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Abstract: In this study, a novel algorithm called Dynamic Fuzzy Clustering (DFC) is proposed for clustering
time-course gene expression data. The proposed method combines Autoregressive (AR) model and
conventional Fuzzy Clustering Algorithm (FCM). Under this approach, a time-course gene expression data can
be analyzed as a set of dynamic time series with AR model in order to utilize the important dynamic information
more efficiently and the forecast process m AR model can be adjusted using the corresponding fuzzy
membership such that better clustering results can be obtained. Experiments performed on a synthetic and two
real-world time-course gene expression datasets also indicates that this proposed approach can be more
effective than some other conventional clustering algorithms such as FCM and simple dynamic model-based

clustering algorithm.
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INTRODUCTION

Time-course gene expression data are often defined
as a series of values recorded m each tune pomnt
according to the periodic transformation of cells
(Carla and Moller-Levet, 2003). Conventional clustering
algorithms, such as k-means clustering (Hartigan and
Wang, 1978), Self-Orgamzing Maps (SOM) (Kohonen,
1997) and hierarchical clustering (Fisen et al, 1998)
cannot be appropriate for the time-course gene expression
data because that these methods all ignore the important
dynamic relationship in the data.

The problem of capturing the dynamic patterns in the
particular case of gene expression time-course data has
been recently addressed by several authors (Fraley and
Raffery, 2002; Moller-Levet et al., 2003). The common idea
in these studies is to represent the gene expression time-
series as continuous or piecewise continuous curves and
then to perform clustering based on the estimated curves.
The Fuzzy Short Time-Series (FSTS) clustering method
proposed by Moller-Levet et al. (2003) is based on the
mcorporation of a new distance metric, which utilizes a
plecewise lnear model, into a standard fuzzy clustering
scheme. This method is simple and fast but its underlying
linear assumption may be an oversimplification in the type
of problems encountered mn real biological applications.
One promising approach is to use a general multivariate
(Gaussian model to account for the correlation structure
(Fraley and Raffery, 2002). However, such a model still
ignores the time order of gene expression.

Other popular ways to exploit time dependences 1s
the use of Hidden Markov Models (HMM) and
autoregressive model to describe the time-course gene
expression. An HMM can be viewed as a stochastic
generalization of a finite-state automata and it provides a
probabilistic  description of temporal dependences.
Although HMM have been widely used in many fields,
such as speech recognition and digital communications,
their application on the clustering of temporal gene
expression profiles has not been widespread. One line of
work utilizes HMM to devise model-based metrics for
time-series. The idea is to generate an HMM for each
sequence and then to compute the Log-Likelihood (I.1.) of
each HMM for any of the sequences. This information
is used to build a matrix of distances between sequences
and then the data 1s clustered by applying a distance-
based clustering method employing such a matrix
(Bicego et al., 2003, Smyth, 1997). Alternatively, the L.Ls
can be directly utilized as features for later clustering
processing (Panuccio et al., 2002). However, there are
several limitations in the LIL's calculation, which may
degrade the performance of the whole clustering analysis.
First, in order to calculate the LLs, one HMM 1s trained for
each sequence. Since reliable training requires long
sequences, the reliability of the clustering result may be
heavily degraded when dealing with short sequences of
gene expression data. Second, since each HMM is trained
separately and mndependently, the model lacks a global
view on the overall distribution of the patterns in the data.
Finally, this technique assumes that for each gene the
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transitions between neighboring temporal observations
follow the same stationary stochastic process. However,
this time-invariance assumption does not usually held in
microarray data, especially when the expression measures
are taken non-uniformly in time. The autoregressive model
1s a linear regression equation which 1s a more appropriate
model for this application. The autoregressive model can
make use of the self-relationship in the data by linking the
current value of some variable to its value in the previous
period and a constant term (Wu ef al., 2005). However, the
autoregressive model is limited by the requirement of time
mterval and selection of order p. So new errors may be
induced in the forecast of time point data followed.

This study introduces a new Dynamic Fuzzy
Clustering Method (DFC) based on autoregressive model
for time-course gene expression data in which fuzzy
partition clustering algorithms and autoregressive model
are integrated. Present new method can overcome the
disadvantage in the conventional clustering methods, in
which self-relationslup information 1s omitted, by
introducing the fuzzy membership to adjust the results
dynamically when forecasting time pomt data using
autoregressive model. Compared with FCM, our clustering
results can be better for time-course gene expression data.

