Bio
 Technology

ANSI 亿et

$\mathrm{H}_{2} / \mathrm{H}_{\infty}$ Control for Consensus of Networked Swarm Agents with Static Connected Topology Graph

${ }^{1}$ Xiang-Shun Li, ${ }^{1}$ Peng Liu and ${ }^{2}$ Xin-Ping Yan
${ }^{1}$ School of Automation,
${ }^{2}$ School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, China

Abstract

Consensus of swarm agents had appeared in many applications and attracted more and more interests of researchers. In this study, the controller based on states feedback for consensus of networked multi-agents was designed. The topology graph composed by the agents were assumed to be static and connected. Both complete and incomplete graph cases were considered. The agents were considered as discrete linear systems. The sufficient conditions for the agents to achieve consensus were obtained to meet the $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ performance for external disturbances. The results were based on matrix analysis and linear matrix inequality. Finally, numerical examples were given to illustrate the effectiveness of the results.

Key words: Robust control, state feedback, distributed control, networked agents, discrete system, consensus

INTRODUCTION

Research on consensus of networked swarm agents had attracted the interests of scientists in mathematics, physics and engineering areas in recent years. The results on consensus had appeared widely in many applications including Unmanned Air Vehicles (UAVs), formation and automated highway systems (Xiaoqing et al., 2012).

The consensus phenomena had been found in nature such as fish schooling, bird flocking and herds migrating. Researchers were inspired by these nature phenomena. The computer model of flocks was designed (Reynolds, 1987). The famous model modeled by Reynolds was boid. Three rules such as collision avoidance, velocity matching and flock centering were followed in the swarm agents that exchange information with each other based on local information. A special version of boid was the Vicsek model proposed by Vicsek et al.(1995). Flocking behaviors had been analyzed in detail by Jadbabaie et al. (2003), Saber and Murray (2003, 2004), Moreau (2005), Ren and Beard (2005) and Saber et al. (2007). Moreover, consensus problems for networks of dynamic, autonomous agents with fixed and switching topologies were discussed (Housheng et al., 2011; Xiaoqing et al., 2012; Fenglan et al., 2012; Tao et al., 2011).

Some robust consensus algorithms with disturbances were analyzed based on matrices theory and graph theory to verify that under some control action the consensus would be achieved (Castro and Paganini, 2004). States feedback control law that guaranteed consensus for the closed-loop system was designed. Castro and Paganini
(2004) propose a new way, that was think globally and act locally, to analyze swarm system by linear matrix inequality theory. The H_{2} controller was designed to make the closed-loop system achieve consensus with nonconsensus part of the system meeting the optimal H_{2} performance (Li and Fang, 2009c).

It was very clear that disturbances always exist in swarm systems, especially in practical engineering systems. In order to guarantee the states of swarm agent reach consensus with $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ performance under various of external and internal disturbances, robust controller should be designed to make the consensus part of closedloop system reach consensus with non-consensus part be Lyapunov stable meeting $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ performance for disturbances attenuation (Li and Fang, 2009c).

This study mainly focused on designing robust controllers for consensus of swarm agents. The agents were modeled as discrete dynamics. Future more, the topology graph composed by agents were considered to be complete or meeting certain topology structure.

PRELIMINARIES AND BACKGROUND

Model description: Consider the discrete swarm system composed of N interconnected agents, where each agent had the following dynamics:

$$
\mathrm{x}_{\mathrm{i}}(\mathrm{k}+1)=\mathrm{A}_{\mathrm{ii}} \mathrm{x}_{\mathrm{i}}(\mathrm{k})+\sum_{\mathrm{j} \neq i} \mathrm{~A}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}(\mathrm{k})+\mathrm{B}_{\mathrm{ii}} \mathrm{u}_{\mathrm{i}}(\mathrm{k})+\mathrm{B}_{2 \mathrm{i}} \omega_{1}(\mathrm{k}), \mathrm{i} \in\{1,2, \cdots, \mathrm{~N}\}(1)
$$

where, $\mathrm{x}_{\mathrm{i}}(\mathrm{k})$ represented the ith individual's state variable at the k period which was assumed to be p dimensions,
that was $\mathrm{x}_{\mathrm{i}}(\mathrm{k}) \in \mathrm{R}^{\mathrm{p}} . \mathrm{x}_{\mathrm{j}}(\mathrm{k})$ represented the j th individual's state at k-period. $u_{i}(k) \in R^{q}$ was control input of the individual i at the period of $k . \omega_{i}(k) \in R^{r}$ represented the disturbances into ith individual at the k moment. $\mathrm{A}_{\mathrm{ij}} \in \mathrm{R}^{\mathrm{p} \times \mathrm{p}}$, $\mathrm{A}_{\mathrm{ij}} \in \mathrm{R}^{\mathrm{p} \times \mathrm{p}}, \quad \mathrm{B}_{1 \mathrm{i}} \in \mathrm{R}^{\mathrm{p} \times \mathrm{q}}, \quad \mathrm{B}_{2 \mathrm{i}} \in \mathrm{R}^{\mathrm{p} \times \mathrm{F}}$ were the corresponding coefficient matrices and $A_{i j}$ showed the relationship between i and j, meaning there exists information exchange between neighbors, when the topology composed by agents were static, then A_{ij} was constant.

