ISSN 1682-296X (Print) ISSN 1682-2978 (Online)

Bio Technology

ANSImet

Asian Network for Scientific Information 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

Evaluation for the Production of Antialgal Substances from Streptomyces neyagawaensis

S.A. El-Sherbiny, Y.M. El-Ayoty, M.F. Ghaly and N.S. Fleafil Department of Botany, Faculty of Science, Zagazig University, Egypt

Abstract: Optimization of *S. neyagawaensis* N₆₀ (Egyptian isolate) for the production of natural antialgal substance was carried out. The Clear Inhibition Zone (CIZ) in the different algal species indicated the maximum biological activity of metabolite was attained at 6 g L⁻¹ maltose 1.05 g L⁻¹ NH₄Cl and 1 g L⁻¹ K₂HPO₄ under pH 6.5, temperature 28°C and incubation period 7 days. For microanalysis, xylene was the most efficient solvent for extraction of the lytic substance which has one spot under UV lamps at RF 0.65 using TLC. Identification of the antialgal substance produced by *S. neyagawaensis* was carried out on the basis of elementary analysis, IR, mass and NMR spectra. The earlier analysis emphasized that the molecular weight equal 369.45 kDa with chemical formula C₁₉H₂₁NO₆ (Anthracidin A). Different concentrations of Anthracidin A were tested against *Anacystis nidulans* revealed that chlorophyll a, nucleic acids were reduced with increasing the concentration of Anthracidin to 40 μg mL⁻¹.

Key words: Anthracidin A, antialgal, Streptomyces, Anabaena, Nostoc, algicidal

INTRODUCTION

Streptomycetes especially the genus Streptomyces were very potent producers of secondary metabolites including antibacterial enzymes and toxins (Chater and Bibb, 1997; Habib et al., 2001; Kokare et al., 2004; Choi et al., 2005; El-Shirbiny et al., 2007; Mu et al., 2007; Kang et al., 2008; Ren et al., 2009). About of 10.000 known antibiotics, 45-55% was produced by Streptomyces (Demain, 1999; Lazzarini et al., 2000).

Various actinomycetes were found to possess strong algicidal properties. Such forms have been found extensively in cultures isolated from muds and other natural products (Safferman and Morris, 1962, 1963; Amaro et al., 2005; Su et al., 2007; Roth et al., 2008). It has been reported that chloramphenicol, produced by Streptomyces venzuelae inhibits both chloroplast and protein synthesis in Euglena (Jacobson et al., 1964; Pogo and Pogo, 1965). Rifamycin, produced by Streptomyces mediterranei has been reported to inhibit the Euglena, the chloroplast target of rifamycin in Euglena chloroplasts is the DNA dependent RNApolymerase that blocks its activity and inhibits RNA synthesis (Rodrigues et al., 1974). A Streptomyces species capable of lysing both Anabaena cylindrica and Tolypothrix tenuis and this lysis was attributed to interference of the antibiotic with cell wall function and/or other structural components (Whyte et al., 1985). Streptomyces cellulose enzyme system releasing glucose from walls of *Chlamydomonas reinhardtii* and *Ulorhrix fimrata* and this preparation also converted the algal cells to spheroplasts and this lytic appearance was due to streptomycetes lysozymes (Gunnison and Alexander, 1975).

Yamamoto et al. (1998) showed that Streptomyces phaeofaciens produced compound causing extensive lysis of mycrocystis cells.

Blooms of cyanobacteria (as Microcystis, Anabaena, Aphanizomenon, Nidularia) can cause significant public health problems, such poisonings of farm animals, wildlife and adverse health effects in humans (Oliver, 1994; Zingone and Enevoldsen, 2000; Jeong et al., 2005; Kim et al., 2009). Natural blooms of Microcystis aeruginosa and Aphanizomenon flos-aquae produce hepatotoxins, neurotoxins and other potential inhibitors (Sasner et al., 1994). Microcystis aeruginosa is widespread in eutrophic lakes and reservoirs throughout the world (Carmichael, 1992; Han et al., 2002; Hong et al., 2002; Ahn et al., 2003; Choi et al., 2005; Mu et al., 2007) and may lead to the production of microcystin, a hepatotoxins that affects fish, birds, wild animals, livestock and humans. Also it is associated with allergies, irritation reactions, gastroenteritis, liver diseases and tumors (An and Carmichael, 1994; Bell and Codd, 1994; Harada, 1995; Dawson, 1998; Nagayama et al., 2003). Oscillatoria rubescens and Oscillatoria agardhi complex produce hepatotoxins (Carpenter and Carmichael, 1995) and may be responsible for dermatitis or skin irritation

when people come in contact with polluted water. Also, algal blooms on our lakes and water resources are mostly from cyanobacterial groups that caused other problems, such as nuisance foul odors, decreased aesthetic value, taste and odor in water supply and depletion of dissolved oxygen of water (American Public Health Association, 1992; Carmichael, 1997; Sigee et al., 1999; Kim et al., 2009).

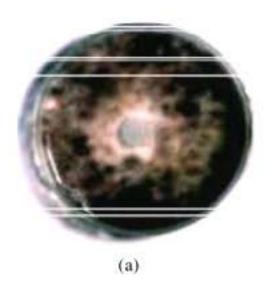
The present study aims to evaluate the biological activity some actinomycetes and their metabolites to overcome the trouble shouting produced from the growth of different algal species.

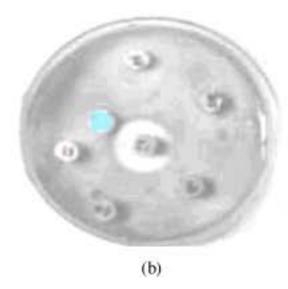
MATERIALS AND METHODS

Strains and media: Isolate No. 60 was isolated on starchnitrate medium from cultivated soil according to Waksman (1959). Following the diagnostic key of Bergey's Manual (William and Felscher, 1989) and surveying the literatures on the description of Streptomyces species and isolate No. 60 was identified belonging to Streptomyces neyagawaensis (Pridham et al., 1958).

