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Abstract
Background and Objective: Quantile regression is a developing statistical tool which is used to explain the relationship between response
and predictor variables. Quantile approach has ability to model the data which non-normal distributed and non-constant variance
assumption. This study presented the ability of the quantile and Bayesian quantile method in overcoming the problem of violation of
normality and homogenous assumption for error terms and compare the results. Materials and Methods: This research implemented
the simulation study to explore the performance of the asymmetric Laplace distribution for working likelihood in posterior estimation
process. Markov Chain Monte Carlo method using Gibbs sampling algorithm was then applied to estimate the parameter in quantile
regression model. This study designed distributions for error term; normal, non-normal and heterogeneous variability, then compare the
bias and Monte Carlo standard error as the results of classical quantile and Bayesian quantile method. Convergency of parameter
estimated were also checked. Results: Bayesian quantile estimation method resulted lower biases and lower Monte Carlo standard error
than the classical quantile method for all selected conditions of error term. Conclusion: This study proved that Bayesian quantile
regression method produced better proposed model then classical quantile method in the case of non-normal and heterogenous error
term.
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INTRODUCTION

Quantile regression is gradually emerging as a
comprehensive approach to estimate the relationship
between response variable  y and the explanatory variables  x.
A number of papers have recently published that related to
quantile regression, such as Yu  and  Moyeed1, Kozumi  and 
Kobayashi2, Feng et al.3 and Hong  and  Zhou4. Quantile
regression is a statistical procedure based on minimizing sums
of asymmetrically weighted absolute residuals and can be
used to explore the relationship between  quantiles  of  linear
or non-linear response models distribution and available
covariates. Quantile method provides more complete
description of the response distribution than the mean
regression.

Let yi is the response variable, xi is a p×1 vector of p
indicator  variables  for  the  ith  observation.  Let  qτ(xi)  denote
the  τth  (0<τ<1)  quantile  regression  function  of  yi  given  xi.
It can be modeled as:

  T
τ i iq x = x β( )

where, $(τ) is a p×1 vector of coefficients for indicator
variables at specified τ. Therefore, the quantile regression
model is considered as following:

(1)T
i i iy x β( ) u ,      i 1,2,...,n   

where, ui is the error term with mean zero and constant
variance. Then, quantile regression estimation for $(τ) is
obtained by minimizing:

(2) T
τ i ii

min  ρ y x β( ) 

where, Dτ(u) is the loss function defined by:

ρτ(u) = u(τ-I(u<0)) (3)

It also may write (Eq. 3) as:

       
τ τ

u 2τ 1 u
 ρ u u(τI(u 0) (1 )I u 0 ) or  ρ u  

2

 
     

where, I(.) denotes the indicator function. However, these
indicator function is not differentiable at zero, thus this study
cannot obtain explicit solutions in minimizing (Eq. 2). In
quantile regression methods, it is commonly implement linear
programming methods to derive parameter estimated2.

Yu  and  Moyeed1 proposed combination of Bayesian
approach   to   quantile   regression   method   in  the
minimizing   problem.   They   used   asymmetric    Laplace

error  distribution to maximize likelihood distribution as
equivalent way in minimizing5-8 (Eq. 1-4). They assumed that 
error  term   follows   an   independent   asymmetric Laplace
distribution:

fτ(u) = τ(1-τ)eGρτ(u),    u0R (4)

The mode of fτ(u) is the solution to Eq. 2, thus the
asymmetric Laplace distribution is closely related to quantile
regression. However, the posterior density for parameter
estimated $(τ) is not simple to obtained due to the complexity
of the likelihood function, then Markov Chain Monte Carlo
(MCMC) method is applied to sample from the approximate
posterior distribution. Dunson  and  Taylor8 used a random
walk  Metropolis  algorithm  with  a  Gaussian  density  centred
at the current parameter value. Meanwhile Kozumi  and 
Kobayashi2 developed a Gibbs sampling algorithm based on
a location-scale mixture representation of the asymmetric
Laplace distribution.

This study considers to implement the asymmetric
Laplace distribution for the error terms in the framework of
quantile regression from a Bayesian perspective. It is assumed
that error term violates of normality and homogenous
assumption. The main objective of this study was to
implement the superiority of Gibbs sampler to quantile
method in the case of non-normal distribution and
heteroscedastic variance of error and then compare the result
to quantile regression. Data generated will be used to
implement the proposed methods.