Let's consider this swarm system globally, the state space equation can be got:

$$
\begin{equation*}
x(k+1)=A x(k)+B_{1} u(k)+B_{2} \omega(k) \tag{2}
\end{equation*}
$$

Where:

$$
\begin{gathered}
\mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{Np}}, \mathbf{u}=\left[\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\vdots \\
\mathbf{u}_{\mathrm{N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{Np}}, \mathrm{~B} 1=\left[\begin{array}{ccc}
\mathrm{B}_{11} & & \\
& \ddots & \\
& & \mathrm{~B}_{1 \mathrm{~N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{NP} \times \mathrm{NQ}} \\
\mathrm{~B} 2=\left[\begin{array}{ccc}
\mathrm{B}_{21} & & \\
& \ddots & \\
& & \mathrm{~B}_{2 \mathrm{~N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{NpxNr}}, \mathrm{~A}=\left[\begin{array}{cccc}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \cdots & \mathrm{~A}_{1 \mathrm{~N}} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22} & \cdots & \mathrm{~A}_{2 \mathrm{~N}} \\
\vdots & \vdots & \cdots & \vdots \\
\mathrm{~A}_{\mathrm{N} 1} & \mathrm{~A}_{\mathrm{N} 2} & \cdots & \mathrm{~A}_{\mathrm{NN}}
\end{array}\right] \in \mathrm{R}^{\mathrm{NpxNp}}
\end{gathered}
$$

Consensus: Now the explanation and definition to consensus or agreement of discrete dynamic systems were given. The system composed of N agents whose dynamics were same as:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{i}}(\mathrm{k}+1)=\mathrm{A}_{\mathrm{ii}} \mathrm{x}_{\mathrm{i}}(\mathrm{k})+\sum_{\mathrm{j} \neq 1} \mathrm{~A}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}(\mathrm{k}), \mathrm{i} \in\{1,2, \cdots, \mathrm{~N}\} \tag{3}
\end{equation*}
$$

The equation can be rewritten as global equation:

$$
\begin{equation*}
x(k+1)=A x(k) \tag{4}
\end{equation*}
$$

Definition 1: Let $\beta_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{~Np}$ be an orthonormal basis in R^{Np}. The Eq. 4 achieved consensus to the subspace:

$$
\begin{equation*}
S=\operatorname{span}\left\{\beta_{i}, i=1, \cdots, N p\right\} \tag{5}
\end{equation*}
$$

If S was and minimal set such that for any initial condition, the state at k moment $\mathrm{x}(\mathrm{k})$ converged to a point in S . Then Lemma 1 was introduced.

Lemma 1: The states of Eq. 4 converged to consensus in S by definition 1, if and only if, $\mathrm{A} \alpha=\alpha$; there existed $\mathrm{X}>0$ such that:

$$
\begin{equation*}
\left(\alpha_{1}^{\mathrm{T}} \mathrm{~A} \alpha_{1}\right)^{\mathrm{T}} \mathrm{X}\left(\alpha_{1}^{\mathrm{T}} \mathrm{~A} \alpha_{1}\right)-\mathrm{X}<0 \tag{6}
\end{equation*}
$$

where:

$$
\alpha=\frac{1}{\sqrt{\mathrm{~N}}}\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]^{\mathrm{T}}
$$

let α_{\perp} be orthonormal complement of $\alpha, \alpha^{\text {T }}$ be the transpose of α_{Δ}, then $\alpha^{\mathrm{T}}{ }_{\perp} \alpha_{\perp}=\mathrm{I}, \alpha^{\mathrm{T}}{ }_{\perp} \alpha=0$. The Definition 1 and Lemma 1 can be concluded from continuous case to discrete case (Castro and Paganini, 2004).

State feedback control It was assumed that states of Eq. 1 can be measured directly, the state feedback controller can be:

$$
\begin{equation*}
u(k)=K x(k) \tag{7}
\end{equation*}
$$

With the controller the closed-loop system was:

$$
\begin{gather*}
x(k+1)=\left(A+B_{1} K\right) x(k)+B_{2} \omega(k) \tag{8}\\
z(k)=\left(C_{1}+D_{12} K\right) x(k) \tag{9}
\end{gather*}
$$

If the closed-loop was internal stable and closed-loop transfer function $\left\|\mathrm{T}_{\mathrm{wz}}(\mathrm{z})\right\|_{\infty}$ satisfies:

$$
\begin{equation*}
\left\|\mathrm{T}_{\mathrm{wz}}(\mathrm{z})\right\|_{2}=\left\|\left(\mathrm{C}_{1}+\mathrm{D}_{12} \mathrm{~K}\right)\left[\mathrm{zI}-\left(\mathrm{A}+\mathrm{B}_{2} \mathrm{~K}\right)\right]^{-1} \mathrm{~B}_{1}\right\|_{\infty}<\gamma \tag{10}
\end{equation*}
$$

Then it was said that the control law of Eq. 7 was a state feedback γ-optimal H_{∞} controller of Eq. 8.

If the closed-loop was internal stable and closed-loop transfer function $\left\|\mathrm{T}_{\mathrm{wz}}(\mathrm{z})\right\|_{2}$ satisfies:

$$
\begin{equation*}
\left\|\mathrm{T}_{\mathrm{wz}}(\mathrm{z})\right\|_{2}=\left\|\left(\mathrm{C}_{1}+\mathrm{D}_{12} \mathrm{~K}\right)\left[\mathrm{zI}-\left(\mathrm{A}+\mathrm{B}_{2} \mathrm{~K}\right)\right]^{-1} \mathrm{~B}_{1}\right\|_{2}<\gamma \tag{11}
\end{equation*}
$$