MATERIALS AND METHODS

Fuzzy Clustering Algorithm (FCM): Fuzzy partition
clustering algorithms are unsupervised learning methods
1n pattern recogmtion field. These algorithms can partition
data into different groups automatically according to
some distance measurement by machine learruing. Due to
most of real-life objects dose not have strict attributes, the
membership degree chosen as only 1 or 0 in conventional
hard partition cannot reflect the real relationship
between samples and groups. Apparently, the description
that a sample belonging to different groups with their
membership degree has obvious advantage. Fuzzy
C-Means algorithm (FCM) (Zhao and Xue, 2000) which is
proposed by Dumn m 1974 and developed by Bezdek
has been widely used to achieve this goal (Zhang and
Yu, 2004).

InFCM, let x;(i=1, 2, ..., n) be a set consisting of n
samples, where, ¢ 1s the No. of clusters, m; (1=1, 2, ..., ¢)
are the centers of ith cluster, |1(x;) is the membership of
the 1th sample in the jth cluster. The objective function
defined by the membership function can be defined as:
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Where, b(l<b<tee) represents the so-called fuzzy
index (Zhao and Xue, 2000), w(x)e (0, 1),
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Correspondingly, the update rules can be found by
mimmizing Eq. 1 with Eq. 2, 1.e.,
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Autoregressive model: Autoregressive model is a more
appropriate model for time-course gene expression data
(Shu-Xin Zhang and Li-Xin Qi, 2003). In its simplest form,
an autoregressive model 1s a linear regression equation
which links the current value of some variable to its value
1n the previous period and a constant term.

Let x = {x,, ..., Xo, ..., Xy} be a time series of
contimuous  values with M  equally-time-spaced
observations. The time series follows an autoregressive
model of order p, denoted by AR (p), if the value of the
series at time m (m>p) is a linear function of the values of
previous p observations plus a term representing error.
More formally, an autoregressive model of order p may be
written as:

(5)
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Where, a (1 = 1, ..., p) are the autoregressive
coefficients and g, (m = p+1, ..., M) represents error. This
study assumes that the error has a normal distribution
independent of time with mean O and variance ¢°.
Thus the probability  distributions  of
x{m=ptl, ..., M), with (x_,. ..., x,.,) are normal with mean
Xyt X, and varianceo®, in terms of (Wu ef dal.,
2005). The probability distribution of x, can be
defined as:

conditional
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So, the log-likelithood function that time series x 1s
generated by an autoregressive model of order p with
coefficients a(i = 1, ..., p) can be written directly as
follows:
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Dynamic Fuzzy Clustering algorithm (DFC): In this
subsection the Dynamic Fuzzy Clustering algorithm (DFC)
is proposed based on the characteristic of the fuzzy
membership function in the above fuzzy clustering
algorithm and the above autoregressive model to combine
the advantage of the two methods.

In FCM, the objective function is defined based on
the distances between samples
uncomparability.  After autoregressive model 1s
introduced, the distance in the objective function can be
replaced with the maximum likelihood in order to measure
the comparability in the samples. Thus, the objective
function expression m algorithm DFC is designed as;

to measure the
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Accordingly, our purpose 1s to get the maximum of
the above objective function J,".

By assuming the first p observations have a
multivariate normal distribution with mean u = (u,,...,u,,)
and covariance matrix % = 0yl, (I ,represents the p*p
identity matrix). The maximum likelihood distribution in the
objective function can be defined as (Wu ef al., 2005):
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As in Wuet al. (2005), let x, be the vector [x,, ..., x|,
y be the vector [x,, ..., x " and X be the (M-p*p
regression matrix whose mth row 1s (x,,. ..., x,,) for
m = p+l, ..., M. By substituting into Eq. 10, we have:
L(x|u,0.,a,6%)
=logpix|u,0;,a,6°)

=- MZ_ P log{Zns’)+ glog(chzj

(11)
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For a time-course gene expression data, each gene
sample can be viewed as a single time series. Given a set
of the observed tume-course gene expression data
X=1x,..., X, ..., X4, where, x;(i=1, ..., n) represents a time
series. If the dataset X contains K clusters and the optimal
partition of X can be assumed to be C = {C;, C Cy},
then a gene sample x; should be put in cluster j, if it can
malke J;; to reach its maximum.

b
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Where, be(1,3) 18 used m this study. In terms of
Eq. 8, we have
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Where:

|C,| represents the number of time series in cluster C,
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(1) Divide dataset into its initial partition with initial K clusters by using K-means clustering algorithm.
(2) Estimate i ( ) u GUk &, 02 using Eq. 14-18.