MATERIALS AND METHODS

Asymmetric laplace distribution: Let U is random variable
assumed follow the asymmetric Laplace distribution with its
probability distribution is formed by Eq. 4. If parameter τ = 0.5,
which determines the skewness of distribution, Eq. 4 changes
into standard symmetric Laplace distribution, with its density
function is 0.25exp(-0.5|u|). Meanwhile, the density in Eq. 4 is
asymmetric for all other values of τ. It can be proven that the
mean and variance of this asymmetric Laplace distribution are
respectively given by:

(5)   
2

i i 2 2

1 2 1 2 2τ
E u and Var u

(1 ) (1 )

    
 
    

Then  incorporate  the  location  (µ)  and  scale  (F)  inside
(Eq. 4), its density changes into following form Yang et al.9 and
Yu and Zhang10:

  τ

(1 ) u μ
f u;µ,σ exp ρ ,     u  

σ σ

         
  


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where, τ0(0,1) is the skewness parameter, -4<µ<4 is the
location parameter which reflecting both the mode and τth
quantile and F>0 is the scale parameter11.

Bayesian quantile regression: Yu and Zhang10 wrote some
other  properties  of  this  asymmetric  Laplace  distribution. 
Let p and ε  are  identic  and  independent  standard
exponential distributions, thus  is  assumed  has the

p ε

τ (1 τ)



asymmetric Laplace  distribution  as  well.  Hong   and  Zhou4

applied Gibbs sampling algorithm for estimating parameter in
quantile regression model.

It has defined above that random variable U assumed
follow the asymmetric Laplace distribution with density as
presented in Eq. 4. Let z be an standard exponential variable
and 0 a standard normal  variable.  Therefore,  it  can 
represent u  as  a  location-scale  mixture of normals given by:

u zθz   

Where:

21 2 2
θ and σ

(1 ) (1 )

 
 
     

Based on this result, the yi variable can equivalently
represented as follows:

(6) T
i i i i iy x β θz z   

where, zi~exp(1) denotes an exponential distribution with
mean 1 and 0i~N(0,1)zi and 0i are mutually independent.
Meanwhile conditional distribution of  yi given zi is assumed
follow normal distribution with mean  and variance T

i ix β θz 

F2zi. The mixture representation in Eq. 6 expands the likelihood
specification into such a hierarchical structure which normal
linear model framework then can be transferred to the
quantile approach.

Thus the joint density of y = (y1, y2,..., yn)’ is written as:

(7)       2T
n n i i i1/2

i 2i 1i 1
i

y x β θz
f y |β ,z z exp

2σ z




     
  


 

where, z = (z1, z2,..., zn)’.
In Bayesian analysis, the posterior distribution of selected

parameter are estimated by multiplying likelihood distribution
and prior distribution. Equation 7 is equivalent to likelihood
distribution, thus it needs prior distribution then. In this study,
the prior distribution used here is assumed as follows:

β(τ)~N(β(τ0), B(τ0)) (8)

where,  $(τ0)  is prior mean of $(τ)  and  B(τ0)  is  covariance  of
$(τ). Therefore prior distribution of $(τ), known as conditional
density of $(τ) given y  and  z, given by:

β(τ)|y, z~N(β8(τ), β8(τ)) (9)

Where:

   n1 1i i
2i 1

i

'
B̂

z

x x
B 0

σ
 


   

and:

       n 1i i i
2i 1

i

x y θzˆ ˆ( ) BB̂
σ z

0 0


          
 






Since it is assumed that zi follows standard exponential
distribution, the full conditional distribution of zi is given by:

(10)    1/2 1 2
i i i

2
ii i

1
ˆf z | y,β  z exp z z

2
ˆ     


 



Where:

 2T
i i2

i 2

y xˆ
σ




and . Equation 10 is known as the kernel of a2 2 2
i 2 σˆ θ / 

generalized inverse Gaussian distribution and it can be
rewritten as follows2:

(11)   2 2
i i i

1 ˆ ˆf | y,β , ,
2

z     


 




Where:

2 2
i i

1 ˆ ˆ, ,
2

   
 



denotes a generalized inverse Gaussian and its probability
density function is given by:

    
   

1/2
2 2
i i 1/2 2 1 2 2 2

i i i i i i i i i2 2
1/2 i i

ˆ/ 1 ˆ ˆf z | y,β z exp z z , z 0, , 0
ˆ 22K

ˆ
ˆ ˆ

ˆ
 

         


 



 



(12)

and  is a modified Bessel function of the third kind.1/2K (.)