Detection of algal lytic actinomycetes: The experimental organisms was streaked on agar plates and incubated for 8 days at 28°C. After complete growth of *S. neyagawaensis* No. 60, the solid medium was cut into discs (5 mm) using cork borer and placed on watanabe medium preinculated with cyanobacteria (*Anabaena* sp. *Anabaena flos-aqueae* and *Nostoc* sp.) according to Yamamoto (1978). After the elapse of incubation period, the Clear Inhibition Zones (CIZ) induced by *S. neyagawaensis* No. 60 were measured. All experiments were carried out in phycology and bacteriology labs of botany department, faculty of science, Zagazig University during 2005.

Biological control for Anacystis nidulans: With respect to the growth conditions of Anacystis nidulans, 0.1 mL of S. neyagawaensis No. 60 suspension was seeded to the nutritive liquid medium of BGII, the initial optical density of algal medium at zero time was calculated at 665 nm. Then all the flasks were incubated for 2 weeks under normal growth conditions. The optical density (growth rate) was calculated every 2 days (Uchida et al., 1998).


Determination of chlorophyll "a": The technique applied was described by Richards and Thompson (1952).


Nucleic acid analysis: The quantitative determination of RNA was carried out according to the method of Ashwell (1957) while DNA determination was carried on according to Burton (1968).

Extraction and purification of antialgal substance: The optimum medium for the maximum production of the antialgal substance that contained the best carbon, nitrogen, phosphorus, microelement, vitamin sources with optimum pH value was prepared, autoclaved and inoculated with the experimental organism and incubated on a rotary shaker (200 rmp) for 7 days (optimum incubation period) at 37°C, the active ingredient substances for the best medium were of (g L⁻¹) maltose, 6 g, NH₄Cl, 1.05 g, K₂HPO₄ 1.0 g; MgSO₄. 7H₂O, 0.5 g; NaCl, 0.5; CaCO₃, 3 g; FeSO₄. 5H₂O, 0.01 g; vitamin B₁₀, 10 μg and distilled water up to 1000 mL at the end of incubation period, the cultured broth (5 L) was centrifuge and the resulting supernatant was dialyzed against hypertonic sugar solution (cellulose lag method). Subsequently, the resulting residue was mixed with xylene (3 times). The organic layers were combined and concentrated under vacuum to about 5 mL using a rotary evaporated. To the concentrated layer, a non-polar organic solvent (petroleum either 40-60) was added drop by drop until reddish crystalline substance appeared. The solid fraction was washed with ether and then dried in air. Continuous purification of substance using TLC (silica gel G54) was carried out. The major spots appeared at $R_f = 0.65$ was gathered and eluted with petroleum ether (40-60). The partially purified fractions were microanalyzed using IR, Mass and NMR spectra and elementary analysis for complete identification of the antialgal substance.

RESULTS

Antimicrobial activity of S. neyagawaensis No. 60 against tested cyanobacteria: The production of antibiotic substances by streeptomycetes was found to be largely influenced both qualitatively and quantitatively by the type of test organism (Waksman, 1961; Hussien et al., 1998; Salama et al., 1980; Mohamadin, 1987). The data recorded in Table 1 and Fig. 1a-c showed that the highly sensitive algal species to the block agar born streptomyces was detected against Anabaena sp. which gave a clear inhibition zone (30 mm) followed by Sphaeronostoc microscopica (25 mm inhibition zone) and Nostoc sp. (24 mm). In a similar manner results in Table 2 showed chlorosis and complete lysis of Syncoccus sp. and Anacystis nidulans cells when treated with 1 mL spore suspension of Streptomyces neyagawaensis No. 60. The maximum drop in algal growth is indicated after 10 days, with percentage of inhibition for both tested alga 52.5 and 82.4%, respectively. These results are in accordance with the results obtained by El-Sherbiny et al. (2007).

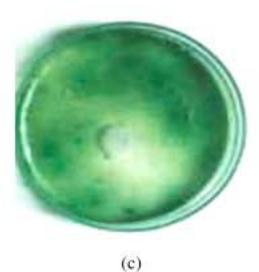


Fig. 1: Inhibition zone (mm) of Streptomyces neyagawaensis N40 against tested cyanobacteria, (a) Nostoc sp. (b), Anahaena sp. and (c) Anabaena flos-aqueae

Table 1: Clear inhibition zones of S. neyagawaensis No. 60 against tested Cyanobacteria

Tested algae	Inhibition zone (mm) (Diameters of disk = 5 mm)
Nostoc pisanale	22
Anabaena sp.	30
Anabaena flos-aquae	22
Sphaeronostoc microscopica	25
Nostoc sp.	25

Table 2: Antialgal activity induced by S. neyagawaensis No. 60 against tested cyanobacteria in liquid media (inhibition expressed as a reduction in optical density at 665 nm)

	Absorbance reading at 665					
Samples	Zero time	2nd day	4th day	6th day	8th day	10th day
Untreated alga*	0.11	0.13	0.15	0.17	0.19	0.40
Treated alga**	0.11	0.14	0.15	0.16	0.23	0.19
Untreated alga***	0.12	0.13	0.17	0.34	0.37	0.85
Treated alga****	0.12	0.13	0.14	0.19	0.16	0.15

^{*}Untreated alga: Syncoccus sp., **Treated alga: Syncoccus + S. neyagawaensis No. 60. ***Untreated alga: Anacystis nidulans, ****Treated alga: Anacystis nidulans + S. neyagawaensis No. 60

Biosynthesis requirements for production of antialgal substance by S. neyagawaensis No. 60: Earlier investigators have shown that the production of antibiotics is not a fixed property of organism as it is variably affected by environmental and nutritional factors (Ammar et al., 2003; Choi et al., 2005; Volka and Furkert, 2006). The data presented in Table 3-5 revealed that maximum production of the antialgal substance was attained at a growth pH 6.5 and 28°C for 7 days incubation on a rotary shaker operating at 200 rpm. The results in Table 6-10 showed that the highest production of lytic agent by S. neyagawaensis No. 60 was achieved using different carbon, nitrogen, phosphorous, microelement and vitamin sources. In conclusion the optimum medium was as follows (g L-1): maltose, 6 g; NH4Cl, 1.05 g; K2HPO4, 1.0 g; MgSO4. 7H2O, 0.5 g; NaCl, 0.5 g; CaCO3, 3 g; FeSO₄.5H₂O, 0.01 g; vitamin B₁₀, 10 µg and distilled

Table 3: Effect of different incubation periods on the production of antialgal substance by S. neyagawaensis No. 60