Then it was said that the control law of Eq. 7 was a state feedback H_{2} controller of Eq. 8, where:

$$
\begin{equation*}
z(\mathrm{k})=\left(\mathrm{C}_{1}+\mathrm{D}_{12} \mathrm{~K}\right) \mathrm{x}(\mathrm{k}) \tag{12}
\end{equation*}
$$

is regulated output. The states were decomposed as:

$$
\mathrm{x}(\mathrm{k})=\left[\begin{array}{ll}
\alpha_{\perp} & \alpha
\end{array}\right]\left[\begin{array}{c}
\theta(\mathrm{k}) \tag{13}\\
\delta(\mathrm{k})
\end{array}\right]
$$

The closed-loop Eq. 8 was equivalent to:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\theta(\mathrm{k}+1) \\
\delta(\mathrm{k}+1)
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{~A}+\mathrm{B}_{1} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k}) \tag{14}\\
\alpha^{\mathrm{T}}\left(\mathrm{~A}+\mathrm{B}_{1} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k})+\delta(\mathrm{k})
\end{array}\right]+\left[\begin{array}{c}
\alpha_{\perp}^{\mathrm{T}} \\
\alpha^{\mathrm{T}}
\end{array}\right] \mathrm{B}_{2} \omega(\mathrm{k}) \mathrm{t}\left[\begin{array}{l}
\theta \\
\mathrm{z}
\end{array}\right]=\left(\mathrm{C}_{1}+\mathrm{D}_{12} \mathrm{~K}\right)\left[\begin{array}{ll}
\alpha_{\perp} & \alpha
\end{array}\right]\left[\begin{array}{l}
\theta \\
\delta
\end{array}\right.
$$

the meaningful definition for performance variable was with respect to the stable part of the state $x(k)$, namely:

$$
\begin{equation*}
\theta(\mathrm{k}+1)=\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{~A}+\mathrm{B}_{1} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k})+\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2} \omega \tag{15}
\end{equation*}
$$

The meaningful definition for performance variable was:

$$
\begin{equation*}
\mathrm{z}_{\theta}(\mathrm{k})\left(\mathrm{C}_{1}+\mathrm{D}_{12} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k}) \tag{16}
\end{equation*}
$$

The Lemma 2 was given by Li and Fang (2009a).

Lemma 2: Given $\gamma>0$, there existed a control law $u(k)=K x(k)$, such that the states of Eq. 8 reach consensus in S with the transfer function $T_{z w}$ from the disturbance ω in the non-consensus part to performance variable $z_{\theta}(k)=\left(C_{1}+D_{12} K\right) \alpha_{+} \theta(k)$ satisfying $\left\|T_{w z}(z)\right\|_{2}$, if and only if there existed $\mathrm{X}, \mathrm{Z}, \mathrm{W}$, such that:

$$
\begin{aligned}
& \mathrm{AX} \alpha+\mathrm{B}_{1} \mathrm{~W} \alpha=\mathrm{X} \alpha \\
& X=\alpha_{\perp} \alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} \alpha_{\perp}^{\mathrm{T}}+\alpha \alpha^{\mathrm{T}} \mathrm{X} \alpha \alpha^{\mathrm{T}} \\
& {\left[\begin{array}{ccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} & 0 \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \mathrm{T} \alpha_{\perp} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \left((\mathrm{ClX}+\mathrm{D} 12 \mathrm{~W}) \alpha_{\perp}\right)^{\mathrm{T}} \\
0 & \left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp} & -\mathrm{I}
\end{array}\right]<0} \\
& {\left[\begin{array}{cc}
-\mathrm{Z} & \left(\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2}\right)^{\mathrm{T}} \\
\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2}-\alpha_{\perp}^{\mathrm{T}} & \mathrm{X} \alpha_{\perp}
\end{array}\right]<0} \\
& \text { Trace (Z) }<\gamma^{2}
\end{aligned}
$$

If there were feasible solutions $\mathrm{X}^{*}, \mathrm{~W}^{*}, \mathrm{Z}^{*}$, then $u(k)=W^{*}\left(X^{*}\right)^{-1} x(k)$ was a state feedback γ-optimal H_{2} controller. The lemma 3 was given by Li and Fang (2009b).

Lemma 3: Given $\gamma>0$, there existed a control law $u(k)=K x(k)$, such that the states of Eq. 8 reached consensus in S with transfer function T_{zw} from the disturbance ω in the non-consensus part to performance variable $z_{\theta}(\mathrm{k})=\left(\mathrm{C}_{1}+\mathrm{D}_{12} \mathrm{~K}\right) \alpha_{+} \theta(\mathrm{k})$ satisfying $\left\|\mathrm{T}_{\mathrm{wz}}(\mathrm{s})\right\|<\gamma$, if and only if there existed $\mathrm{X}>0$ such that:

$$
\begin{gathered}
\mathrm{AX} \alpha+\mathrm{B}_{1} \mathrm{~W} \alpha=\mathrm{X} \alpha \\
{\left[\begin{array}{ccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right)^{\mathrm{T}} \alpha_{\perp} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X}{\alpha_{\perp}}^{2}
\end{array}\right]<0} \\
{\left[\begin{array}{cccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & 0 & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp}\left(\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp}\right)^{\mathrm{T}} \\
0 & -\lambda^{2} \mathrm{I} & \left(\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2}\right)^{\mathrm{T}} & 0 \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & 0 \\
\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp} & 0 & 0 & -\mathrm{I}
\end{array}\right]} \\
\mathrm{X}=\alpha_{\perp} \alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} \alpha_{\perp}^{\mathrm{T}}+\alpha \alpha^{\mathrm{T}} \mathrm{X} \alpha \alpha^{\mathrm{T}}
\end{gathered}
$$

RESULTS

Here, some conditions were given to design $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ controller for consensus of swarm discrete dynamic system with complete and certain topology graph. The models were described. Then two theorems were obtained.