(3) Assign sample x;to cluster j for which J; is maximal,i=1, 2, ...,n,jj {1, 2, ..., K}.
(4) Stop if J; becomes a given threshold or the maximum difference of J; in this consecutive partitions
is less than another given threshold. Otherwise go to Eq. 2.

Fig. 1: Algorithm for DFC

(1) Randomly divide the original dataset into two non-overlapping sets, a learning set L and a test set T.
(2) Apply the evaluated method to the learning set L to obtain a partition P;.

(3) Construct a predictor C using the cluster labels from the obtained partition P;.

(1) Apply the predictor C to the test set T to get the predicted partition Py,

(3) Apply the evaluated method to the test set T to obtain a partition Pr.

(6) Calculate ART for partitions Pr* and Pr.
Fig. 2: The procedure for estimating ART

By maximizing J, we can obtain the following update rules
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Where, k=1, ..., K.
According to the above update rules, the proposed
algorithm DFC can be summarized as Fig. 1.

Validity measures: The validity process explores whether
the clustering algorithm with the specified parameters
(number of clusters, similarity measure, model, etc.) can
identify the underlying patterns of the considered dataset
(Hoppner et al., 1999). In order to solve this problem,
several cluster quality or validity measures have been
proposed m literature. For gene expression data, the best
and simplest method is comparing the clustering result
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with the correct labels. But it 1s not possible to get all the
labels of the gene expression data because of the noises
in the real gene expression data and some important
information can be achieved by existing techniques.
Since a clustering result can be considered as a partition
of objects into a number of groups, for evaluating a
clustering method 1t 1s necessary to define a measure of
agreement between two partitions of the same dataset.
We uses the Adjusted Rand Index (ARI) (Dudoit et al.,
2002) to evaluate the quality of the clustering results in
this paper.

Consider two partitions of N objects, the R-cluster
partition U = {u,, ..., u} and the S-cluster partition V =
{v,....v.}. One may construct a contingency matrix,
where, n; denctes the number of objects that are both in
clusteryandv,i=1,..,r,j=1, .., s Let:

denote the sum of row i(i =1, ..., 1) and the sum of column
G = 1,...,8) in the contingency matrix, respectively
and let:

[
I
0
T
c:’m

and V=()=N (N-1)/2 (the number of pairs of N
objects). Based on the contingency matrix of two
partitions, the ARI 1s defined as (Dudoit ef af., 2002);
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The ARIT is an adjusted Rand index in that its expected
value 15 1 when they matched perfectly and O when the
two partitions are selected at random.

The procedure for estimating ARI can be described
mFig. 2.

In order to make the results far in this study, we run
the above procedure 10 times and evaluate the quality of
the obtained clustering results by taking the average
value of the obtained ARITs for the given number of
clusters K. ART ranges from -1 to 1 and so does AARI.
Accordingly, the larger the AARIT, the better the quality of
the obtained clustering results is.

RESULTS AND DISCUSSION

Synthetic dataset: The synthetic dataset can be generated
by the sine function to medel cyclic behavior of genes in
(Yeung ef al, 2001). Let x; be the simulated expression
level of gene 1 at time point J] m the dataset and be
modeled by x, =8+A* (e -Bd(1L,))), where, G(1,]) = sin(2mj/8-
wy,He). o represents the average expression level of gene
i, which is chosen according to the standard normal
distribution. f; is the amplitude control for gene i, which
is chosen according to the normal distribution with mean
3 and standard deviation 0.5. A, is the amplitude control at
time ), which 1s chosen according to the normal
distribution with mean 3 and standard deviation 0.5. §
represents additive experimental error at time pomt j,
which 1s chosen according to the normal distribution with
mean O and standard deviation 2. ¢(1,j) models the cvclic
behavior of genes. Each cycle 15 assumed to span eight
time points. Different clusters are represented by different
phase shifts and w,, represents a phase shift for gene 1 in
cluster k, which 1s chosen according to the umform
distribution on interval (0,2 w). The random variable €
represents the noise of gene synchronization, which is
chosen according to the standard normal distribution.
Using the model above, a synthetic dataset 13 generated
consisting of expression levels of 500 genes at 24 equally
spaced time pomts.