	Inhibition zone (mm) broth extract				
Incubation period (day)	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.		
2	0	0	0		
3	13	0	11		
4	18	13	14		
5	22	17	19		
6	22	27	22		
7	35	30	32		
8	30	24	26		
9	24	18	20		
10	19	12	15		
11	12	0	0		
12	0	0	0		

Table 4: Effect of different pH values on the production of antialgal substance by S. neyagawaensis No. 60

pH values	Inhibition zone (mm) broth extract			
	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
6.0	21	14	17	
6.5	36	30	34	
7.0	30	22	23	
7.5	28	21	22	
8.0	20	12	15	

Table 5: Effect of different incubation temperature on the production of antialgal substance by S. neyagawaensis No. 60

Incubation	Inhibition zone (mm) broth extract			
temperature	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
15	20±0.10	14±0.06	18±0.15	
20	30±0.15	24±0.12	27±0.08	
25	32±0.00	26±0.10	29±0.11	
28	37±0.07	32±0.00	35±0.00	
30	36±0.11	32±0.00	34 ± 0.13	
35	33±0.00	28±0.15	30±0.14	
40	27±0.30	21±0.17	25±0.00	
45	No growth	0.00	0.00	

water up to 1000 mL. these results are in agreement with the results obtained by Naki et al. (2000), Toshio et al. (2000), Yutaka et al. (2001), Gupte and Kalkarni (2001), Ammar et al. (2003), Ghaly et al. (2005), Abou El-Hawa et al. (2006) and El-Sherbiny et al. (2007).

Table 6: Effect of different carbon sources on the production of antialgal substance by S. nevagawaensis No. 60

	Inhibition zone (mm) broth extract			
Carbon sources	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
Starch	37±0.31	32±0.16	35±0.19	
D-glucose	29±0.05	20±0.09	21±0.00	
D-fructose	32±0.00	25±0.15	28±.31	
D-galactose	22±0.14	18±0.13	19±0.02	
Sucrose	22±0.21	13±0.00	15±0.14	
Maltose	39±0.00	32±0.14	36±0.03	
α-lactose	20±0.03	12±0.21	14±0.07	

Table 7: Effect of different nitrogen sources on the production of antialgal substance by S. neyagawaensis No. 60

	Inhibition zone (mm) broth extract			
Nitrogen				
sources	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
KNO ₃	39±0.05	32±0.10	36±0.11	
NaNO ₃	33±0.03	26±0.12	28±0.06	
NH₄Cl	41±0.11	33±0.09	36±0.00	
NH_4NO_3	30±0.03	22±0.11	25±0.12	
$(NH_4)_2SO_4$	35±0.13	28±0.08	30 ± 0.13	
Peptone	36±0.11	30±0.03	34 ± 0.11	
Yeast extract	38±0.60	31±0.14	34±0.07	
Beef extract	35±0.14	29±0.90	32±0.21	
Asparagines	40±0.31	32±0.11	36±0.02	

Table 8: Effect of different phosphorus sources on the production of antialgal substance by S. neyagawaensis No. 60

	Inhibition zone (mm) broth extract			
Phosphorus sources	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
K_2HPO_4	41	33	36	
KH_2PO_4	36	30	32	
Na_2HPO_4	38	31	33	
NaH ₂ PO ₄	33	28	3	
$(NH_4)_2HPO_4$	40	32	35	

Table 9: Effect of different microelements on the production of antialgal substance by S. neyagawaensis No. 60

	Inhibition zone (mm) broth extract			
Microelements	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
Control	41	33	36	
FeSO ₄	42	36	37	
CuSO ₄	38	33	34	
$MnCl_2$	38	34	36	
NiCl ₂	34	29	30	
$ZnSO_4$	40	35	36	
Na_3BO_3	35	29	30	
Na ₂ WO ₄ .2H ₂ O	30	25	26	
COCl ₂	37	32	33	
(NH ₄) ₆ MO ₇ O ₂₄ 4H ₂ O	32	27	29	

Table 10: Effect of different vitamins on the production of antialgal substance by S. neyagawaensis No. 60

	Inhibition zone (mm) broth extract			
Vitamins	Anabaena sp.	Anabaena flos-aquae	Nostoc sp.	
Vitamin C	42	36	37	
Vitamin A	42	35	37	
Vitamin B ₂	37	31	33	
Vitamin B ₆	40	34	36	
Vitamin B ₁₀	38	31	34	
Vitamin B ₁₂	44	37	40	
Vitamin B ₁₂	43	36	38	
Vitamin B- complex	44	36	39	

Effect of different concentrations of antialgal substance produced by S. neyagawaensis No. 60 on chlorophyll "a" and nucleic acids content of Anacystis nidulans: Results in Table 11 revealed that, the content of chlorophyll "a" decreased with increasing the concentration of the antialgal substance of S. neyagawaensis No. 60. The maximum sharp decline in chlorophyll "a" content was obtained with a concentration of 40 μg mL⁻¹. The percentage of inhibition in chlorophyll "a" content was 74.3%, when compared with the corresponding control.

Results in Table 12 showed that, the content of nucleic acids decreased with increasing the concentration of lytic substance up to 40 µg mL⁻¹. The maximum percentage of inhibition in nucleic acid of *Anacystis nidulans* was 64.1% in DNA content and 45.1% in RNA content as compared with the concentration of the corresponding contents. These results are in agreement with the results of Rodrigues *et al.* (1974).

Extraction and purification of the antialgal substance:

The experimental organism was cultured in the optimized liquid-shaken medium in 250 mL Erlenmeyer flask, each contain 50 mL. After autoclaving, each flask was inoculated with 1 mL of dense spore suspension of S. neyagawaensis under a septic and conditions. All flasks were incubated at 28°C for 7 days. After the expiry of the incubation period, the fermented media were collected and the biomass separated from the broth by filtration to obtain cell-free filtrate. Aliquot of broth was concentrated to about 500 mL by dialysis process (cellulose bag), the active substance was extracted by xylene at pH 7.0 (Ahmed et al., 2002; El-Shirbiny et al., 2007) and the organic layers were collected and concentrated under vacuum by using rotary evaporator till dryness. The obtained residual fraction was purified by using Thin Layer Chromatography (TLC), which

Table 11: Effect of S. neyagawaensis metabolites on chlorophyll "a" of

Anacystis nidulans	
Concentration of purified	Chlorophyll "a"
substance (μg mL ⁻¹)	(μg g ⁻¹ d.wt.)
0	41.65±3.10
10	38.08±1.50
20	21.42±1.15
30	16.66±1.00
40	10.71±2.10

Table 12: Effect of S. neyagawaensis metabolites on nucleic acid of

Anacystis nidulans		
Concentration of purified	DNA content	RNA content
substance (µg mL ⁻¹)	(µg g ⁻¹ d.wt.)	(μg g ⁻¹ d.wt.)
0	0.935±0.03	0.510±0.04
10	0.868 ± 0.02	0.434±0.02
20	0.632±0.00	0.338±0.05
30	0.452±0.10	0.326±0.04
40	0.336±0.05	0.280±0.00

manifested through ultraviolet lamp one spot at $R_f = 0.65$. The spots were collected by its elution and the physico-chemical characteristics, IR, Mass spectrum, NMR spectrum and elementary analysis were determined (Stefani and Agodi, 2000). These microanalyses are carried in microanalysis center in Cairo University.