Model description: The closed-loop system was:

$$
\begin{align*}
& \mathrm{x}(\mathrm{k}+1)=\mathrm{Ax}(\mathrm{k})+\mathrm{B}_{1} \mathrm{u}(\mathrm{k})+\mathrm{B}_{2} \omega_{1}(\mathrm{k})+\mathrm{B}_{3} \omega_{2}(\mathrm{k}) \\
& \mathrm{z}_{1}(\mathrm{k})=\mathrm{C}_{1} \mathrm{x}(\mathrm{k})+\mathrm{D}_{10} \mathrm{u}(\mathrm{k}) \tag{17}\\
& \mathrm{z}_{2}(\mathrm{k})=\mathrm{C}_{2} \mathrm{x}(\mathrm{k})+\mathrm{D}_{20} \mathrm{u}(\mathrm{k})
\end{align*}
$$

where, ω_{1} and ω_{2} represented different disturbances. The matrices A, B_{1}, B_{2}, B_{3} were coefficient matrices:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cccc}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \cdots & \mathrm{~A}_{1 \mathrm{~N}} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22} & \cdots & \mathrm{~A}_{2 \mathrm{~N}} \\
\vdots & \vdots & \cdots & \vdots \\
\mathrm{~A}_{\mathrm{N} 1} & \mathrm{~A}_{\mathrm{N} 2} & \cdots & \mathrm{~A}_{\mathrm{NN}}
\end{array}\right] \in \mathrm{R}^{\mathrm{NppNp}}, \mathrm{~B}_{1}=\left[\begin{array}{lll}
\mathrm{B}_{11} & & \\
& \ddots & \\
& & \mathrm{~B}_{1 \mathrm{~N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{Np} \times \mathrm{Nq}} \\
& \mathrm{~B}_{2}=\left[\begin{array}{ccc}
\mathrm{B}_{21} & & \\
& \ddots & \\
& \mathrm{~B}_{2 \mathrm{~N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{Np} \times \mathrm{Nr}}, \mathrm{~B}_{3}=\left[\begin{array}{ccc}
\mathrm{B}_{31} & \\
& \ddots & \\
& & \mathrm{~B}_{3 \mathrm{~N}}
\end{array}\right] \in \mathrm{R}^{\mathrm{NppNr}}
\end{aligned}
$$

The control law was:

$$
\mathrm{u}(\mathrm{k})=\mathrm{Kx}(\mathrm{k})
$$

With the control law Eq. 17 can be written as:

$$
\begin{align*}
& \mathrm{x}(\mathrm{k}+1)=\left(\mathrm{A}+\mathrm{B}_{1} \mathrm{~K}\right) \mathrm{x}(\mathrm{k})+\mathrm{B}_{2} \omega_{1}(\mathrm{k})+\mathrm{B}_{3} \omega_{2}(\mathrm{k}) \\
& \mathrm{z}_{1}(\mathrm{k})=\left(\mathrm{C}_{1}+\mathrm{D}_{10} \mathrm{~K}\right) \mathrm{x}(\mathrm{k}) \tag{18}\\
& \mathrm{z}_{2}(\mathrm{k})=\left(\mathrm{C}_{2}+\mathrm{D}_{20} \mathrm{~K}\right) \mathrm{x}(\mathrm{k})
\end{align*}
$$

The state variables can be decomposed as:

$$
x=\left[\begin{array}{ll}
a_{\perp} & a
\end{array}\right]\left[\begin{array}{l}
\theta \\
\delta
\end{array}\right]
$$

Then the Eq. 17 was equivalent to:

$$
\begin{gather*}
{\left[\begin{array}{c}
\theta(\mathrm{k}+1) \\
\delta(\mathrm{k}+1)
\end{array}\right]=\left[\begin{array}{c}
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{~A}+\mathrm{B}_{1} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k}) \\
\alpha^{\mathrm{T}}\left(\mathrm{~A}+\mathrm{B}_{1} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k})+\delta(\mathrm{k})
\end{array}\right]+\left[\begin{array}{c}
\alpha_{\perp}^{\mathrm{T}} \\
\alpha^{\mathrm{T}}
\end{array}\right] \mathrm{B}_{2} \omega_{1}(\mathrm{k})+\left[\begin{array}{c}
\alpha_{\perp}^{\mathrm{T}} \\
\alpha^{\mathrm{T}}
\end{array}\right] \mathrm{B}_{3} \omega_{2}(\mathrm{k})} \\
\mathrm{z}_{1}(\mathrm{k})=\left(\mathrm{C}_{1}+\mathrm{D}_{10} \mathrm{~K}\right)\left[\begin{array}{ll}
\alpha_{\perp} & \alpha
\end{array}\right]\left[\begin{array}{l}
\theta(\mathrm{k}) \\
\delta(\mathrm{k})
\end{array}\right] \\
\mathrm{z}_{2}(\mathrm{k})=\left(\mathrm{C}_{2}+\mathrm{D}_{20} \mathrm{~K}\right)\left[\begin{array}{ll}
\alpha_{\perp} & \alpha
\end{array}\right]\left[\begin{array}{c}
\theta(\mathrm{k}) \\
\delta(\mathrm{k})
\end{array}\right] \tag{19}
\end{gather*}
$$