The dataset generated above can be descript in
Fig. 3, in which the x-axis represents the observational
values of one sample and the y-axis represents the
identification code of each sample. The curve of each
sample observed at different time points are described in
the same coordinate.

Real dataset: The real datasets of time-course gene
expression data and the distribution figures used in the
experiment can be achieved from http://genome-
www stanford.edu/SVD. The dataset comes from the

63

circulation experiment for the yeast gene and consists of
expression level of cell-cycle regulated genes at equally-
spaced time poimnts. The 396 samples in original data Yeast
(Fig. 2) and the 1000 samples of standardization data
Sort_Elutriation (Fig. 3) are chosen to conduct the
experiment (Alter et af., 2001). Each sample consists of
18 and 14 observation values at equally-spaced time
points, respectively.

The real dataset used in the experiment can be
descript in Fig. 4 and 5, in which the x-axis represents the
observational values of one sample and the y-axis
represents the identification code of each sample. The
clusters of the time-course gene expression data can be
observed in the figures immediately, because the
distributions of different clusters are not in accordance
with the identification code of each sample.

The original data Yeast has been standardized before
experiment in order to facilitate the assumption in the
study that data should obey the normal distribution with
mean 0 and standard deviation 1.

Synthetic dataset experiment: Tn this experiment, the
synthetic dataset has been analyzed using algorithm DFC,
FCM and the dynamic model-based clustering algorithm
(Wu et al, 2005) with the order p be 1, 2 and 3,
respectively. We partition the synthetic dataset with
500 samples mto 2 to 10 clusters. As reported in
(Wu et al., 2005), the best results of the dynamic model-
based clustering algorithm can be achieved with the order
p = 1 and the average results of FCM m 10 times are also
presented in. Figure 6 shows the contrastive effect about
the clustering results obtained these three algorithms, in
which the x-axis represents the number of clusters and the
y-axis represents the corresponding AART.

By comparing the obtained optimal results for the
synthetic dataset, we can see that the proposed algorithm
DFC is better than the dynamic model-based clustering
algonthm and FCM and DFC reaches its best results when
p = 2. which 1s different from p =1 in (Wu et al.,, 2005).

Real dataset experiment: In this example we take the real
dataset yeast. The same execution strategy about the
DFC, FCM and the dynamic model-based clustering
algorithm is adopted. Figure 7 shows the obtained
contrastive effects on these three algorithms.

Obviously, the proposed algorithm DFC and the
dynamic model-based clustering algorithm have better
quality of clustering than FCM who has ignored the self-
relationship on the time points for partial Yeast dataset.
The self-relationship in the time-course gene expression
data has been essentially testified before the experiment.
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As a whole, the clustering results from the proposed
algorithm DFC are better than those from the dynamic
clustering algorithm and the clustering quality is not
strongly affected by the order p of the autoregressive
model.

Also, we tested another real dataset Sort Elutriation
for these three algorithms. Figure 8 shows the obtained
results. Obviously, it indicates that the same conclusion
still holds.

CONCLUSIONS

Recently, the time-course gene expression data are
employed widely in bioinformatics and the conventional
clustering algorithms are not fit for such data. Tt is
necessary for us to suggest a mixed method to fit the
requirement of such analysis.

We explore the proposed clustering algorithm DFC,
which incorporates fuzzy clustering with a autoregressive
model well m this study. Our experimental results
demonstrate that the proposed algorithm DFC is better
than FCM and the dynamic model-based clustering
algorithm. Another obvicus feature of DFC exist in that its
clustering results seem not be affect by the order p. In
other words, we can adjust p to avoid the localization
1ssue existing in the dynamic model-based clustering
algorithm in (Wu et al., 2005). Future study includes
exploring its robust version of DFC such that it can be
very fit for noisy time-course gene expression data.
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