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Abstract
Background and Objective: The Atmospheric Radars can provide accurate wind parameters using various spectral estimation techniques.
Existing methods for spectrum estimation, however, often fail to detect the signal at low signal-to-noise ratio (SNR) conditions and to
estimate precise wind parameters. In this study, a regularized minimization approach, Sparse Learning via Iterative Minimization (SLIM)
is considered for the spectral analysis. Methodology: SLIM, which is a high resolution semiparametric adaptive algorithm, follows an lq-
norm based minimization method for sparse signal and noise power estimation. This is applied for atmospheric data collected at National
Atmospheric Research Laboratory (NARL), Gadanki, India, from the Mesosphere-Stratosphere-Troposphere (MST) radar, backscattered
echoes. Results: The results show that SLIM gives a better SNR or high detectability. The Zonal, Meridional, Wind speeds are calculated,
and validated using the real-time Global Positioning System (GPS) Sonde data. Conclusion: It can be concluded that SLIM has better
performance when compared to the previous methods. The correlation between the wind speeds computed using GPS and SLIM for the
radar data collected in February 2015 has a correlation factor of 0.94.
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INTRODUCTION

Doppler estimation is essential for the detection and
estimation of wind parameters from the atmospheric radar
data1. The atmospheric radar used in the present study is MST
radar established at Gadanki (13.5EN, 79.2EE), Andhra Pradesh,
India. The Indian MST radar operates at 53 MHz starting from
3.5 km with a resolution of 150 m to 25.6 km above the earth’s
surface. The MST signals are always characterized by falling
signal-to-noise ratio (SNR), from which the detection and
estimation of atmospheric signals is often difficult and leads to
errors. Spectral estimation algorithms are applied to the radar
data to estimate the Doppler spectrum. The existing spectral
estimation method used at NARL is a software package named
Atmospheric Data Processor (ADP)1. The ADP is primarily the
periodogram method. The ADP processes the data in a
sequence of steps, which begins by determining the Doppler
profile of the radar echoes. The Doppler frequencies can be
obtained from these profiles. From the spectra, the radial
velocities can be found out, which then leads to the
calculation of Zonal (U), Meridional (V) and Wind Speed (W)
components. However, this software is found to give
satisfactory results only up to a certain height. 
Bispectral estimation algorithm2 is applied to radar at a

high computational cost. The advantage of a reduction in
variance in the multitaper spectral estimation3 has been
proposed and applied to the radar data. The main drawback
of the algorithm is spectral peak broadening. The estimation
of Doppler with certain parameters has been suggested4 that
can adaptively track the signal in the spectral range frame.
Wavelets5 and Cepstrum thresholding6 have been introduced
for Doppler estimation and cleaning of the spectrum. The
uniform filter banks are used for the spectrum estimation
using a polyphase approach7. Three different types of filter
banks have been proposed, of which the overlapped filter
banks have reduced variance with increased correlation
among the adjacent spectral components. Principal
Component Analysis (PCA) has been recommended before the
spectral estimation using minimum variance and Blackman-
Tukey methods8. All the existing methods used in spectral
estimation9,10 for atmospheric radar data comes under two
estimation methods either parametric or nonparametric. The
parametric methods require prior knowledge and suffer from
poor resolution and have high sidelobes. This is very severe
especially in case of missing data. Although some techniques
can give improved estimates but are sensitive to model errors.
The nonparametric approach has global leakage and local
leakage problems.

Recently, a high-resolution spectral estimation algorithm
i.e., Sparse Learning via Iterative Minimization (SLIM)11,12  have
been developed. The “lq-norm” based regularized
minimization method for sparse signal recovery and noise
power estimation is presented. This is referred to as SLIM. This
regularized minimization algorithm with the sparsity-
promoting constraint can provide precise and sparse
estimates. For complete and incomplete data, the algorithm
can attain exceptional spectral performance under different
environments. However, for the spectral estimation of high
dimensional data, SLIM is computationally expensive. In the
present study, SLIM is used to estimate the spectrum of MST
radar data collected from NARL. The proposed algorithm is
found to give excellent results for real-time atmospheric radar
data. 