So, the priors that used in this Bayesian analysis are as
defined in Eq. 9 and 11. Based on empirical studies, this
asymmetric Laplace for likelihood distribution can be
computed directly from the MCMC chains. Many studies have
shown that the Gibbs sampler then can be easily applied to
quantile  regression  estimation5,2.  Choi   and   Hobert7  and
Khare  and  Hobert12 have proven that Markov chain
underlying Gibbs sampling algorithm are geometrically
ergodic.
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Alhamzawi and Yu13 utilized efficient Gibbs sampling
algorithms  for  Bayesian  quantile  regression  using  R
packages;  brq,  meanwhile   Benoit   used   bayesQR5.  Kozumi 
and     Kobayashi2    implemented    the    quantreg    package
for  the R  language. This study implement bayesQR  and
MCMCquantreg  in  MCMCpack  package for R language to
estimate  the  parameter  model  and  result  the  Traceplot
and Marginal posterior distribution of each parameters14.
Traceplot is used to monitor the convergency of the algorithm
based on Gibbs sampling method1,15 meanwhile marginal
posterior distribution is used for check the distribution of
generated sample. While Sriram et al.16 constructed sufficient
condition for the posterior consistency of model parameters
in Bayesian quantile regression with mis-specified asymmetric
Laplace density.

This study generate data to apply proposed methods,
quantile regression and Bayes quantile regression. Response
variable, yi is generated from the model:

yi = β1xi1+β2xi2+ui,         i = 1,..., 200 (13)

where,  covariate  xi1  and  xi2   are   generated   from   a
standard   normal   distribution,   while   $1   and   $2  are  set  to

one.  This  study  considers  five  different  distribution  for  ui:
(i) Standard normal distribution, N(0,1), (ii) Exponential
distribution  with  one  degrees  of   freedom   minus   one,
Exp(1)-1,  (iii)  The  Student’s   t  distribution  with  five  degree
of freedom, t5, (iv) Heteroscedastic normal,  2N 0, 0.01*(Xβ)

and (v) Heteroscedastic error,  All five different 2
1 51 0.2x t .

distribution for ui, each is independent of xi1 and xi2. Case (i)
represents  a   normal   and   homoscedastic   error   model,
cases  (ii)  and  (iii)  represent  non normal  error  model,
meanwhile case (iv) and (v) represent heteroscedastic error
models. For  classical  method,  the  parameters  are  estimated
by  minimizing  Eq. 2 using  quantreg  package  in  R
language17. The normal prior for $(τ) is as given by Eq. 8 and
the hyper parameter are chosen as $(τ0) = 0 and B(τ0) =100I.

RESULTS AND DISCUSSION

For   Bayesian   estimation,  this   study   implemented
Gibbs  sampling  method  to  the  quantile  regression
approach  which  posterior  mean  is  calculated  from  a
sample of 5000 draws with the first 1000 of which are
discarded to mitigate the impact of start up effects. The result
are  summarized  in  Table  1,  presenting  the  Bias  and  Monte

 Table 1: Simulation study for non-normal and heteroscedastic error
Parameter of X1($1) Parameter of X2($2)
------------------------------------------ -------------------------------------------

 Conditions of error and methods Quantile τ Bias MCSE* Bias MCSE*
 ui~N(0,1) Classical quantile 0.25 0.063 0.113 0.029 0.103

0.50 -0.051 0.102 0.078 0.093
0.75 0.022 0.100 0.048 0.092

 Bayesian quantile 0.25 0.050 0.002 0.050 0.001
0.50 -0.030 0.001 0.056 0.001
0.75 -0.003 0.001 0.024 0.001

 ui~Exp(1)-1 Classical quantile 0.25 -0.067 0.052 -0.013 0.047
0.50 -0.022 0.075 -0.099 0.068
0.75 0.071 0.091 -0.086 0.083

  Bayesian quantile 0.25 -0.041 0.001 -0.004 0.001
0.50 -0.011 0.001 -0.076 0.001
0.75 0.065 0.002 -0.078 0.001

 ui~t5 Classical quantile 0.25 0.000 0.071 -0.026 0.065
0.50 -0.079 0.088 0.050 0.081
0.75 -0.240 0.102 0.209 0.094