The stable part of Eq. 17 was:

$$
\theta(\mathrm{k}+1)=\alpha_{1}^{\mathrm{T}}\left(\mathrm{~A}+\mathrm{B}_{1} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k})+\alpha_{1}^{\mathrm{T}} \mathrm{~B}_{2} \omega_{1}(\mathrm{k})+\alpha_{1}^{\mathrm{T}} \mathrm{~B}_{3} \omega_{2}(\mathrm{k})
$$

the meaningful performance functions were as follows:

$$
\begin{aligned}
& z_{1 \theta}(\mathrm{k})=\left(\mathrm{C}_{1}+\mathrm{D}_{10} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k}) \\
& \mathrm{z}_{2 \theta}(\mathrm{k})=\left(\mathrm{C}_{2}+\mathrm{D}_{20} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k})
\end{aligned}
$$

The state feedback control law was expected to make the states of close-loop reach consensus with the H_{∞} norm and H_{2} norm satisfying $\left\|\mathrm{T} \omega_{1} \mathrm{z}_{1}\right\| \infty<\boldsymbol{\gamma}_{1},\left\|\mathrm{~T} \omega_{2} \mathrm{z}_{2}\right\| \infty<\boldsymbol{\gamma}_{2}$.

The complete graph case

Theorem 1: For Eq. 17, given $\gamma_{1}>0, \gamma_{2}>0$, then there existed a state feedback control law $u(k)=K x(k)$, such that the states of Eq. 17 converged to a point in S with H_{∞} norm of the transfer function $T \omega_{1} z_{1}$ from $\omega_{1}(k)$ to $Z_{19}(k)$ no greater than γ_{1}, and H_{2} norm of transfer function $T \omega_{2} Z_{2}$ from $\omega_{2}(\mathrm{k})$ to $z_{29}(\mathrm{k})$ no greater than γ_{2}, if there existed such that:

$$
\begin{aligned}
& \mathrm{AX} \alpha+\mathrm{B}_{1} \mathrm{~W} \alpha=\mathrm{X} \alpha \\
& X=\alpha_{\perp} \alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} \alpha_{\perp}^{\mathrm{T}}+\alpha \alpha^{\mathrm{T}} \mathrm{X} \alpha \alpha^{\mathrm{T}} \\
& {\left[\begin{array}{ccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} & 0 \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \mathrm{T} \alpha_{\perp} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \left((\mathrm{C} 1 \mathrm{X}+\mathrm{D} 12 \mathrm{~W}) \alpha_{\perp}\right)^{\mathrm{T}} \\
0 & \left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp} & -\mathrm{I}
\end{array}\right]<0} \\
& {\left[\begin{array}{ccc}
-Z & \left(\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2}\right)^{\mathrm{T}} \\
\alpha_{\perp}^{\mathrm{T}} & \mathrm{~B}_{2}-\alpha_{\perp}^{\mathrm{T}} & \mathrm{X} \alpha_{\perp}
\end{array}\right]<0} \\
& \text { Trace (Z) }<\gamma^{2} \\
& {\left[\begin{array}{cccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & 0 & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} & \left(\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp}\right)^{\mathrm{T}} \\
0 & -\lambda^{2} \mathrm{I} & \left(\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2}\right)^{\mathrm{T}} & 0 \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & 0 \\
\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp} & 0 & 0 & -\mathrm{I}
\end{array}\right]}
\end{aligned}
$$

The feasible solution is $\mathrm{X}^{*}, \mathrm{~W}^{*}$, then the control law was $u=W^{*}\left(\mathrm{X}^{*}\right)^{-1} \mathrm{x}$.

Proof: According to Lemma 2 and 3, the states of Eq. 18 could reach consensus with $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ performance if there existed positive definitive matrices $\mathrm{X}_{1}, \mathrm{X}_{2}$ and matrices $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{Z}$, such that:

$$
\begin{aligned}
& \mathrm{AX}_{1} \alpha+\mathrm{B}_{1} \mathrm{~W}_{1} \alpha=\mathrm{X}_{1} \alpha \\
& \mathrm{X}=\alpha_{\perp} \alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{1} \alpha_{\perp} \alpha_{\perp}^{\mathrm{T}}+\alpha \alpha^{\mathrm{T}} \mathrm{X}_{1} \alpha \alpha^{\mathrm{T}} \\
& {\left[\begin{array}{ccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{1} \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}_{1}+\mathrm{B}_{1} \mathrm{~W}_{1}\right) \alpha_{\perp} & 0 \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}_{1}+\mathrm{B}_{1} \mathrm{~W}_{1}\right)^{\mathrm{T}} \alpha_{\perp} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{1} \alpha_{\perp} & \left(\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}_{1}\right) \alpha_{\perp}\right)^{\mathrm{T}} \\
0 & \left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}_{1}\right) \alpha_{\perp} & -\mathrm{I}
\end{array}\right]<0} \\
& {\left[\begin{array}{ccc}
-\mathrm{Z} & \left(\alpha_{\perp}^{\mathrm{T}}\right. & \left.\mathrm{B}_{3}\right)^{\mathrm{T}} \\
\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{3}-\alpha_{\perp}^{\mathrm{T}} & \mathrm{X}_{1} \alpha_{\perp}
\end{array}\right]<0} \\
& \text { Trace (Z) }<\gamma_{2}^{2} \\
& \mathrm{AX}_{2} \alpha+\mathrm{B}_{1} \mathrm{~W}_{2} \alpha=\mathrm{X}_{2} \alpha \\
& {\left[\begin{array}{cc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{2} \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}_{2}+\mathrm{B}_{1} \mathrm{~W}_{2}\right) \alpha_{\perp} \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}_{2}+\mathrm{B}_{1} \mathrm{~W}_{2}\right)^{\mathrm{T}} \alpha_{\perp} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{2} \alpha_{\perp}
\end{array}\right]<0} \\
& {\left[\begin{array}{cccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{2} \alpha_{\perp} & 0 & \alpha_{\perp}^{\mathrm{T}} & \left(\mathrm{AX}_{2}+\mathrm{B}_{1} \mathrm{~W}_{2}\right) \alpha_{\perp} \\
0 & -\lambda_{1}^{2} \mathrm{I} & \left(\left(\mathrm{C}_{1} \mathrm{X}_{2}+\mathrm{D}_{12} \mathrm{~W}_{2}\right) \alpha_{\perp}\right)^{\mathrm{T}} \\
\left.\alpha_{\perp}^{\mathrm{T}}\right)^{\mathrm{T}} & 0 \\
\left(\mathrm{AX} \mathrm{X}_{2}+\mathrm{B}_{1} \mathrm{~W}_{2}\right) \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{2} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{2} \alpha_{\perp} & 0 \\
\left(\mathrm{C}_{1} \mathrm{X}_{2}+\mathrm{D}_{12} \mathrm{~W}_{2}\right) \alpha_{\perp} & 0 & 0 & 0 \\
& & 0 & -\mathrm{I}
\end{array}\right]} \\
& \mathrm{X}_{2}=\alpha_{\perp} \alpha_{\perp}^{\mathrm{T}} \mathrm{X}_{2} \alpha_{\perp} \alpha_{\perp}^{\mathrm{T}}+\alpha \alpha^{\mathrm{T}} \mathrm{X}_{2} \alpha \alpha^{\mathrm{T}}
\end{aligned}
$$