MATERIALS AND METHODS

The MST radar data collected from the NARL is a uniformly
spaced complex baseband signal consisting of in-phase (I) and
quadrature (Q) phase components. The spectrum of the radar
data will have one or more frequencies which explain the
need sparse signal recovery algorithms for spectral estimation. 
Let us consider the problem of spectral estimation with

complex-valued   data   samples.   Assume  that  there is a
finite  number  of measurements and the signal vector x is
sparse which is an N×1 column vector. This constraint is
necessary since, the linear system has many solutions
indefinitely.
Let xn(n = 0, 1,..., N-1)  be  the  complex  amplitude  at  the

n-th frequency  grid  point  of  the  spectrum  and an (n = 0,
1,..., N-1) be the normalized contribution of the n-th frequency
grid point to the available N data samples.
Then the complex data signal can be represented as:

y = Ax+n (1)

where,  y  is  an M×1 vector that represents the received
signal and  n  is  an  M×1  vector  that  denotes the additive 
white  Gaussian  noise  components.  Assume that the signal
x is sparse and there is limited number of measurements
(M<N):

x = [x0, x1,..., xN-1]
T (2)

and:

A = [a0, a1,..., aN-1] (3)
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where,  x  is  a  column  vector  that  represents the spectrum
to  be   estimated  and  A  is  referred  to  as  the  steering
matrix.

Sparse learning via iterative minimization (SLIM): The
regularized  minimization  criterion  for   sparse  signal
recovery is:

   
x,η

= minˆx̂, g x,η

Where:

(4)   N2 q
2 nn 1

1 2
g x, M log || y Ax || | x | 1

q
     

 ×

The vectors x, y and η represent the complex-valued
signal, the received signal and the noise power respectively.
The user parameter q value lies between 0 and 1. This
approach is termed to as sparse learning via iterative
minimization (SLIM).
The   former   part   of   the   function

  is  the  fitting  term  and  the2
2

1
g(x, ) (i.e.,M log || y Ax || )  


next  part  of  the  function    is  the

N q
nn 1

2
g(x, ) (i.e., (| x | 1))

q
 

penalty term. Moreover, the penalty term will become 2||x||1-
2N, if q = 1 and is similar to the l1-norm constraint.
If q÷0, the penalty term will become  insteadN

nn 1
2 log x


of l0-norm constraint. Interestingly, when xn÷0, log xn÷-4 and
the term  promotes sparsity.N

nn 1
2 log x


The    SLIM    algorithm    can   be   seen   as   a   maximum

a posteriori (MAP) approach.
The Bayesian model for Eq. 1 is considered as follows:

(5)
 

 
 

 
q

n
2

|x | 1N q

n 1

y x,η ~ CN Ax,ηI ,

      f x e , f η 1
 

∝ ∝

where, f(x)  is  a  sparsity  promoting  prior for 0<q<1 and f(η)
is an  improper  prior  which means that  η has equal
probability over the range [0, 4). When q = 1, then   12||x||f x e∝
which is a Laplacian prior and has the finite peak at 0. When
q÷0, the prior distribution becomes    

2N

nn 1
f x (1 / x ),

∝
which  has   an  infinite  peak  at 0. The  smaller  q  has a
sharper peak at 0 and gives the sparse Bayesian inference
estimation.
The  MAP  approach  for  estimation  of x and  η are  given 

in Eq. 6:

(6)     
 q2

2 n
1 2

||y Ax|| x 1Nη q
x, M n 1

m
1

f y x,η f x f η = e  × e
(πη)

ax
   

 

Applying the negative logarithm to Eq. 6, the equation
will be equivalent to Eq. 4.
The cyclic minimization (CM) and majorization-

minimization (MM)13 methods are applied to solve the
optimization problem iteratively. The first given estimates of
x and η are assumed and by using the cyclic optimization
technique the estimates of x and η are found. The optimization
of x keeping η fixed and the optimization of η keeping x fixed
are the two steps used for iteration. The updated SLIM
formulae are as shown below:

C For i-th iteration, let x(i) and η(i) be the intermediate
estimates of x and η, respectively. We need to minimize
the function g(x, η) with respect to x 

The derivative (d/dxH)g(x, η(i)) is put to zero and solve for
x(i+1) that leads to the nonlinear Eq. 7:

(7)
   H

H H 1

d / dx g x,η(i) = 0

1 1
A Ax A y + P x = 0

η(i) η(i)


