ' (α) (4θ + 3θ) c c

+ ( 5θ+8) f  ' (α) + 3θ c e + O(e )

  

 

  



(22)

Furthermore,  by  using  the Eq. 20-22 and en = xn-", the
Eq. 12 becomes:

 
 

 


1
n+1 n2

1

2 3 2 2
2 1 1 1 0 1 0 0 2

n22
1

3 3
132

1

2 2 4 3 2
1 1 1 1

(θ 1)Ae = e
θ 1+ A (1+ 2β(θ 1))
c (θ 1) 4(θ 1)A β + 2(2θ θ + (3A 2))A β (A θ (2A 3)θ + A (θ + 2) + 5A )

+ e
θ 1+ A (1+ 2β(θ 1))

1+ 16βA (θ 1)
θ 1+ A (1+ 2β(θ 1))

+β A (24θ 8(6 + A )θ + 48A θ 24(3A 2)θ +8(4A


 

      

 

  

  




1
2 6 5 4 3 2
1 6 1 7 8 1 9 10 11

6 5 4 3 2 2
1 12 13 14 15 16 2

3 3 2 2 4 3 2
1 1 1 1 1 1

5 4
1 1 1

5))
+β(2A θ 4A A θ + 2A θ +8A θ 8A A θ + 4A θ 4A )

+( 2θ 2A θ + 2(1 2A )θ + 4A θ 2A θ 2A θ + 2A ) c

+ 16β A θ(θ 1)(θ 2) + 8β A ( 3θ + (6 + A )θ 6A θ + 4(3A 2)θ 22(4A 5)
+2βA ( 6θ + (A +12)θ 12A θ


  

    

       

 



3 2
17 0 1 0 11

6 5 4 3 2 2
1 1 0 1 0 1 0 1

2 5
0 1 3 n

+ A θ 6A (3A +1)θ 22A A )
+( 2θ (A 6)θ + 3A θ + 4A (A + 3)θ 6A (A +1)θ + A (5A + 6)θ

A (5A + 4) c + L + O(e )

 
   

 

(23)

Where:
A0 = f’(")2

A1 = 1+f’(")2

A2 = 4 f’(")2-1
A3 = f’(")6+22f’(")4+f’(")2+6
A4 = -f’(")6-4f’(")4+7f’(")2+2
A5 = f’(")2 (7f’(")4+27f’(")2+4)
A6 = f’(")4 (5f’(")4+15f’(")2+2)
A7 = f’(")2 (2f’(")4+7f’(")2-2)
A8 = 7f’(")4+24f’(")2+5

Using the Eq. 23 and by taking 2 = 1, one get:

(24)2 3 2 3 4 5
n+1 2 n 2 2 3 n ne = 2(β 1)c e ((4β 14β + 9)c + (8β 7)c c )e + O(e )    

Because  the  Eq.  12  requires three evaluation of
functions,  it  becomes   an   optimal   iterative   method  when
it  has  fourth  order  of  convergence19.   So,   based   on  the
Eq.  24, one can see that the order of convergence of Eq. 24
will increase  quartically  by taking  $  =  1  and it can be
written as:

(25)2 4 5
n+1 2 2 3 n ne = c (c c )e + O(e )

The Eq. 25 has fourth-order convergence and it requires
three  evaluation  of  functions  with  an efficiency index equal
to   . 1.5874.1

34

NUMERICAL EXAMPLE

In this section is presented a numerical example to
illustrate efficiency of the proposed method by using several
test functions. The zeros approximation  " of the test functions
was displayed 20th decimal places.
It is compared the performance of Eq. 12 both of $ … 1

(VCH3) and $ = 1 (VCH4) with Newton’s method (N2)20,
classical Chebyshev-Halley’s method with $ = 1/2 (CH3)3,4,
Potra-Ptak’s method (PP3)17. All computations are performed
by using Maple 13.0 with 850 digits floating point arithmetics
for the following several test functions:

C f1(x) = xeGx -0.1, α = 0.11183255915896296483
C f2(x) = ex-4x2, α = 4.30658472822069929833
C f3(x) = cos(x)-1, α = 0,73908513321516064165
C f4(x) = (x-1)3-1, α = 2.00000000000000000000
C f5(x) = x3+4x2-10, α = 1.36523003414096845760
C f6(x) = -cos(x+1)+x3+1, α = -1.000000000 000000000002-x +x+2e
C f7(x) = -x , α = 1.00000000000000000000x

Table 1 shows the number of iteration (IT) that satisfies
stopping criteria:

(26)n+1 nx x ε 

where, e = 10-95 and all computation order of convergence
(COC) in the parentheses by using the following formula:

(27)

n+1

n

n

n-1

(x α)ln
(x α)

ρ =
(x α)ln
(x α)







Based on the Table 1, one can see that order of
convergence of the proposed method is three for $ …1 and
four for $ = 1.

