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Abstract
Background and Objective: Fixed point iterative algorithms are designed to be applied in solving equations arising in physical
formulation but there is no systematic study of numerical aspects of these iterative algorithms. The Picard, Mann, Ishikawa, Noor and multi
step iterative  algorithms  are  the  commonly  used  iterative algorithms in proving fixed point convergence and stability results of
different classes of mappings. The objectives of this study therefore were: (1) To develop a Picard-type hybrid iterative algorithm called
Picard-Mann, Picard-Ishikawa, Picard-Noor and Picard-multistep iterative algorithms, (2) Prove equivalence of convergence theorems using
these algorithms for a general class of mappings in a normed linear space and (3) Provide numerical examples to justify the applicability
of the algorithms. Materials and Methods: Analytical method was used to prove the main theorem, while numerical method was to
demonstrate the application of the equivalence results. Results: Strong convergence, equivalence and numerical results constitute the
main results of this study. Conclusion:  The results obtained from this study showed that the Picard-type hybrid iterative algorithms have
good potentials for further applications, especially in terms of rate of convergence.
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INTRODUCTION

The application of fixed point theory play a vital role in
many areas of mathematics and some of the methods therein
are used in solving problems in various branches of biology,
chemistry, economics and other mathematical sciences. The
existence of solution in ordinary differential equation has a
close link with the fixed point of a given iterative algorithm.
The convergence to the fixed point of a given iterative
algorithm under some contractive conditions correspond the
solution of the ordinary differential equations. The commonly
used iterative algorithms introduced by notable authors in
proving the convergence and stability results of different
classes of mappings are: Picard1, Mann2, Ishikawa3, Noor4 and
multistep5 iterative schemes.

Let (X, d) be a complete metric space and T: X÷X be a
selfmap of X. Assume that FT = {pεX: Tp = p} is the set of fixed
points of T. For a0,X, the Picard iterative algorithm1  n n 0a 



defined by:

an+1 = Tan, n>0 (1)

has been employed to approximate the fixed points of
mappings satisfying the inequality relation:

d(Ta, Tb)<δd(a, b), δε[0, 1) (2)

for every a, b , X.
Khan6 introduced a different perspective to fixed point

iteration  algorithms   by   presenting   the   Picard-Mann
hybrid  iterative  algorithm for a single non-expansive
mapping. It was shown that this type of algorithm is
independent of Picard1, Mann2 and Ishikawa3 iterative
algorithms since {"n} and {$n} are in (0, 1). Furthermore, he
proved that the Picard-Mann hybrid algorithm6 converges
faster than Picard1, Mann2 and Ishikawa3 iterative algorithms
in the form of the result of Berinde7  for contractions. It also
proved strong convergence and weak convergence theorems
with the help of his newly introduced iterative process for the
class of non-expansive mappings in a general Banach space
and applied it to obtain results in a uniformly convex Banach
space.

It is worthy to remark here that many researchers have
proved useful results on the equivalence of the various
iterations, that is, they have shown that the convergence of
any of the given iterative algorithm to the unique fixed point
of the contractive operator for single mapping T is equivalent
to the convergence of the other iterations. Chief among these
are the results of Olaleru and Akewe8, Solutuz9 and Soltuz10.

However, only very few equivalence results are known of the
Picard-type hybrid iterative algorithms. This study will address
these areas.

The study of the Khan6 is the main motivation of this
study. While the Khan6 worked on the rate of convergence of
Picard-Mann iterative algorithm for non-expansive mappings,
so the aim of present study was to prove the equivalence of
convergence of Picard-multistep iterative algorithms for
contractive  mappings.  Thus,  this study was divided into
three  phases: Firstly, a Picard-multistep iterative algorithm
was  developed   and   a strong convergence result is proved
for a  general   class   of  contractive mapping. Secondly,
shown that the convergence  of  this  Picard-multistep 
algorithm   is    equivalent   to    the    convergences    of 
Picard-Noor,  Picard-Ishikawa,  Picard-Mann and Picard
iterative algorithms for the same class of contractive
mappings. Finally, with help of numerical examples, the
equivalence results were demonstrated to be applicable in the
real sense.
 

MATERIALS AND METHODS

Relevant materials from reputable journals are used to
identify open problems and possible ways of solving them6,8,10.
The research methods employed in this study are both
analytical and numerical. The analytical approach is used in
proving the main theorem, while the numerical aspect is done
in the examples. The following iterative algorithms are useful
in proving the main results.