Where:

1

2

N

p 0 0

0 p
P =

0 p

 
 
 
 
 
  


 

   
 

and pn = |xn|2-q.
Since, P is a nonlinear function of x, it is difficult to solve

for x(i+1). We use a heuristic approach.
Put P = P(i), where P(i) = diag{p(i)}, p(i) = [p1(i), p2(i),...,

pN(i)]T and pn(i) = |xn(i)|2-q.
Then Eq. 7 becomes:

[AH A+η(i)(P(i))G1]x-AH y = 0 (8)

The solution to Eq. 8 is simple and as follows:

x = [AH A+η(i)(P(i))G1]G1 AH y

Finally, the (i+1) th iteration is given as:
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x(i+1) = [AHA+η(i)(P(i))G1]G1 AHy
x(i+1) = P(i)AH (AP(i)AH+η(i)I)G1 y (9)

Let  us  define   covariance   matrix   R(i) = AP(i)AH+η(i)I
then:

x(i+1) = P (i) AH RG1 (i)y (10)

C Next, the function g(x, η)is minimized with respect to η.
Setting (d/dη) g(x(i), η) to zero leads to:

(11)  2
2

1
η i +1 = || y Ax(i +1) ||

M


The algorithm is initialized  by  applying  a  matched  filter,
so that  for n = 1, 2,..., N,  where  an  is  the  2H H

n n n np 0 = a y / a a ,

n-th column of A and  where x(0) is    2
2η 0 = 1 / M || y Ax(0) ||

obtained from {pn(0)}. It finds the local minimum of the cost
function (Eq. 4) and converges rapidly.
The    convergence    criterion    for    the    algorithm    is

||x(i)-x(i-1)||2/||x(i)||2<), where, ) is a small positive number and
it shows no significant improvement after 15-20 iterations. The
summary of the SLIM algorithm is given in Table 1.

RESULTS AND DISCUSSION

The atmospheric data is collected from the MST radar on
July 2, 2014 and February 9-12, 2015 at 1737 LT to 1757 for all
six beam directions. The NARL provides MST radar  data  in  the
form of range bins, scan cycles. Each range bin contains 512
complex data time series sample points. The power spectrum
is estimated using the Fast Fourier Transform (FFT) algorithm
for each bin of time-series data and from the FFT  spectrum  of

each bin data, the frequency component is estimated by using
maximum peak detection technique. The same would be
repeated for all range bins as well as all six beams. After
obtaining Doppler frequency profiles for all six beams, the
Doppler velocities (vE, vW, vZX, vZY, vN, vS) are found by
multiplying each of the frequencies with c/2fc, where c is light
velocity and fc is the operating frequency of the Doppler radar.
The three wind velocity components are calculated by using
Doppler velocities of six beam directions (vE, vW, vZX, vZY, vN, vS),
as follows: 

(12)

1

x E W

y N S

z ZX ZY

v 0.603 0 0 0.1736(v v )

v = 0 0.603 0 0.1736(v v )

v 0 0 0.603 0.1736(v v )


     
          
          





Since, the Zenith-X and Zenith-Y beams are in the vertical
direction, they have no role in the determination of the wind
velocity.
The Wind speed W is calculated as:

(13) 1/22 2
x yW = v + v

The wind speed thus obtained is then compared with the
corresponding wind speed collected from the Global
Positioning System (GPS) radiosonde.
Figure 1a and b shows the output SNR estimated from

power spectrum using periodogram1 and SLIM (q = 0) for the
east and south beams respectively for the MST radar data
collected on February 9, 2015. The output SNR is obtained by
using the method proposed14. The comparison of average SNR
values in dB for six beams  on  February  9  and  10,  2015 for
the  periodogram  and  SLIM   algorithms  is  given  in  Table  2. 