Biological and physico-chemical Characteristics of the antialgal substance produced by S. neyagawaensis No. 60 Solubility: The lytic substance was readily soluble in acetone, diethyl ether, chloroform, benzene, petroleum ether, acetic acid and xylene; slightly soluble in water and ethyl acetate and insoluble in ethanol, methanol, n-butanol, n-hexane and isopropanol.

Melting point: The antialgal substance is liquid.

Elementary analysis: The antialgal substance extracted from S. neyagawaensis No. 60 was found to contain, carbon (C = 61.7%), hydrogen (H = 8.46%), nitrogen (N = 3.79%) and oxygen (O = 25.98%).

Infra-red spectrum (IR): Based the elementary analysis, the identification of the compounds were also confirmed by spectroscopic measurements. The infra-red spectrum of the present of the antialgal substance showed a free OH band in 3593 cm⁻¹; NH group in 3448 cm⁻¹; CH-aliphatic in 2923, 2866 cm⁻¹; CH-aromatic in 3025 cm⁻¹; keton group in 1703 cm⁻¹; aromatic ring in 1608, 1563 and 1494 cm⁻¹ (Fig. 2).

Molecular weight: The FD-MS spectrum showed the molecular peak at m/z 369.45 (Fig. 3).

The molecular formula: The molecular formula was determined on the basis of the results obtained from the mass spectrometric and elementary analysis of the extracted compound as C₁₉H₂₁NO₆.

Nmr spectrum of the antibiotic: The ¹H-NMR of the antialgal substance produced by *S. neyagawaensis* No. 60 was investigated by Nuclear Magnetic Resonance (NMR). It could be deduced from (Fig. 4) that the antibiotic molecular is characterized by the following:

- Presence of four protons of the sugar molecules (multiplete at 0.87-1.31)
- Presence of four CH₃ protons (triplet at 2.23)
- Presence of aliphatic chain (sharp signlet at 3.36)
- Presence of aromatic ring (multiplete at 6.78-7.23)
- Presence of NH proton (signlet at 7.84)
- Presence of free OH proton (signlet at 14.85)