 Bayesian quantile 0.25 0.015 0.002 0.028 0.001
0.50 -0.073 0.001 0.049 0.001
0.75 0.003 0.000 -0.002 0.000

 Classical quantile 0.25 0.001 0.000 0.002 0.000 2
iu  ~ N 0, 0.01*(Xβ)

0.50 0.001 0.000 0.001 0.000
0.75 0.004 0.001 0.001 0.001

 Bayesian quantile 0.25 0.002 0.000 -0.001 0.000
0.50 0.002 0.000 -0.002 0.000
0.75 0.003 0.000 -0.002 0.000

 Classical quantile 0.25 0.002 0.010 -0.004 0.0092
i 1 5u  ~ (1 0.2x )t

0.50 0.002 0.001 -0.002 0.001
0.75 0.013 0.004 -0.002 0.004

 Bayesian quantile 0.25 0.002 0.000 -0.007 0.000
0.50 0.004 0.001 0.000 0.000
0.75 0.002 0.001 0.000 0.000

*MCSE: Monte Carlo Standard Error
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Fig. 1(a-d): Trace plot and marginal posterior distribution for corresponding X1 and X2 at τ = 0.50, ui~Exp(1)-1, (a)  Trace  of  x1,
(b) Density of x1, (c) Trace of x2 and (d) Density of x2 

Carlo   standard  error   (MCSE)   for   each   parameter   model
in   selected   different   distributions   for   error.
The data  in  Table  1  presented  the  simulation  result  for

τ  =  0.25,  0.50  and  0.75  and  results  for  the  bias  and Monte
Carlo standard error (MCSE) for  $1  and  $2  in  each  conditions
of error. Table 1 shows that Bayesian quantile estimation
method yields lower biases than the classical method for all
five different distributions for error. Table 1 also informs us
that Monte Carlo standard errors of the Gibbs sampler are
lower than classical quantile standard errors for all conditions
of error. These results indicated the advantages of Gibbs
sampler method to the classical method. Gibbs sampler
methods could result parameter estimated with lower bias
and lower Monte Carlo standard error than classical quantiles
at any selected quantiles in respective conditions of error. 
The trace plots and marginal posterior distribution for all

conditions of error at all selected quantiles are checked. Due
to limited space, this study reported only when τ = 0.50 for
non-normal error distributions, ui~Exp(1)-1, which reported in
Fig. 1. For other quantiles, similar plots and marginal posterior
distributions are available by author.

Based  on  Fig.  1,  it  can  be  seen  that  the  convergency
of  all  parameter  estimated  can  be  reached  easily  in  only
5,000 iteration with burn in 1000. This also reported that all
marginal posterior density at τ = 0.50 are very similar for the
different distributions of error. Based on these empirical
results, this study informed that Gibbs sampling method
produces well estimated parameters in all three different
condition for error terms.

DISCUSSION

Bayesian quantile method implemented the asymmetric
Laplace distribution to form the likelihood function and
normal  for  prior  distribution  in  posterior  estimation
method. Simulation  study  was  implemented  to  show  all
three conditions of error distributions, they are normal error,
non-normal error and heteroscedastic error. The MCMC
method with Gibbs sampling is implemented to obtain the
value of parameter estimated. The convergency of parameter
estimated are also tested using traceplot and marginal
posterior distribution. This results that the  use   of  asymmetric
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Laplace working likelihood makes the Bayesian method
produces well estimated parameters to the classical quantile
regression method. 
The results found in this study were consistent with the

study of Alhamzawi et al.18, Oh et al.19, Mollica and Petrella11.
Meanwhile Alhamzawi  and  Yu20 also proved that Bayesian
approach in quantile regression can result better model
though in non-normal condition.

CONCLUSIONS

This study showed that Bayesian asymmetric Laplace
distribution method for quantile regression is a viable strategy
to model conditional quantiles when non normal and
heteroskedasticity are available in the data.

SIGNIFICANCE STATEMENT

This study discovered the new method that have ability
to model the data which do not fulfill the normality and
homogenous assumption of error term. This study hope can
beneficial for researcher especially who will construct a model
using simulation or empirical data.
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