Table 1: Summary of SLIM algorithm
Step Operation
I Obtain the initial power and noise estimates xn(0) and η(0) as

  2H H
n n n n for n 1p 0 = a ,2,. Ny / a a ..,
     nx 0 = P 0 = diag{p 0 }

    2
2η 0 = 1 / M || y Ax(0) ||

II Compute pn(i) = |xn(i)|2-q

III Compute the covariance matrix R(i) = AP(i)AH+η(i)I
IV Using the above values, update the following

     H 1x i +1 = P i A R i y

  2
2

1
η i +1 = || y Ax(i +1) ||

M


V Check if ||x(i)-x(i-1)||2/||x(i)||2<10G5, If this condition fails then iterate steps II to IV, else STOP

Table 2: Comparison of average SNR (dB) for periodogram and SLIM algorithms
Date Algorithm East West Zenith-Y Zenith-X South North
Feb 9, 2015 Periodogram 19.47 18.23 17.98 18.45 21.57 20.14

SLIM 23.96 23.17 22.02 23.21 24.28 22.82
Feb 10, 2015 Periodogram 22.35 23.41 19.81 20.85 17.86 18.56

SLIM 25.61 23.98 23.12 24.54 18.94 20.31
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Fig. 1(a-b): Height profiles of SNR estimated (a) East Beam and (b) South Beam of February 9, 2015

Fig. 2(a-c): Doppler height profiles for four scans of the east beam using (a) Periodogram, (b) SLIM and (c) Mean Doppler height
profile of the east beam

From    Table    2,    it    is    seen    that    SLIM    gives    the
better   improvement   in   SNR   values   for   all   the   six
beams.

The  Doppler  height  profiles   for   four   scans   of   the
east   beam   attained   by   using   Periodogram    and    SLIM
are  shown  in   Fig.   2a   and   b,   respectively    for    the   radar
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Fig. 3(a-c): (a) Zonal, (b) Meridional and (c) Wind speeds for July 2, 2014 data using GPS radiosonde, Periodogram and SLIM

Fig. 4(a-c): (a) Zonal, (b) Meridional and (c) Wind speeds for February 9, 2015 data using GPS radiosonde, Periodogram and SLIM

data   collected   on   February   9,   2015.   The   compared
mean  Doppler  profiles  are  shown  in  Fig.  2c. 

The Zonal, Meridional and Wind speed components
calculated using the GPS radiosonde, periodogram and SLIM

are depicted in Fig. 3 and 4 for July 02, 2014  and  February  09,
2015, respectively. It is revealed that the SLIM is following the
GPS. In addition to the method used at NARL, the PCA8

method  which  gives  the  better   results   than   the   previous
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Fig. 5(a-b): Comparison of wind speed using GPS, Periodogram, PCA and SLIM for (a) July 02, 2014 and (b) February 09, 2015

Fig. 6: Correlation between SLIM and GPS wind speeds for data during 9th-12th February, 2015

developed algorithms like Bispectral2, Multispecrtal3, Wavelets5

and  Cepstral  Thresholding6  is  considered.  The  wind  speed
for real-time radar data collected on two different dates
namely July 2, 2014 and February 9, 2015 using GPS,
Periodogram, PCA and SLIM is represented in Fig. 5.

The consistency of the proposed algorithm is checked by
calculating the correlation between GPS radiosonde data and
SLIM wind speeds for the radar data collected during 9th-12th

February, 2015. A significant correlation coefficient of 0.94003
is obtained between the GPS and SLIM, where as the
correlation is 0.87 between GPS and PCA and 0.85 between
GPS and periodogram. The high correlation factor acquired is
indicating the relative accuracy of the wind speed calculated
using  SLIM  confirming  its  efficiency  and  effectiveness.
Figure 6 shows the correlation between SLIM and GPS wind
speeds.
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CONCLUSION

The regularized minimization approach with lq-norm has
been considered. The atmospheric parameters using SLIM is
tested on data obtained from the MST radar. The obtained
zonal, meridional and wind speeds are calculated and are
validated using the simultaneous GPS data. The correlation
between the wind speeds computed using GPS and SLIM for
the radar data collected in February 2015 has a correlation
factor of 0.94003. The SLIM provides improved results than the
existing spectral estimation algorithms but with high
computational complexity. This is because the updating
process involves the computation of matrix inverse. Efficient
methods can be implemented to reduce the computational
complexity. In this letter, the user parameter q is chosen as 0.
Further investigation can be carried for various values of user
parameter.

SIGNIFICANCE STATEMENT

This study presents a data-adaptive technique that
improves the signal detectability of the MST radar data even
at low signal-to-noise conditions. The results can help the
researchers in the area of radar signal processing.
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