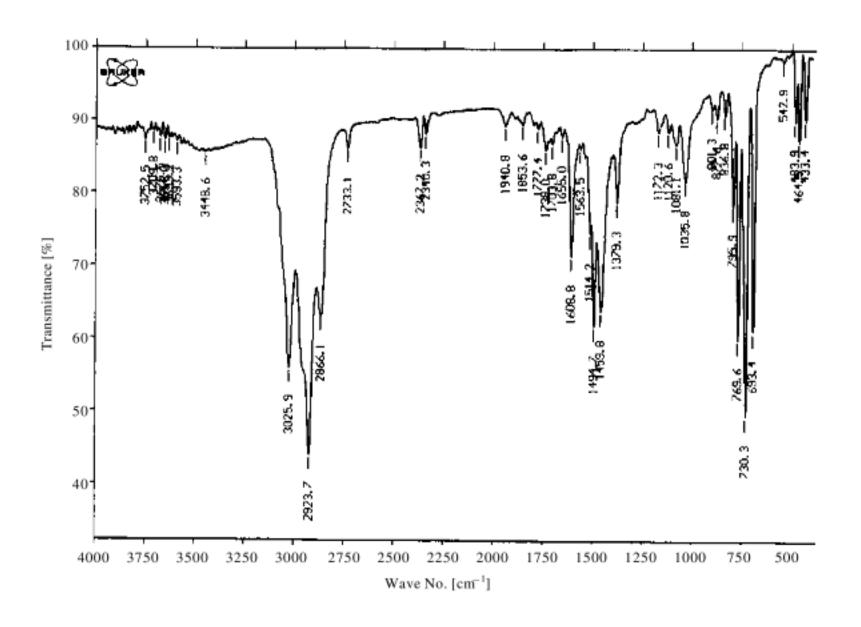


Fig. 2: Mass spectrum of Streptomyces neyagawaensis N60 metabolite

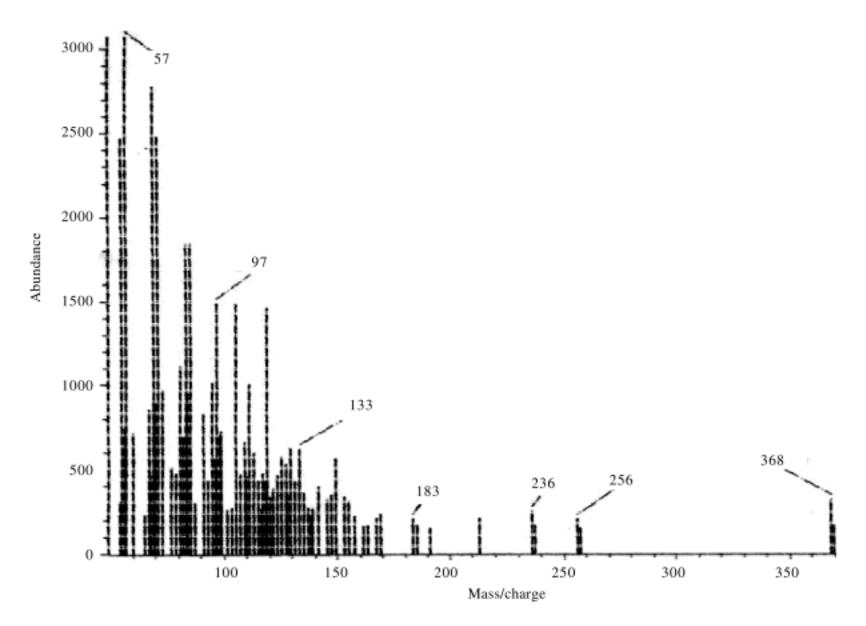


Fig. 3: Mass spectrum of Streptomyces neyagawaensis N60 metabolite

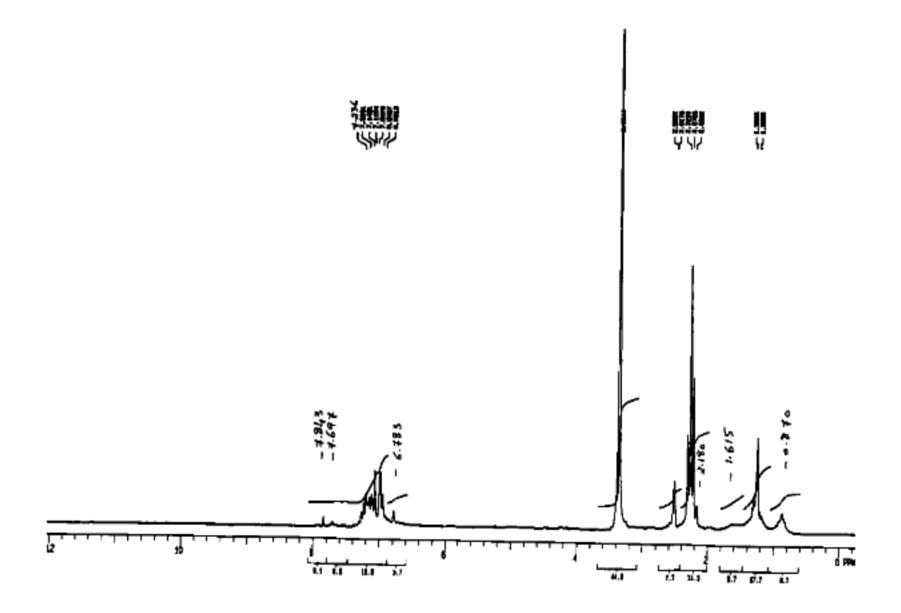


Fig. 4: NMR spectrum of Streptomyces neyagawaensis N60 metabolite

Table 13: A comparative study of the characteristic properties of antialgal substance extracted from S. neyagawaensis No. 60 in relation to reference antibiotic (Anthracidin A)

Chemical analysis	Antracidin A	Extracted substance				
C	66.09	61.71				
H	8.04	8.46				
N	3.85	3.79				
O	22.01	25.98				
Molecular weight	363.44	369.00				
Formula	$C_{20}H_{29}NO_5$	$C_{19}H_{31}NO_{6}$				

Table 14: Effect of different concentration of Anthracidin A of S. neyagawaensis No. 60 on the growth of Anacystis nidulans (unicellular alga)

(uniterial in the control of the con											
	Absorbing reading (mm)										
Concentration											
of anthracidin A	Zero	2nd	4th	6th	8th	10th	12th	14th	16th		
(μg mL ⁻¹)	time	day									
Control	0.05	0.06	0.11	0.12	0.16	0.14	0.23	0.46	0.80		
10	0.13	0.60	1.10	0.46	0.39	0.30	0.26	0.40	0.75		
20	0.08	0.60	0.90	0.42	0.32	0.22	0.13	0.31	0.42		
30	0.06	0.56	0.66	0.32	0.20	0.15	0.12	0.27	0.37		
40	0.04	0.24	0.29	0.22	0.18	0.12	0.10	0.23	0.36		

Taking into consideration, the elementary analysis, IR spectra, Mass and NMR spectra, the structure of the present antibiotic could be suggested as follows:

All these results were applied according to Williams and Fleming (1987), Hayakawa et al. (1994) and Stefani and Agodi (2000).

S. neyagawaensis No. 60: Taking into consideration the elementary analysis, IR, mass and NMR spectra and also on the basis of the recommended keys for the identification of antibiotics and in view of the comparative study of the recorded properties of the antibiotics, it could be stated that the antialgal substance extracted from S. neyagawaensis is suggestive of being Anthracidin A (Table 13). The identification is carried out according to Berdy (1980) and Umezawa (1977).

Effect of different concentrations of purified antibiotic against *Anacystis nidulans*: Different concentrations of the purified antialgal substance produced from *S. neyagawaensis* No. 60 were tested against *Anacystis nidulans* by serial dilution technique as follows; 10, 20, 30, 40 μg mL⁻¹ in 50 mL liquid algal media. Successive

growth was indicated every 48 hours using spectrophotometer at λ 665 nm. The data in Table 14 revealed that there was gradual inhibition in the growth of alga as treated with the previous concentrations. The percentage of inhibition of the antialgal substance which extracted from *S. neyagawaensis* No. 60 after 16 days were 75, 81.3, 85 and 88.8% at different concentrations, respectively.

DISCUSSION

Blooms of cyanobacteria represent a trouble shouting problems among these are secretion of toxic substance such as hepatotoxins, neurotoxins, cytotoxins, endotoxins and other potential inhibitors (Sasner et al., 1994; Zurawell et al., 2005; Ross et al., 2006; Dai et al., 2008; Kim et al., 2009). Most of them may be responsible for dermatitis when people are exposed to this kind of water. In addition, they produce unpleasant odor, color and taste of water (Choi et al., 2005; Liu et al., 2008). Great efforts have been done for producing new substances with antimicrobial activities from microorganisms instead of chemicals (Liu et al., 1996). It was found that the biological control is the best mean that replace the chemical control (Kim et al., 2009; Boudjella et al., 2006; Volka and Furkert, 2006). Biological controls for solving these problems involve isolation of streptomycete isolates from different localities of Egypt and screened against some cyanobacteria (El-Shirbiny et al., 2007).

Out of 107 strains, only 33 isolates showed antialgal activity against different algal species under investigation. Streptomyces neyagawaensis No. 60 was superior to induce a lytic efficiency against the tested cyanobacterial strains (Nostoc sp.; Anabaena sp.; Anabaena flos-aquae; Anacystis nidulans and cyncoccus).