It was very difficult to solve X_{1} and X_{2} as they were coupled together. Let $\mathrm{X}=\mathrm{X}_{1}=\mathrm{X}_{2}$, then $\mathrm{W}=\mathrm{W}_{1}=\mathrm{KX}_{1}=$ $\mathrm{W}_{2}=\mathrm{KX}_{2}$. The theorem 1 was proved.

Comment: The solution to the above equations was based on the constraint, the results may be more conservative, however, the conservativeness can make compute more effective. When the $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ control law was determined, the H_{∞} and H_{2} performance of closed-loop can be analyzed. Usually the H_{w} norm will be strictly less than $\gamma_{1}, \mathrm{H}_{2}$ norm will be strictly less than the optimal obtained by solution to the $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ problem.

Certain topology case: In general, the solutions obtained from theorem 1 would had a full block state feedback matrix K, i.e., each agent can receive information from every agent in the swarm system with certain topology structure. But this case was more practical.

The network topology was considered (Fig. 1). The direction of arrow represented the direction of information flow. The individual labelled 1 can get the information from 2 and 3 . While 2 can get information from 1 and 3 can visit 2 . The feedback matrix K may not be full, that was, K may satisfy certain requirement:

$$
\mathrm{K}=\left[\begin{array}{ccc}
\mathrm{K}_{11} & 0 & \mathrm{~K}_{13} \\
\mathrm{~K}_{21} & \mathrm{~K}_{22} & 0 \\
0 & \mathrm{~K}_{32} & \mathrm{~K}_{33}
\end{array}\right], \mathrm{K}_{\mathrm{ij}} \in \mathrm{R}^{\mathrm{q} \mathrm{\times p}}
$$

Then the $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ controller should be designed to make states system reach consensus meeting $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ performance with the special structure of K . According to theorem $1, \mathrm{~K}=\mathrm{W}^{*}\left(\mathrm{X}^{*}\right)^{-1}$, in order to simply the problem, the matrix X should be with a special structure. $X \in R^{3 p \times 3 p}$ was assumed to be a block diagonal matrix diag $\left(X_{1}, X_{2}, X_{3}\right)$, where, $X_{\epsilon} \in R^{p{ }_{p p}^{p}}$. So, K would have the same structure with W. If:

Fig. 1: Certain topology by 3 individuals

$$
\mathrm{W}=\left[\begin{array}{ccc}
\mathrm{W}_{11} & 0 & \mathrm{~W}_{13} \\
\mathrm{~W}_{21} & \mathrm{~W}_{22} & 0 \\
0 & \mathrm{~W}_{32} & \mathrm{~W}_{33}
\end{array}\right]
$$

Then:

$$
\begin{aligned}
\mathrm{K}=\mathrm{WX}^{-1} & =\left[\begin{array}{ccc}
\mathrm{W}_{11} & 0 & \mathrm{~W}_{13} \\
\mathrm{~W}_{21} & \mathrm{~W}_{22} & 0 \\
0 & \mathrm{~W}_{32} & \mathrm{~W}_{33}
\end{array}\right]\left[\begin{array}{ccc}
\mathrm{X}_{1}^{-1} & 0 & 0 \\
0 & \mathrm{X}_{2}^{-1} & 0 \\
0 & 0 & \mathrm{X}_{3}^{-1}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{W}_{11} \mathrm{X}_{1}^{-1} & 0 & \mathrm{~W}_{13} \mathrm{X}^{-1}{ }_{3} \\
\mathrm{~W}_{21} \mathrm{X}_{1}^{-1} & \mathrm{~W}_{22} \mathrm{X}^{-1}{ }_{2} & 0 \\
0 & \mathrm{~W}_{32} \mathrm{X}_{2}^{-1} & \mathrm{~W}_{33} \mathrm{X}_{3}^{-1}
\end{array}\right]
\end{aligned}
$$