Let (E, 2.2) be a normed linear space and D a non-empty,
convex, closed subset of E and T:D÷D be a selfmap of D. Let
x0, D, then, the sequence defined by: n n 0x 



(3) 
 

1
n+1 n

i i i i+1
n n n n n

k 1 k 1 k 1
n n n n n

x = Ty

y = 1- α x + α Ty i =1,2,L,k 2

y = 1- α x α Ty k³2, n

,

>+ 0  



where, ,  1<  i  <  k-1.   Equation   3   is   called i
n{α } (0,1)

Picard-multistep hybrid iterative algorithm.
For  an  initial  point  c0, D, the sequence  isn n = 0{c }

defined by:

(4)
 
 
 

1
n+1 n

1 1 1 2
n n n n n

2 2 2 3
n n n n n

3 3 3
n n n n n

c = Tv

v = 1 α c + α Tv

v = 1 α c + α Tv

v = 1 α c + α Tc ,n>0







where,  Equation 4 is called Picard-Noor     1 2 3
n n n, , (0,1).   

hybrid iterative algorithm.
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For  an  initial  point  b0, D, the sequence  isn n = 0{b }

defined by:

(5) 
 

1
n+1 n

1 1 1 2
n n n n n

2 2 2
n n n n n

b = Tw

w = 1 α b + α Tw

w = 1 α b + α Tb >0, n





where,  Equation 5 is called Picard-Ishikawa   1 2
n n, (0,1).  

hybrid iterative algorithm.
For  any  initial point u0, D the sequence  isn n = 0{b }

defined by:

(6)
 

1
n+1 n

1 1
n n n n n

u = Tz

z = 1 α u + α Tu 0, n>

where,  Equation 6 is called Picard-Mann hybrid 1
n (0,1). 

iterative algorithm6.
It shall now consider some of the contractive mappings

useful in proving our main results.
Let E be a normed linear space and D a non-empty,

convex, closed subset of E and T: D÷D be a selfmap of. There
exists a real number δ 0 (0, 1) and all x, y 0 D such that:

2x, Ty2< δ2x-y2 (7)

Zamfirescu11 discussed mappings T satisfying the following
contractive condition:

2Tx-Ty2< δ2x-y2+2δ2x-Tx2 (8)

where, δ 0 (0,1).
Inequality Eq. 8 becomes Eq. 7 if x is a fixed point of T.
Osilike12 proved several stability results by employing the

following contractive definition: For each x, y , E, there exists 
" , (0, 1) and L > 0 such that:

2Tx-Ty2< α2x-y2+L2x-Tx2 (9)

Imoru and Olatinwo13 proved some stability results using
the following general contractive definition: For each x, y , E,
there  exists  δ , (0, 1) and a  monotone  increasing  function
n: R+÷R+ with n(0) = 0 such that:

2Tx-Ty2< δ2x-y2+n (2x-Tx2) (10)

Bosede and Rhoades14 made an assumption implied by
Eq. 7 and one which attempted to put an end to all
generalizations of the form Eq. 10. That is if x = p (is a fixed
point) then Eq. 10 becomes inequality Eq. 7.

Chidume and Olaleru15 gave several examples to show
that the class of mappings satisfying Eq. 7 is more general
than that of Eq. 8-10 provided the fixed point exists. It was
proved in Chidume and Olaleru15  study  that every contraction
map with a fixed point satisfies inequality Eq. 7 in the
following example:

Example 2.1: Let E = 14, B := {x 0 l:2x2<1} and let T: E÷BdE be
defined by:

 

   

2 2 2
1 2 3

2 2 2
1 2 3 0 1 2 32

11
Tx = 0,x ,x ,x ,L , if || x || 1

12
11

Tx = 0,x ,x ,x ,L , if || x || >1 for x = x ,x ,x ,L l
12 || x ||



 






Then Tp = p if and only if p = 0. It compute as follows:

 

 

2 2 2
1 2 3

2 2 2
1 2 32

2

11
|| Tx - p || = || 0,x ,x ,x ,L || || x || 1

12
11

|| Tx - p || = || 0,x ,x ,x ,L || ,if || x || >1,So that
12 || x ||

11 11
|| Tx - p || = || x || || x || , if || x || 1

12 12
11

|| Tx - p || = C1,if || x

, i

1

f

|| >
12

  