Before application of an antialgal agent to freshwater systems, there should be information on, (1) the antialgal activity against the target alga, (2) the effects on the other organisms in the freshwater ecosystem and (3) a forecast of the algal dynamics after the removal of the target alga (Choi et al., 2005). Here, Streptomyces neyagawaensis No. 60 release an algicidal substance and its concentration was time dependent. The maximum inhibitory concentration was obtained after 16 days that equal 89% compared with its corresponding control. Present results are in agreement with the results of Yamamoto and Suzuki (1990) and Mitsutani et al. (1988), who stated that the proteins such as lysozymes and protease extracted from streptomyces which cause cell lysis of Microcystis aeruginosa. At the same time,

El-Sherbiny et al. (2007) showed that niromycin A produced by Streptomyces endus No. 40 causing extensive cell lysis of Nostoc sp., Anabaena sp., A. flos-aquae and Anacystis nidulans. However, Sigee et al. (1999) found that the formation of the lytic agent by Streptomyces exfoliates occurs independently with the presence of cyanobacteria, the ability to destroy these organisms is probably due to the antagonist of streptomycetes. Also, Liang et al. (2003) clear that the crud extract of hormaomycin antibiotic showed very strong activity against three microalgae (Chlorella sorokiniana, Chlorella vulgaris, Senedesmus subspicatus).

Choi et al. (2005) studied the effects of the antialgal bacterium S. neyagawaensis on several dominant algae in the Daechung Reservoir and Naktong River and found that S. neyagawaensis had an effect on A. flos-aquae and A. cylindrical but not A. macrospore and A. aynis it also affected strains within a species differently. The antialgal activity was 38.8% on M. aeruginosa NIES.44 and 70.2% on M. aeruginosa NIES-298. Also, Choi et al. (2005) reported that, there are two possible explanations: (1) the culture conditions utilized in this experiment were not suitable for bacterial growth and (2) M. aeruginosa exudates may suppress bacterial growth. The first explanation is based on the divergence between the optimum culture conditions for the antialgal bacterium and the cyanobacterium. The bacterium did not grow well at pH 9 and 25°C. The second explanation is that the toxicity of microcystin from M. aeruginosa is known to inhibit growth of organisms such as Chadocerans, Copepdos and mosquito larvae (Sathiyamoorthy and Shnmugasundaram, 1996; Singh et al., 2003; Volk and Furkert, 2006).

In the present study, the results showed that 40 μg mL⁻¹ of the antialgal substance extracted from *Streptomyces neyagawaensis* No. 60 inhibits both chlorophyll "a" (74.3%) and DNA (64.1%) and RNA contents (45.1%) in *Anacystis nidulans* alga.

In this investigation, the purified antialgal substance was identified using the elementary analysis, I.R., Mass and NMR spectra and also on the basis of the recommended keys for the identification of known antibiotics. Also on the basis of this data and their comparison with the published data of the known antibiotics (Umezawa, 1977; Berdy, 1980). The present antibiotic can be named as Anthracidin A.

In conclusion, the maximum inhibition rate of growth of *Anacystis nidulans* was recorded after 16 days of incubation by the 40 µg mL⁻¹ with total percentage of inhibition about 88.8%.

REFERENCES

- Abou-El-Hawa, M.E., Y.A. El-Zwahry, A. El-Sayed, E. Sayed, A.M. Galal and S. Abd-El-Shafi, 2006. Extraction, purification and characterization of two antiphytoviral substance(s) produced by zuchini yellow mosaic virus. Int. J. Agric. Biol., 8: 745-753.
- Ahmed, M.S., N.M. Abou-Zeid, M.A. Swelim, M.H. Yassin and S.M. Daboor, 2002. Characterization of an antibiotic produced by *Streptomyces violaceus* T 118 and its effect in controlling chocolate spot disease of Faba Bean plant. M.Sc. Thesis, Faculty of Science, (Beniswif-Cairo Univ. Egypt), pp. 1-18.
- Ahn, C.Y., S.H. Joung, J.W. Jeon, H.S. Kim, B.D. Yoon and H.M. Oh, 2003. Selective control of cyanobacteria by surfactin-containing culture broth of *Bacillus subtilis* C1. Biotechnol. Lett., 25: 1137-1142.
- Amaro, A.M., M.S. Fuentes, S.R. Ogalde, J.A. Venegas and B.A. Suarez-Isla, 2005. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate *Alexandrium catenella*. J. Eukaryot. Microbiol., 52: 191-200.
- Ammar, M.S., B.M. Haroun, S.A. Ghazal and H.M. Atta, 2003. Characterization and factors affecting productivity of antimicrobial agent produced by *Spirillospora*. Proceedings of the 5th International Science Conference, Mar. 25-27, Al-Azhar Bulletien of Science, pp: 51-64.
- An, J. and W.W. Carmichael, 1994. Use of a colorimetric protein phosphatase inhibition linked immunosorbent assay for the study of microcystins and nodularins. Toxicon, 32: 1495-1507.
- APHA, 1992. Standard Methods for the Examination of Water and Wastewater. 18th Edn., American Public Health Association, Washington, DC.
- Ashwell, G., 1957. Methods in Enzymology. Inter-Science Publishers, Inc., New York.
- Bell, S.G. and G.A. Codd, 1994. Cyanobacterial toxins and human health. Rev. Med. Microbiol., 5: 256-264.
- Berdy, J., 1980. Recent advances and prospects of antibiotic research. Proc. Biochem., 15: 28-28.
- Boudjella, H., K. Bouti, A. Zitouni, F. Mathieu, A. Lebrihi and N. Sabaou, 2006. Taxonomy and chemical characterization of antibiotics of *Streptosporangium* Sg 10 isolated from a Saharan soil. Microbiol. Res., 161: 288-298.
- Burton, K., 1968. A study of the condition and mechanism of the diphenylamine reaction for the colourimetric estimation of DNA. Biochem. J., 62: 315-323.