Corollary 1(structured $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ control for consensus): Let $\chi=\left\{\mathrm{K}: \mathrm{K}_{\mathrm{ij}}=0 \in \mathrm{R}^{q \times p}\right.$, for $\left.(\mathrm{i}, \mathrm{j}) \in \mathrm{I}\right\}$ be a given structure. Given $\gamma_{1}>0, \gamma_{2}>0$, there existed a state feedback law $u(k)=K_{\mathrm{z}} \mathrm{x}(\mathrm{k})$ that made Eq. 17 reach consensus in S with the transfer function $T_{\omega 1 \mathrm{zI}}$ from $\omega_{1}(\mathrm{k})$ to $\mathrm{z}_{10}(\mathrm{k})$ and the transfer function $\mathrm{T}_{\omega 222}$ from $\omega_{2}(\mathrm{k})$ to $z_{29}(\mathrm{k})$ satisfying $\left\|\mathrm{T}_{\omega 1 \mathrm{z}}\right\|_{\infty}<\gamma_{1},\left\|\mathrm{~T}_{\omega 2 \mathrm{z}}\right\|_{2}<\gamma_{2}$ if there existed matrice $Z . W=W_{x}$ and $X_{i}>0, i 1, \ldots, N$, such that:

$$
\left.\begin{array}{c}
\mathrm{AX} \alpha+\mathrm{B}_{1} \mathrm{~W} \alpha=\mathrm{X} \alpha \\
\mathrm{X}=\alpha_{\perp} \alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} \alpha_{\perp}^{\mathrm{T}}+\alpha \alpha^{\mathrm{T}} \mathrm{X} \alpha \alpha^{\mathrm{T}} \\
{\left[\begin{array}{ccc}
-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right) \alpha_{\perp} & 0 \\
\alpha_{\perp}^{\mathrm{T}}\left(\mathrm{AX}+\mathrm{B}_{1} \mathrm{~W}\right)^{\mathrm{T}} \alpha_{\perp} & -\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp} & \left(\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp}\right)^{\mathrm{T}} \\
0 & \left(\mathrm{C}_{1} \mathrm{X}+\mathrm{D}_{12} \mathrm{~W}\right) \alpha_{\perp} & -\mathrm{I}
\end{array}\right]<0} \\
{\left[\begin{array}{cc}
-\mathrm{Z} & \left(\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{3}\right)^{\mathrm{T}} \\
\alpha_{\perp}^{\mathrm{T}} \mathrm{~B}_{3}-\alpha_{\perp}^{\mathrm{T}} \mathrm{X} \alpha_{\perp}
\end{array}\right]<0} \\
\text { Trace }(\mathrm{Z})<\gamma_{2}^{2}
\end{array}\right]
$$

Then the control law was:

$$
\mathrm{K}_{\mathrm{x}}=\mathrm{W}_{\mathrm{x}} \operatorname{diag}\left(\mathrm{X}_{1}^{-1}, \ldots, \mathrm{X}_{\mathrm{N}}^{-1}\right)
$$

Proof: The results can be obtained directly by substituting the matrix W, X with W_{x} and $\operatorname{diag}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$ in theorem 1.

Numerical simulations: Consider the swarm systems with 3 integrators each agent having the same dynamics:

$$
\mathrm{x}_{\mathrm{i}}(\mathrm{k}+1)=\mathrm{A}_{\mathrm{ii}} \mathrm{x}_{\mathrm{i}}(\mathrm{k})+\sum_{\mathrm{j} \neq \mathrm{i}} \mathrm{~A}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}(\mathrm{k})+\mathrm{B}_{\mathrm{ii}} \mathrm{u}_{\mathrm{i}}(\mathrm{k})+\mathrm{B}_{2 \mathrm{i}} \mathrm{w}_{1}(\mathrm{k}), \mathrm{i} \in\{1,2,3\}
$$

where, let $\mathrm{A}_{\mathrm{ii}}=\mathrm{I}, \mathrm{B}_{\mathrm{li}}=\mathrm{I}, \mathrm{B}_{2 \mathrm{i}}=\mathrm{I}, \mathrm{p}=1, \mathrm{~N}=3$ then:

When, $\mathrm{A}=\mathrm{I}, \mathrm{B}_{1}=\mathrm{B}_{2}=\mathrm{B}_{3}=\mathrm{I}$.
The performance function:

$$
\begin{aligned}
& z_{1}(\mathrm{k})=\left(\mathrm{C}_{1}+\mathrm{D}_{10} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k}) \\
& \mathrm{z}_{2}(\mathrm{k})=\left(\mathrm{C}_{2}+\mathrm{D}_{20} \mathrm{~K}\right) \alpha_{\perp} \theta(\mathrm{k})
\end{aligned}
$$

When:

$$
\alpha=(\sqrt{3})^{-1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following results can obtain:

$$
\alpha_{\perp}=\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\
0 & \frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}}
\end{array}\right] \text { and } \mathrm{C}_{1}=\mathrm{C}_{2}\left[\begin{array}{c}
\alpha_{1}^{\mathrm{T}} \\
0
\end{array}\right], \mathrm{D}_{10}=\mathrm{D}_{20}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The inequalities of Theorem 2 and 3 were feasible on both continuous and discrete cases.