  


   

 



 

Hence, it obtained that:

11
|| Tx - p || = || x - p ||

12 

for every x0l4, p = 0.
Hence, satisfies contractive condition Eq. 9. But the map 

T  is not a contraction. To see this, take:

220
δ > 1,

192
    3 3 3 1 1 1

x = , , ,L ,y = , , ,L
4 4 4 2 2 2

Then:

1 11 5 5 55
|| x - y || = , || Tx - Ty || = | 0, , ,L | =

4 12 16 16 192 


Suppose there exists δ 0 (0, 1) such that 2Tx-Ty24 < δ2x-y24
for every x, y, 0 E, then  yields  a55 δ

192 4


220
δ > 1,

192


contradiction. So, T is not a contraction map.
Several  generalizations  can  occur in the form of Eq. 9

and   10,    even   in   the   form   of   Zamfirescu   operators11

(for example Olaleru and Akewe8, Osilike12, Akewe16,  Akewe
and Olaoluwa17, Akewe et al.18, Berinde19 and Akewe and
Okeke20.
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The following lemmas are needed in proving the main
results.

Lemma 2.2: Let δ be a real number satisfying 0< δ <1 and
 a sequence  of  positive   numbers   such   that  n n 0




limn÷40n = 0, for any sequence of positive numbers6  n n 0u 


satisfying un+1 < δun+,n, n > 0 then limn÷4un = 0.

Lemma 2.3: Let  and  be non-negative real n n 0a 
  n n 0e 



sequences satisfying the following inequality9:

an+1< (1-γn) an+en

where, γn0(0, 1) for all n > 0 and en = 0 (γn). Thenn 0




  nγ

limn÷4 an = 0.

RESULTS AND DISCUSSION

Convergence results: In this section, it is proved that the
Picard-multistep  hybrid iterative   scheme  converges strongly
to  the  unique  fixed  point  P  of  T in the following theorem.

Theorem  3.1:   Let   (E,2.2)  be  a  normed  linear  space,  D a
non-empty, convex, closed subset of E and T: D÷Da self map
satisfying the contractive condition:

2Tx-Tp2< δ2x-p2 (11)

where,  δ  0  (0,  1)  and  p  0  FT.  For  x0 0 D, let {x0} be the
Picard-multistep iterative algorithm defined by Eq. 3 and
satisfying  then:n

n 0





  

C Fixed point p of T defined by Eq. 11 is unique
C Picard-multistep iterative algorithm Eq. 3 converges

strongly to p of T

Proof:
C First, the unique fixed point of the mapping T satisfying

the contractive condition Eq. 11 will be proved
Suppose  there  exist  p1,  p2  0  FT  and  that  p1  …  p2, with
2p1-p22>0, then, (1-δ)2p1-p22< 0

Since, δ 0 (0, 1), then 1-δ>0  and 2p1-p22<0. Since norm is
non-negative, it follows that 2p1-p22 = 0. That is, p1-p2 p (say).
Thus, T has a unique fixed point p:

C Strong convergence of iterative algorithm Eq. 3 to the
fixed point p is proved. Using Eq. 3 and contractive
condition Eq. 11, gives:

(12)1 1
n 1 n n|| x p || || Ty Tp || || Ty p ||      

From Eq. 12, the following is obtained:

1 1 1 2
n n n n n|| y p || (1 ) || x p || || Ty Tp ||      

1 1 2
n n n n(1 ) || x p || || y p ||    

1 1 2 2 3
n n n n n n n(1 ) || x p || [(1 ) || x p || || Ty p ||]        

1 1 2 2 1 2 3
n n n n n n n n(1 ) || x p || (1 ) || x p || || y p ||         

1 1 2 2 1 2 3
n n n n n n n n n

2 1 2 3 4
n n n n

(1 ) || x p || (1 ) || x p || (1 ) || x p ||

|| Ty p ||

          

    

1 1 2 2 1 2 3
n n n n n n n n n

3 1 2 3 4
n n n n

(1 ) || x p || (1 ) || x p || (1 ) || x p ||

|| y p ||

          

    

1 1 2 2 1 2 3
n n n n n n n n n

k 2 1 2 3 k 2 k 1
n n n n n

(1 ) || x p || (1 ) || x p || (1 ) || x p ||

... ... || y p ||  

           

       

1 1 2 2 1 2 3
n n n n n n n n n

k 2 1 2 3 k 2 k 1 k 1
n n n n n n n n

(1 ) || x p || (1 ) || x p || (1 ) || x p ||

... ... [(1 ) || x p || || x p ||]   

           

          

(13)
1 1 2 2 1 2 3
n n n n n n

k 2 1 2 3 k 1
n n n n n

[1 (1 ) (1 ) (1 ) ...