The accuracy of the new method and several other
methods by using the same total number of functional
evaluation as comparison are presented at Table 2. Based on
the Table 2, one can see that accuracy of the proposed
method for $ = 1 is better than other methods.
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Table 1: Number of iteration (IT) and COC
f (x) x0 N2 CH3 PP3 VCH3 VCH4
f1(x) -0.2 8 (1.9999) 5(3.0000) 5 (3.0000) 5 (2.9999) 4 (3.9999)

0.3 8 (1.9999) 5(3.0000) 5 (3.0000) 5 (3.0000) 4 (3.9999)
f2(x) 4.0 8 (1.9999) 6(3.0000) 6 (3.0000) 5 (2.9999) 4 (3.9999)

4.5 7 (1.9999) 5(3.0000) 5 (3.0000) 5 (3.0000) 4 (3.9999)
f3(x) -0.5 8 (1.9999) 5 (3.0000) 6 (3.0000) 6 (3.0000) 5 (3.9998)

1.5 7 (1.9999) 5 (3.0000) 5 (3.0000) 5 (2.9999) 4 (3.9999)
f4 (x) 1.8 8 (1.9999) 5 (3.0000) 5 (3.0000) 5 (3.0000) 4 (3.9999)

3.0 9 (1.9999) 6 (3.0000) 6 (2.9999) 6 (3.0000) 5 (3.9997)
f5 (x) 1.0 8 (1.9999) 5 (3.0000) 5 (3.0000) 5 (3.0000) 4 (3.9999)

2.0 8 (1.9999) 5 (3.0000) 5 (2.9999) 5 (2.9999) 4 (3.9999)
f6 (x) -1.5 7 (1.9999) 5 (3.0000) 5 (2.9999) 5 (2.9999) 4 (3.9999)

0.0 7 (1.9999) 6 (3.0000) 5 (3.0000) 5 (3.0000) 4 (3.9999)
f7 (x) 0.5 8 (1.9999) 5 (3.0000) 5 (3.0000) 5 (2.9999) 4 (3.9999)

1.5 7 (1.9999) 5 (2.9999) 5 (3.0000) 5 (3.0000) 4 (3.9999)

Table 2: Absolute value of function |f (xn+1)| under same total number of functional evaluation  (TNFE) with TNFE = 12
f  (x) x0 N2 CH3 PP VCH3 VCH4
f1 (x) -0.2 3.0851e-36 2.7750e-55 4.4605e-37 0.1272e-44 1.9110e-162

0.3 1.0732e-42 3.5154e-66 2.2815e-37 0.9053e-53 1.0476e-192
f2 (x) 4.0 5.0253e-33 2.1103e-53 4.2981e-23 5.5769e-41 3.5672e-157

4.5 3.1919e-52 5.2464e-76 2.8677e-56 2.4261e-65 1.4627e-231
f3 (x) -0.5 3.4884e-30 7.4037e-22 3.6137e-11 4.1176e-27 1.7116e-65

1.5 3.7607e-64 1.1496e-51 6.5333e-72 3.5077e-79 4.9514e-201
f4 (x) 1.8 2.8663e-41 1.7285e-60 3.9463e-35 42.3650e-51 6.5134e-180

3.0 4.6449e-16 6.3909e-24 5.8202e-15 3.0961e-19 1.1038e-70
f5 (x) 1.0 3.9823e-43 2.2349e-60 3.0006e-38 9.1052e-54 2.4510e-185

2.0 1.2361e-37 4.6600e-52 4.0072e-39 7.8139e-47 3.6662e-161
f6 (x) -1.5 5.7389e-66 1.5261e-43 1.7252e-67 5.1899e-91 1.3689e-166

0.0 1.9261e-65 6.3918e-26 1.6494e-72 1.7252e-65 1.1346e-152
f7 (x) 0.5 1.5492e-42 2.9666e-34 5.7100e-32 2.2096e-55 1.1552e-130

1.5 1.0649e-66 5.4028e-17 1.3243e-84 2.4094e-84 5.2043e-227

CONCLUSION

This research work have developed a new fourth-order
convergence method for solving nonlinear equation that free
from second derivative. The method requires two evaluation
of functions and one its first derivative per iteration with the
efficiency index equal to .1.5874. The numerical results1

34
show that the proposed method has better performance as
compared with the other methods. Therefore, the results of
this study provide a new contribution in computational
science area.

SIGNIFICANCE STATEMENT

This study discovers a new variant of Chebyshev-Halley’s
method as an alternative method to find the roots of the
nonlinear equation. The results of this study can help the
researchers in computational science and engineering area.
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