The complete graph case: According to theorem 1, the solutions can be got by MATLAB, the solutions were feasible.

$$
\begin{gathered}
X=\left[\begin{array}{lll}
11.2266 & 10.2266 & 10.2266 \\
10.2266 & 11.2266 & 10.2266 \\
10.2266 & 10.2266 & 11.2266
\end{array}\right], Z=\left[\begin{array}{ccc}
0.2500 & 27.3965 & 27.3965 \\
27.3965 & 0.2500 & 27.3965 \\
27.3965 & 27.3965 & 0.2500
\end{array}\right] \\
W=\left[\begin{array}{rrr}
-0.6667 & 0.3333 & 0.3333 \\
0.3333 & -0.6667 & 0.3333 \\
0.3333 & 0.3333 & 0.6667
\end{array}\right]
\end{gathered}
$$

then the control law is:

$$
\mathrm{u}(\mathrm{k})=\mathrm{W} *\left(\mathrm{X}^{*}\right)^{-1} \mathrm{x}(\mathrm{k})=\left[\begin{array}{rrr}
-0.6667 & 0.3333 & 0.3333 \\
0.3333 & 0.6667 & 0.3333 \\
0.3333 & 0.3333 & 0.6667
\end{array}\right] \mathrm{x}(\mathrm{k})
$$

When $\left\|T_{z u}\right\|_{2}=0.8165<\gamma=1,\left\|T_{z z \omega v}\right\|_{2}=1.000 \leq \gamma_{2}=1$.
Certain graph case: When the topology graph was same as Fig. 1, Collorally 1 was used to design the control law. The solutions were feasible:

$$
\begin{gathered}
\mathrm{X}=\left[\begin{array}{ccc}
0.5000 & 0 & 0 \\
0 & 0.5000 & 0 \\
0 & 0 & 0.5000
\end{array}\right], Z=\left[\begin{array}{ccc}
0.2500 & 17.6432 & 17.6432 \\
17.6432 & 0.2500 & 17.6432 \\
17.6432 & 17.6432 & 0.2500
\end{array}\right] \\
\mathrm{W}=\left[\begin{array}{ccc}
-0.2500 & 0 & 0.2500 \\
0.2500 & -0.2500 & 0 \\
0 & 0.2500 & -0.2500
\end{array}\right]
\end{gathered}
$$

the control law is:

$$
\begin{gathered}
u(k)=W_{z}^{*}\left(X^{*}\right)^{-1} x(k)=\left[\begin{array}{ccc}
-0.5000 & 0 & 0.5000 \\
0.5000 & -0.5000 & 0 \\
0 & 0.5000 & -0.5000
\end{array}\right] x(k), \\
\left\|T_{z 1 \omega 1}\right\|_{\infty \infty}=0.9428<\gamma_{1}=1,\left\|T_{z 2 \omega 2}\right\|_{2}=1.1668<\gamma_{2}=2
\end{gathered}
$$

CONCLUSIONS

This study provided a theoretical analysis for design $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ controller of consensus of swarm discrete dynamic systems. Both the complete and certain topology structure were considered. Theorem 1 and corollary 1 were concluded. the controller can make the states of system obtain consensus and the non-consensus meeting $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ performance. The results were drawn by LMI. A specific example was used to test the validity of the results.

ACKNOWLEDGMENT

This project was financially supported by Wuhan Youth Chenguang Program of Science and Technology under grant 201150431090.

REFERENCES

Castro, G.A. and F. Paganini, 2004. Convex synthesis of controllers for consensus. Proceedings of the American Control Conference, June 30, 2004, Boston, Massachusetts, pp: 4933-4938.
Fenglan, S., G. Zhi-Hong, Z. Xisheng and Y. Fushun, 2012. Consensus of second-order and high-order discrete-time multi-agent systems with random networks. Nonlinear Anal: Real World Appl., 13: 1979-1990.
Housheng, S., C. Guanrong, W. Xiaofan and L. Zongli, 2011. Adaptive second-order consensus of networked mobile agents with nonlinear dynamics. Autom., 47: 368-375.
Jadbabaie, A., L. Jie and A.S. Morse, 2003. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control, 48: 988-1001.

Li, X.S. and H.J. Fang, 2009a. H8 controller for consensus of swarm agents with complete and incomplete communication graphs. J. Applied Sci., 10: 1929-1935.
Li, X.S. and H.J. Fang, 2009b. H8 control for consensus of discrete time networked swarm agents. Elect. Mach. Control, 13: 597-602, (In Chinese).
Li, X.S. and H.J. Fang, 2009c. H8 control for consensus of discrete time networked swarm agents. J. Applied Sci., 27: 525-531, (In Chinese).
Moreau, L., 2005. Stability of multi-agent systems with time-dependent communication links. IEEE Trans. Automat. Control, 50: 169-182.
Ren, W. and R.W. Beard, 2005. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control, 50: 655-661.
Reynolds, C.W., 1987. Flocks, birds and schools: A distributed behavioral model. Comput. Graph, 21: 25-34.
Saber, R.O. and R.M. Murray, 2003. Consensus protocols for network of dynamic agents. Proceedings of the American Control Conference, Vol: 2, Jun 4-6, 2003, Denver, Colorado, pp: 951-956.
Saber, O.R. and R.M. Murray, 2004. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control, 49: 1520-1533.
Saber, R.O., J.A. Fax and R.M. Murray, 2007. Consensus and cooperation in multi-agent networked systems. Proc. IEEE, 95: 215-233.
Tao, Y., A.S. Anton and S. Ali, 2011. Consensus for multiagent systems-synchronization and regulation for complex networks. Proceedings of the American Control Conference, June 29-July 01, 2011, San Francisco, CA, pp: 5312-5317.
Vicsek, T., A. Czirok, E. Ben-Jacob, I. Cohen and O. Sochet, 1995. Novel type of phase transition in a system of self-driven particle. Phys. Rev. Lett., 75: 1226-1229.
Xiaoqing, L., A. Francis and C. Shihua, 2012. Formation control for second-order multi-agent systems with time-varying delays under directed topology. Commun. Nonlinear Sci. Numer. Simul., 17: 1382-1391.