(1 ) ... ] || x p || 

                  

       

Substituting Eq. 13 into Eq. 12, yields:

1 1 2 2 1 2 3
n 1 n n n n n n|| x p || [1 (1 ) (1 ) (1 ) ...                     

k 2 1 2 3 k 1
n n n n n(1 ) ... ] || x p ||        

(14)1
n n[1 (1 ) ] || x p ||     

Using the fact that it follows from1
n[0,1), (0,1),  

Lemma 2.2 that n 1n
lim || x p || 0.

 

That is, converges strongly to p. This ends then n 0{x }

proof.
Theorem 3.1 leads to the following corollary:

Corollary   3.2:   Let   E,2.2  be  a  normed  linear  space, D a
non-empty, convex, closed subset of E and T: D÷Da self map
satisfying the contractive condition:
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2Tx-Tp2< δ2x-p2 (15)

where,  δ  0  (0,  1)  and  p   0   FT.  Let c0, b0, u0 0 D  and
define   as  iterative  schemes  satisfyingn n 0 n n 0 n n 0{c } , {b } , {u }  

  

Eq. 4, 5 and 6, respectively. Then, the:

C Fixed point p of T defined by Eq. 15 is unique
C Picard-Noor iterative algorithm Eq. 4 converges strongly

to p of T
C Picard-Ishikawa iterative algorithm Eq. 5 converges

strongly to p of T
C Picard-Mann iterative algorithm Eq.  6 converges strongly

to p of T

The  convergence of Picard-multistep hybrid algorithm
Eq. 3 is proved to be equivalent to the convergences of 
Picard-Noor,  Picard-Ishikawa and Picard-Mann hybrid iterative
algorithms  for a general class of mapping satisfying Eq. 7,
using the following theorem:

Theorem  4.1:  Let  E,2.2  be  a  normed  linear  space,  D a non-
empty, convex, closed subset of E and T: D÷Da self map
satisfying the contractive condition

2Tx-Tp2< δ2x-p2 (16)

where, δ  0  (0,  1) Let p be the unique fixed point of T if a0 = u0
and define  as  iterative   schemes   satisfyingn n 0 n n 0{a } , {u } 

 

Eq. 1 and  6,  respectively.  Then,  the  following  are
equivalent:

C Picard-Mann iterative algorithm Eq.  6 converges strongly
to p of T

C Picard  iterative  algorithm  Eq. 1 converges strongly to p
of T

Proof: It is proved that (i) Implies (ii) Assume un÷p using
contractive condition Eq. 16 in 1 and 6, then the following can
be obtained:

(17)n 1 n 1 n n n n|| u a || || Tz Ta || || z a ||      

Also,  applying  Eq.  16 in 1 and 6, the following is
obtained:

1 1
n n n n n n

1 1 1 1
n n n n n n n n n

|| z a || || (1 )u Tu a ||

|| (1 )u Tu a a a ||

     

       

1 1
n n n n n n(1 ) || u a || || Tu a ||    

1 1 1
n n n n n n n n n

1
n n n n n

(1 ) || u a || || Tu u || || u a ||

|| u a || || Tu u ||

      

   

1 1
n n n n n n|| u a || || Tu Tp || || u p ||     

1 1
n n n n n n|| u a || || u p || || u p ||     

(18)1
n n n n|| u a || (1 ) || u p ||      

Substituting Eq. 18 in 17, gives:

(19)1
n 1 n 1 n n n n|| u a || || u a || (1 ) || u p ||         

Set:

1
n n n1 , e (1 ) || u p ||         

Then, Eq. 19 becomes:

(20)n 1 n 1 n n n|| u a || [1 ] || u a || e      

By using Lemma 2.3 in Eq. 20, it follows that:

n nn
lim || u a || 0


 

Since  by assumption, then:nn
limu p




n n n n|| a p || || u a || || u p || . 0     

As n÷4 which implies n
n
lima p.