- Carmichael, W.W., 1992. A Status Report of Planktonic Cyanobacteria (blue-green algae) and their Toxins. United States Environmental Protection Agency/600/R-92/079, USA., pp. 32-33.
- Carmichael, W.W., 1997. The cyanotoxins. Adv. Bot. Res., 27: 211-256.
- Carpenter, E.J. and W.W. Carmichael, 1995. Taxonomy of Cyanobacteria. In: Manual on Harmful Marine Microalgae, Hallegraeff, G.M., D.M. Anderson and A.D. Cembella (Eds.). IOC Manuals and Guides No. 33, UNESCO 1995k, Paris, pp. 373-380.
- Chater, K.F. and M.J. Bibb, 1997. Regulation of Bacterial Antibiotic Production. In: Biotechnology, Vol 7: Products of Secondary Metabolism, Kleinkauf, H. and H. von Dohren (Eds.). VCH, Weinheim, Germany, pp: 57–105.
- Choi, H., B. Kim, J. Kim and M. Han, 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of *Microcystis aeruginosa* (Cyanobacteria) in eutrophic freshwaters. Biol. Control, 33: 335-343.
- Dai, R., H. Liu, J. Qu, J. Ru and Y. Hou, 2008. Cyanobacteria and their toxins in Guanting reservoir of Beijing China J. Hazard Mater., 153: 470-477.
- Dawson, R.M., 1998. The toxicology of microcystins. Toxicon, 36: 953-962.
- Demain, A.L., 1999. Pharmaceutically active secondary metabolites of microorganisms. Applied Microbiol. Biotechnol., 52: 455-463.
- El-Shirbiny, S.A., M.F. Ghaly, Y.M. El-Ayoty and N.S. Fleafil, 2007. Niromycin a: An antialgal substance produced by *Streptomyces endus* N40. Res. J. Microbiol., 2: 606-608.
- Ghaly, M.F., N.M. Awny, A.M. Galal and A. Askora, 2005. Characterization and action of antiphytoviral agent produced by certain streptomycetes species against zucchini yellow mosaic virus. Egypt J. Biotechnol., 19: 209-223.
- Gupte, M.D. and P.R. Kalkarni, 2000. A study of antifungal antibiotic production by *Streptomyces* chattanoogensis MTCC 3423 using full factorial design. Lett. Applied Microbiol., 35: 22-26.
- Gunnison, D. and M. Alexander, 1975. Basis of susceptibility of several algae to microbial decomposition. Can. J. Microbiol., 21: 619-628.
- Habib, E.S.E., K. Yokomizo, K. Nagao, S. Harada and M. Uyeda, 2001. Antiviral activity of fattiviracin Fr-8 against human immunodeficiency virus types 1(HIV-1). Biosci. Biotechnol. Biochem., 65: 683-685.
- Han, M.S., Y.Y. Aug and S.S. Hong, 2002. Ecological studies on Paltang River-Reservoir system in Korea 4. Dynamics on inorganic nutrients, POM and phytoplankton succession in the lower stream Kyungan. Kor. J. Limnol., 35: 1-9.

- Harada, K.I., 1995. Chemistry and Detection of Microcystins. Toxic Microcystis, CRC Press, Boca Raton, New York, London-Tokyo, pp. 103-143..
- Hayakawa, Y., K. Ishigmi, K. Shin-Ya and H. Steo, 1994. Menoxymycins-A and B, antitumor generating active oxygen in tumor cells. J. Antibiotics, 47: 1344-1347.
- Hong, S.S., S.W. Bang, Y.O. Kim and M.S. Han, 2002. Effects of rainfall on the hydrological condition and phytoplankton community structure in the riverine zone of the PalTang reservoir, Korea. J. Freshwater Ecol., 17: 507-520.
- Hussien, A.M., M.H. Yassin and K.A. El-Tarabily, 1998. Studies on antifungal *Streptomyces* isolate, I. Biological and taxonomical studies. Bull. Fac. Sci. Assiut Univ., 27: 41-52.
- Jacobson, B.S., R.J. Salmon and L.L. Lansky, 1964. Antibiotic effects of chloramphenicol and other inhibitory agents in *Chlamydmonas*. Expt. Cell. Res., 36: 1-1.
- Jeong, H., J.H. Yim, C. Lee, S.H. Choi and Y.K. Park et al., 2005. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res., 33: 7066-7073.
- Kang, Y.K., S.Y. Cho, Y.H. Kang, T. Katano, E.S. Jin, D.S. Kong and M.S. Han, 2008. Isolation, identi?cation and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algial blooms. J. Applied Phycol., 20: 375-386.
- Kim, Y.S.O., D.S. Lee, S.Y. Jeong, W.J. Lee and M.S. Lee, 2009. Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae chattonella marina. J. Microbiol., 47: 9-18.
- Kokare, C.R., K.R. Mahadik, S.S. Kadam and B.A. Chopade, 2004. Isolation, characterization and antimicrobial activity of marine halophilic Actonopolyspora species AH1 from the West coast of India. Curr. Sci., 86: 593-597.
- Lazzarini, A., L. Cavaletti, G. Toppo and F. Marinelli, 2000.
 Rare genera of Actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 78: 399-405.
- Liang, V.V.L., 2003. Investigation of secondary metabolites of north sea bacteria: Fermentation, isolation, structure elucidation and bioactivity. Zur Erlangung des Doktorgrades der Mathematisch-Naturwissens-Chaftlichen Fakultäten der Georg-August-Universität.
- Liu, D., S. Tian, L. Xiokumand and A. Hongxia, 1996. Antagonism of *Streptomyces* sp. against plant pathogenic fungi. Can. J. Microbiol., 42: 487-502.