It is proved that (ii) implies (i).
Assume an÷p:

(21)n 1 n 1 n n n n n|| a u || || Ta Tz || || a z ||       

1 1
n n n n n n

1 1 1 1
n n n n n n n n n

|| a z || || a ((1 )u Tu ) ||

|| a a a ((1 )u Tu ) ||

     

       

1 1
n n n n n n(1 ) || a u || || Tu a ||    

1 1 1
n n n n n n n n n(1 ) || a u || || Tu Ta || || Ta a ||      
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1 1 1 1
n n n n n n n n n n(1 ) || a u || || a u || || Ta Tp || || p a ||        

(22)1 1 1
n n n n n n(1 ) || a u || (1 ) || a p ||         

Substituting Eq. 22 in 21, gives:

(23)
1 1

n 1 n 1 n n n n n

1 1
n n n n n

|| a u || [(1 (1 ) )] || a u || (1 ) || a p ||

[(1 (1 ) )] || a u || (1 ) || a p ||

             

          

Set:

(24)1 1
n n n n n n n(1 ) , e (1 ) || a u || e           

By using Lemma 2.3 in Eq. 24, it follows that
n nn

lim || a u || 0.


 

Since  by assumption, then:nn
lima p




n n n n|| u p || || a u || || a p || 0     

as n÷4 which implies n
n
limu p.




Therefore, the convergence of Picard-Mann hybrid
iterative scheme (6) is equivalent to the convergence of  Picard
iterative scheme (1) for the class of mapping under
consideration. This ends the proof.

Theorem  4.2:  Let  E,2.2  be  a  normed  linear  space,  D a non-
empty, convex, closed subset of E and T: D÷Da self map
satisfying the contractive condition:

(25)|| Tx Tp || || x p ||   

where,   δ   0   (0,   1).   Let   p   be   the  unique  fixed  point  of
T.  If u0 = x0 0 D and define  as iterativen n 0 n n 0{u } , {x } 

 

algorithms 6 and 3, respectively. Then, the following are
equivalent:

C Picard-Mann hybrid iterative algorithm 6 converges
strongly to p of T

C Picard-multistep hybrid iterative algorithm 3 converges
strongly to p of T

Proof:   First,   it   is    proved   that   (i)   implies   (ii):  Assume
un÷p  using  contractive  condition  Eq.  25   in   6   and  3,
gives:

(26)1 1
n 1 n 1 n n n n|| u x || || Tz Ty || || z y ||      

Also,  using  contractive  condition  Eq. 25 in 6 and 3,
gives:

  

1 1 1 2 1 1 2
n n n n n n n n n n n n n n

1 1 2 2 2 3
n n n n n n n n n n n n n

1 1 2 1 2 2
n n n n n n n n n n n

|| z y || (1 ) || u x || || Tz Ty || (1 ) || u x || || z y ||

(1 ) || u x || 1 a || u x || || u Tu || || z y ||

(1 ) || u x || (1 ) || u x || || u Tu ||

          

         

          1 2 3 1 1 1
n n n n n n n n n n n

1 2 2 1 2 3
n n n n n n n n n

3 3 4 1 1 2 1 2 3 1 2
n n n n n n n n n n n n n n n n n n n n

|| z y || (1 ) || u x || (1 ) || u x ||

|| u Tu || [(1 ) || u x ||

|| u Tu || || z y ||] (1 ) || u x || (1 ) || u x || (1 ) || u x || || u

       

       

                n n

2 1 2 3 3 1 2 3 4
n n n n n n n n n n

Tu ||

|| u Tu || || z y ||



         

   1 1 2 2 1 2 3 k 3 1 2 k 3 k 2
n n n n n n n n n n n n n n n n n n

1 2 2 1 2 3 k 4 1 2 k 3 k 3 1 2 3 k 2
n n n n n n n n n n n n n n n n n n n

1 || u x || 1 || u x || (1 ) || u x || ... ... (1 ) || u x ||

|| u Tu || || u Tu || ... ... || u Tu || ... || u

  

   

                   

                     n

k 2 1 2 k 2 k 1
n n n n n

Tu ||

... || u y ||      

(27)
   1 1 2 2 1 2 3 k 3 1 2 k 3 k 2

n n n n n n n n n n n n n n n n n n

k 1 1 2 3 k 1 1 2 2 1 2 3 k 3 1 2 3 k 2
n n n n n n n n n n n n n n n n n n n

1 || u x || 1 || u x || (1 ) || u x || ... ... (1 ) || u x ||

... || u x || || u Tu || . || u Tu || ... ... ||

  

   

                   

                     n n

k 2 1 2 3 k 2 k 1
n n n n n n n

u Tu ||

... || u Tu ||  



      

Substituting Eq. 27 in 26, yields:

(28)

1 1 2 2 1 2 3 k 3 1 2 k 3 k 2 k 2 1 2 3 k 2 k 1
n 1 n 1 n n n n n n n n n n n n n n n n n

2 1 2 3 1 2 3 k 2 1 2 k 3 k 2 k 1 1 2 3
n n n n n n n n n n n n

|| u x || [(1 (1 ) (1 ) (1 ) ... (1 ) ... (1 ) ... ] || u x ||

( ... ... ....

     
 

   

                                     

                    k 2 k 1 1 2 1 2 3 1 2 3
n n n n n n n n n n n

k 2 1 2 k 3 k 2 k 1 1 2 3 k 2 k 1
n n n n n n n n n n

) || u Tu || [(1 (1 ) ] | u x || .....

... ... ](1 ) || u p ||

 

     

                 

              
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Set:

1
n n

2 1 2 3 1 2 3 k 2 1 2 k 3 k 2
n n n n n n n n n n

k 1 1 2 3 k 2 k 1
n n n n n n

(1 )a ,

e [ ... ...

... ](1 ) || u p ||

  

  

   

               

        

Then, Eq. 28 becomes:

(29)1 n 1 n n n n|| un x || (1 ) || u x || e      

By using Lemma 2.3 in Eq. 29, it follows that
n nn

lim || u x || 0.


 

Since by assumption, then:nn
limu p




n n n n|| x p || || u x || || u p || 0     

as n÷4 which implies n
n
lim x p.




It is proved that (ii) implies (i). Assume  then thenn
lim x p,




following is proved:

(30)1 1
n 1 n 1 n n n n|| x u || || Ty Tz || || y z ||      

Also, using contractive condition Eq. 25 in 6 and 3, gives:

(31)
1 1 1 2
n n n n n n n n

1 1 2
n n n n n n

|| y z || (1 ) || x u || || Ty Tu ||

(1 ) || x u || || y u ||

     

    

Applying, contractive condition Eq. 25 in 6 and 3, gives:

(32)

2 2 2 3
n n n n n n n n

2 2 3 2
n n n n n n n n n

2 2
n n n n n

2 2 2
n n n n n n

|| y u || (1 ) || x u || || Ty u ||

(1 ) || x u || || Ty x || || u x ||

|| x u || || Ty x ||

|| x u || || Ty Tp || || x p ||

     

      

   

     

Substituting Eq. 32 in 31, gives:

(33)
1 1 1
n n n n n n n n

1 2 2 1 2 3
n n n n n n

|| y z || (1 ) || x u || || x u ||

|| x p || || y p ||

     

      

From Eq. 33:

(34)

3 3 3 4
n n n n n

3 3 4
n n n n

3 3 4 4 5
n n n n n n n

3 3 4 2 3 4 5
n n n n n n n n

|| y p || (1 ) || x p || || Ty p ||

(1 ) || x p || || y p ||

(1 ) || x p || [(1 ) || x p || || y p ||]

(1 ) || x p || (1 ) || x p || || y p ||

     

    

       

          

Continuing this process up to (k-2), yields:

(35)

k 2 k 2 k 2 k 1
n n n n n

k 2 k 2 k 1 k 1
n n n n n n n

k 2 k 2 k 1 2 k 2 k 1
n n n n n n n n

|| y p || (1 ) || x p || || y p ||

(1 ) || x p || [(1 ) || x p || || x p ||]

(1 ) || x p || (1 ) || x p || || x p ||

   

   

    

      

       

         

Substituting Eq. 35 in 34, gives:

(36)

3 3 3 4
n n n n n n

2 3 4 5
n n n n

2 3 4 k 3 k 2 k 1
n n n n n n

2 3 4 k 2 k 1
n n n n n

|| y p || (1 ) || x p || (1 ) || x p ||

(1 ) || x p || ....