- Liu, J., A.J. Lewitus, J.W. Kempton and S.B. Wilde, 2008. The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention ponds. Harmful Algae, 7: 184-193.
- Mitsutani, A., A. Uchida and Y. Ishida, 1988. Occurrence of blue-green algae lytic bacteria in Lake Biwa. Bull. Jap. Soc. Microbiol. Ecol., 2: 21-28.
- Mohamadin, A.H., 1987. Studies on the biological and antimicrobial activities of some microorganisms. M.Sc. Thesis, Botany Department, Faculty of Science, Mansoura University, Egypt.
- Mu, R.M., Z.Q. Fan, H.Y. Pei, X.L. Yuan, S.X. Liu and X.R. Wang, 2007. Isolation and algae-lysing characteristics of the algicidal bacterium B5. J. Environ. Sci., 19: 1336-1340.
- Nagayama, K., T. Shibata, K. Fujimoto, T. Honjo and T. Nakamura, 2003. Algicidal effect of phlorotannins from the brown alga *Ecklonia kurome* on red tide microalgae. Aquaculture, 218: 601-611.
- Naki, N., K. Jun, S. Masaaki, S. Lchi and O. Nobuaki et al., 2000. Kintamicins A and B. 1- Taxonomy, production isolation, physico-chemical properities and iological activities. J. Antibiotics, 46: 1804-1811.
- Oliver, R.L., 1994. Floating and sinking in gas-vacuolated cyanobacteria. J. Phycol., 30: 161-173.
- Pogo, B.G.T. and A.O. Pogo, 1965. Inhibition of chloromphenicol of chlorophyll and protein synthesis and growth in *Euglena gracilis*. J. Protozool., 12: 96-96.
- Pridham, T.G., C.W. Hesseltine and R.G. Benedict, 1958. A guide for the classification of streptomycetes according to selected groups. Placement of strains in morphological sections. Applied Microbiol., 6: 52-79.
- Ren, H., P. Zhang, C. Liu, Y. Xue and B. Lian, 2009. The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World J. Microbiol. Biotechnol. 10.1007/s11274-009-0192-2
- Richards, T.R. and T.G. Thompson, 1952. Effect of some pollutants on some fresh water planktonic organisms. Ph.D. Thesis, Cairo University.
- Rodrigues, L., M. Munoz and M.L. Calvo, 1974. Action of rifamycins on the biosynthesis of protein in *Euglena* chloroplasts. Bol. R. Soc. Esp. Hist. Nat. Secc. Biol., 72: 61-61.
- Ross, C., L. Santiago-Vazquez and V. Paul, 2006. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium *Microcystis aeruginosa*. Aquat. Toxicol., 78: 66-73.
- Roth, P.B., M.J. Twiner, C.M. Mikulski, A.B. Barnhorst and G.J. Doucette, 2008. Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate *Karenia brevis*. Harmful Algae, 7: 682-691.

- Safferman, R.S. and M.E. Morris, 1962. Evolution of natural products for algicidal properties. Applied Microbiol., 10: 289-292.
- Safferman, R.S. and M.E. Morris, 1963. The antagonistic effects of actinomycetes on algae found in waste stabilization ponds. Bacteriol. Proc., 14: 56-56.
- Salama, A.M., F.A. Mansour and Z.K. Mohamed, 1980. Studies on the blue pigmented Streptomycetes isolated from Egyptian soil. Egypt. J. Bot., 23: 75-88.
- Sasner, J.J., J.F. Haney, M. Ikawa and T.L. Foxall, 1994. Impact of cyanobacterial metabolites on water quality. Govt Reports Announcements and Index (GRA and I), Issue 06, 1998.
- Sathiyamoorthy, P. and S. Shanmugasundaram, 1996. Preparation of cyanobacterial peptide toxin as a biopesticide against cotton pests. Applied Microbiol. Biotechnol., 46: 511-513.
- Sigee, D.C., R. Glenn, M.J. Andrews, E.G. Bellinger, R.D. Butler, H.A.S. Epton and R.D. Hendry, 1999. Biological control of cyanobacteria: Principles and possibilities. Hydrobiologia, 395/396: 161-172.
- Singh, D.P., K. Ashok and M.B. Tyagi, 2003. Biotoxic cyanobacterial metabolites exhibiting pesticidal and mosquito larvicidal activities. J. Microbiol. Biotechnol., 13: 50-56.
- Stefani, S. and A. Agodi, 2000. Molecular epidomlogy of antibiotic resistance. Int. J. Antimicrob. Agents, 13: 143-153.
- Su, J., X. Yang, T. Zheng, Y. Tian, N. Jiao, L. Cai and H. Hong, 2007. Isolation and characterization of marine algicidal bacterium against the toxic dinoflagellate *Alexandrium tamarense*. Harmful Algae, 6: 799-810.
- Toshio, O., S. Yoshikazu, A. Yoshimi, I. Yasuhiro and F. Tamosta et al., 2000. New Cdc.25B taxonomy, fermentation, isolation, structure elucidation and biological properties. J. Antibiotics, 35: 337-344.
- Uchida, H., T. Kouchiwa, K. Watanabe, A. Kawasaki and Y. Hodoki et al., 1998. A coupled assay system for the lysis of cyanobacteria. Jap. J. Wat. Treat. Biol., 34: 67-75.
- Umezawa, H., 1977. Recent advances in bioactive microbial secondary metabolites. Jap. J. Antibiotic. Suppl., 30: 138-163.
- Volka, R.B. and F.H. Furkert, 2006. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res., 161: 180-186.
- Waksman, S.A., 1959. Strain specificity and production of antibiotic substances X. characterization and classification of species within the *Streptomyces* griseus group. Proc. Nat. Acad. Sci. USA., 45: 1043-1043.

- Waksman, S.A., 1961. The Actinomycets: Classification, Identification and Description of Genera and Species. Williams and Wilkins Company, Baltimore.
- Whyte, L.G., A. Maule and D.R. Cullimore, 1985. Method for isolating cyanobacteria-lysing *Streptomycetes* from soil. J. Applied Bact., 58: 195-197.
- William, R.H. and H. Felscher, 1989. Bergey's Mannual of Systematic Bacteriology. Vol. 4, The Wilkins Co., Baltimore.
- Williams, D.H. and I. Fleming, 1987. Spectroscopic Methods in Organic Chemistry. 4th Edn., McCraw-Mill Book Co., Maidenhead, Berkshire, England.
- Yamamoto, Y. and K. Suzuki, 1990. Distribution and algal lysing activity of fruiting myxobacteria in Lake Suwa. J. Phycol., 26: 457-462.
- Yamamoto, Y., 1978. Detection of algal-lysis biological agents in lakes by the soft-agar over layer technique. Jap. J. Limnol., 39: 9-14.

- Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida and K.I. Harada, 1998. Distribution and identification of actinomycetes lysing cyanobacteria in an eutrophic lake. Int. J. Applied Phycol., 10: 391-397.
- Yutaka, N., T. Eisaku, Y. Yukiko, S. Kazutoshi and T. Yasuhisa et al., 2001. Fr 198 248, a new antiinfluenza agent isolated from Asperigellus terreus No. 138301.1, Taxonomy, Fermentation, Isolation, Physico-chemical properties and Biological activities. J. Antibiotics, 54: 136-143.
- Zingone, A. and H.O. Enevoldsen, 2000. The diversity of harmful algal blooms: A challenge for science and management. Ocean Coast Manage., 43: 725-748.
- Zurawell, R.W., H. Chen, J.M. Burke and EE. Prepas, 2005. Hepatotoxic cyanobacteria: A review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health Part B: Crit. Rev., 8: 1-37.