... (1 ) || x p ||

... || x p ||

  

 

       

     

      

     

Substituting Eq. 36 into 33, yields:

(37)

1 1 1 1 2
n n n n n n n n n n n

2 1 2 3 3 4 2 3 4 5
n n n n n n n n

k 3 3 4 5 k 3 k 2
n n n n n

k 3 3 4 5 k 2 k 1
n n n n n n

|| y z || (1 ) || x u || || x u || || x p ||

[1 (1 ) (1 ) (1 )

... (1 ) ...

(1 ) ... ] || x p ||

  

  

         

                  

         

         

Substituting Eq. 37 into 30 and simplifying gives:

(38)

1 2 1 2
n 1 n 1 n n n n n n

3 1 2 3
n n n n

1 2 1 2
n n n n n

3 1 2 3
n n n n

|| x u || [(1 (1 ) ) || x u || || x p ||

[1 (1 ) ] || x p ||

(1 (1 ) ) || x u || [

(1 (1 ) )] || x p ||

            

       

         

       

Set:

1
n n

2 1 2 3 1 2 3
n n n n n n n

(1 ) ,

e [ (1 (1 ) )] || x p ||

    

            

Then, Eq. 38 becomes:

(39)n 1 n 1 n n n n|| x u || (1 ) || x u || e      

By using Lemma 2.3 in Eq. 39, it follows that
n nn

lim || x u || 0.


 

Since  by assumption, then:nn
lim x p




n n n n|| u p || || u x || || x p || 0     

as n÷4 which implies n
n
limu p.




Therefore, the convergence of Picard-multistep hybrid
iterative   algorithm  3  is  equivalent   to   the  convergence of
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Picard-Mann hybrid iterative algorithm 6 for the class of
mapping under consideration. This ends the proof.

Theorem 4.2 leads to the following corollaries:

Corollary   4.3:   Let   E,2.2  be  a  normed  linear  space, D a
non-empty, convex, closed subset of E and T: D÷Da self map
with p 0 FT  satisfying the contractive condition:

(40)|| Tx Tp || || x p ||   

where,  δ  0  (0,  1).  Let  p  be  the  unique  fixed  point  of  T. If
u0 = c0 = b0 0 D and define  as iterativen n 0 n n 0 n n 0{u } , {b } , {c }  

  

algorithms 6, 5 and 4, respectively. Then, the following are
equivalent:

(a) C Picard-Mann hybrid iterative algorithm 6n n 0{u }

converges strongly to p of T
C Picard-Noor hybrid iterative algorithm 4n n 0{c }

converges strongly to p of T
(b) C Picard-Mann hybrid iterative algorithm 6n n 0{u }

converges strongly to p of T
C Picard-Ishikawa hybrid iterative algorithm 5n n 0{b }

converges strongly to p of T

Proof: The proof of Corollary 4.3 is similar to that of  Theorem
4.2. This ends the proof.

Corollary  4.4:  Let  E,||.||  be  a  normed  linear space, D a non-
empty, convex, closed subset of E and T: D÷Da self map with
p 0 FT satisfying the contractive condition:

(41)|| Tx Tp || || x p ||   

where,    δ    0    (0,1).    Let    p    be    the     unique    fixed  
point  of    T.    If   u0   =    b0   =   c0   =   x0    0     D    and    define 

as iterative algorithms  6, 5, 4n n 0 n n 0 n n 0 n n 0{u } , {b } , {c } , {x }   
   

and 3, respectively. Then, the following are equivalent:

C Picard-Mann  hybrid  iterative  algorithm 6n n 0{u }

converges strongly to p of T
C Picard-Ishikawa  hybrid  iterative  algorithm 5n n 0{b }

converges strongly to p of T
C Picard-Noor   hybrid  iterative  algorithm 4n n 0{c }

converges strongly to p of T
C Picard-multistep  hybrid  iterative algorithm 3n n 0{x }

converges strongly to p of T

NUMERICAL EXAMPLES

In this section, some numerical examples are constructed
to demonstrate  the  applicability  of  equivalence  of
convergence between Picard-multistep hybrid (PMTH)
iterative  algorithm  3, other Picard hybrid-type [Picard-Noor
hybrid  (PNH) (4),  Picard-Ishikawa  hybrid  (PIH)  (5)  and
Picard- Mann hybrid (PMH)(6)] and Picard (PD) (1) iterative
algorithms with the help of a computer program called
PYTHON 2.5.4. The  examples are considered for increasing
and  decreasing  functions.  The   results   are     shown   in 
Table 1 and 2.

Example  of  increasing  function:  Let T: [6,8]÷[6,8] be
defined by  Then T is an increasing function withx

T(x) 3
2

. 

fixed point  p  =  6.000000.   By  taking  initial approximation as
x0 = c0 = b0 = u0 = 7.000000  and  (for i = 1, 2, 3, ...,i

n

1
,

5n 1
 


k-2). The equivalence of convergence results to the fixed point
p  =  6.000000  are shown in Table 1.

Example of decreasing function: Let T: [0,1]÷[0,1] be defined
by T(x) = (1-x)2. Then T is a decreasing function with fixed
point  p  =  0.381955.  By    taking   initial   approximation   as
x0 = c0 = b0 = u0 = 7.000000. And  (for i = 1, 2, 3, ...,i

n

1
,

n 4
 


k-2).

Table 1: Numerical example for increasing function  x
T(x) 3

2
 

PMTH PNH PIH PMH PD
7.000000 7.000000 7.000000 7.000000 7.000000
6.000013 6.192401 6.313213 6.459671 6.469772
6.000000 6.018812 6.042245 6.136763 6.148764
6.000000 6.000232 6.010524 6.102431 6.123436
6.000000 6.000016 6.000032 6.002324 6.062621
6.000000 6.000000 6.000002 6.000212 6.004231
6.000000 6.000000 6.000000 6.000016 6.000242
6.000000 6.000000 6.000000 6.000001 6.000102
6.000000 6.000000 6.000000 6.000000 6.000013
6.000000 6.000000 6.000000 6.000000 6.000002
6.000000 6.000000 6.000000 6.000000 6.000000
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Table 2: Numerical example for decreasing function T(x) = (1-x)2

PMTH PNH PIH PMH PD
0.700000 0.700000 0.700000 0.700000 0.700000
0.381976 0.582132 0.584209 0.591652 0.592761
0.381955 0.401967 0.438209 0.488394 0.489944
0.381955 0.381961 0.419722 0.428332 0.439283
0.381955 0.381957 0.381969 0.382217 0.384238
0.381955 0.381955 0.381962 0.382011 0.383241
0.381955 0.381955 0.381959 0.381972 0.382463
0.381955 0.381955 0.381955 0.381961 0.382002
0.381955 0.381955 0.381955 0.381956 0.381997
0.381955 0.381955 0.381955 0.381955 0.381958
0.381955 0.381955 0.381955 0.381955 0.381955

The  equivalence  of  convergence  results  to the fixed point
p  =  0.381955  are shown in Table 2.

C From Table 1, it is observed that for increasing function
 the convergence of Picard-multistep hybridx

T(x) 3,
2

 

iterative scheme (3) to the fixed point 6.000000 is
equivalent to the convergence of other Picard hybrid-
type [Picard-Noor hybrid (PNH)(4), Picard-Ishikawa hybrid
(PIH)(5), Picard- Mann hybrid (PMH)(6)] and Picard (1)
iterative algorithms to the same fixed point 6.000000

C From Table 2, it is observed that for decreasing function
T(x) = (1-x)2 the convergence of Picard-multistep hybrid
iterative  scheme  (3)  to  the  fixed  point  0.381955 is
equivalent  to  the   convergence   of   other  Picard
hybrid-type [Picard-Noor hybrid (PNH) (4), Picard-Ishikawa
hybrid (PIH) (5), Picard-Mann hybrid (PMH) (6)] and Picard
(1) iterative algorithms to the same fixed point 0.381955

CONCLUSION

The equivalence of convergence of Picard-multistep
iterative algorithm was proved analytically and numerically in
this study. The numerical examples considered in this paper
demonstrated the applicability of the equivalence results
obtained. These results showed that the Picard hybrid-type
iterative algorithms have good potentials for further
applications.

SIGNIFICANCE STATEMENT

This study proves significant relationship Picard-multistep
iterative algorithm and other Picard-type [Picard-Noor hybrid
(4), Picard-Ishikawa hybrid (5), Picard-Mann hybrid (6)]
iterative algorithms. Particularly, the new significance of this
research is the applicability of the equivalence results through
numerical examples which has not been paid enough
attention.
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