Bio
 Technology

ANSI 亿et

Production, Purification and Application of Bacterial Laccase: A Review

Narayanan P. Muthukumarasamy and Sevanan Murugan
Department of Biotechnology, School of Biotechnology and Health Sciences, Karunya University, Coimbatore, 64114, India

Abstract

Laccases are versatile enzymes belonging to the group of oxidases. Laccases catalyzes variety of phenolic compounds, as well as, diamines and aromatic amines with concomitant reduction of molecular oxygen to water. Laccases have mostly been isolated and characterized from plants and fungi in contrast, little is known about bacterial laccases. Thermostability of this particular enzyme makes an attractive feature for their biotechnological application, especially due to its extensive and advanced applications. The applications includes effluents detoxification from the paper and pulp industries, textile industries, petrochemical industries, food, cosmetics, soil bioremediation and biodegradation of environmental phenolic pollutants. The removal of xenobiotic substances and production of polymeric products makes them a useful candidate for bioremediation purposes. In the last few decades, laccase received much attention due to its ability to oxidize both phenolic and non-phenolic compounds. The present review summarizes the distribution of bacterial laccases and their overview in industrial applications in different sectors.

Key words: Bacterial laccase, synthetic dyes, bioremediation, detoxification, xenobiotics

INTRODUCTION

Laccases (benzenediol: oxygen oxidoreduceses; EC 1.10.3.2) are glycoproteins, which are ubiquitous in nature, grouped under blue oxidases in the Enzyme Commission (EC) nomenclature which oxidize diphenols and use molecular oxygen as an electron acceptor (Kiiskinen et al., 2004). The laccase was first reported from Rhus vernicifera, the Japanese lacquer tree in 1883 (Yoshida) of which the designation laccase was derived and characterized as a metal containing oxidase. This makes it one of the oldest enzymes ever described and has also been detected in insects and bacteria. But the majority of laccases have been characterized from fungi particularly from basidiomycetes, a white-rot fungi which are efficient lignin degraders (Alexandre and Zhulin, 2000). Previous studies have shown that bacterial strains degrade the low molecular weight portions of lignin polymer, unlike fungi which secretes extra cellular enzymes called ligninases. However, due to their productivity, bacterial enzyme systems are expected to serve as useful tools for the conversion of lignin into intermediate metabolites (Gelpeke et al., 1999). The aromatic polymer lignin is well known for resistance to microbial degradation because of its high molecular weight and presence of various biologically stable carbon-to-carbon and ether linkages. Microorganisms that
degrade plant lignin via oxidative process of fungi, actinomycetes and to a lesser extent, bacteria (Ali and Sreekrishnan, 2001).

To develop an effective, high yielding and economical medium for production of laccase, a suitable substrate specificity and enhanced stability is very important for industrial scale processes. Previous researchers have worked on both solid state and sub-merged fermentation for the utilization of these enzymes. Solid state fermentation mainly utilize the natural lignin materials such as rice bran, wheat bran, coir dust and sugarcane bagasse, etc (Shanmugam et al., 2009). But in case of sub-merged fermentation, the media components like synthetic inducers (guaiacol, veratyl alcohol and indulin) were adopted (Kiiskinen et al., 2004; Patel et al., 2008).

Laccases are applied in many industrial sectors such as paper processing (Couto and Herrera, 2006), discoloration of wine, environmental pollutants detoxification and chemical production from lignin (Win et al., 2003). The demand for removal of synthetic dyes from the textile industrial waste using fungal and bacterial laccase is being increased tremendously. Laccase has been reported as an inducible enzyme during degradation of azo dyes by various bacteria (Parshetti et al., 2006; Kalyani et al., 2008). Investigations on different and less polluting mediators such as natural mediators produced by laccase and also their modification
by chemical means or protein engineering should be carried out to obtain more robust and active enzymes (Lorenzo et al., 2002). This study reviews the distribution, production, purification and applications of laccase in different industrial sectors.

DISTRIBUTION OF BACTERIAL LACCASE

Laccase enzymatic activity is not widely revealed in bacteria. In the last decade, there have been reports indicating laccase-type activity in different bacterial blue multi-copper proteins (Hullo et al., 2001; Kim et al., 2001). These biocatalysts may have advantageous properties compared to classical laccases; an example is CotA, which has a much higher thermostability than fungal laccases (Martins et al., 2002). Claus (2003), stated that only few bacterial laccases have been studied, though rapid progress in genome analysis suggests that these enzymes are also widespread in bacteria.

The most well-known representative is CotA from Bacillus subtilis, an endospore coat protein with high thermostability (Hullo et al., 2001). Other laccases have been found in Pseudomonas maltophila (Isono and Hoshino, 1989), P. syringae (copA) (Cha and Cooksey, 1991), Azospirillum lipoferum (Givaudan et al., 1993), Xanthomonas campesteris (Lee et al., 1994), Bacillus sp. (mnx G) (Van Waasbergen et al., 1996), B. sphaericus (Claus and Filip, 1997), P. fluorescens GB-1 (Okazaki et al., 1997), Aquifex aeolicus (Deckert et al.,1998), P. putida GB1 (Brouwers et al., 1999), A. lipoferum (Diamantidis et al., 2000), P. desmolyticum NCIM 2112 (Solano et al., 2001), B. subtilis (Hullo et al., 2001), Pseudomonas sp. (Francis and Tebo, 2001), Escherichia coli CueO (Kim et al., 2001; Roberts et al., 2002), P. aerophilum (pae1888) (Fitz-Gibbon et al., 2002), Oceanobacillus iheyensis (Takami et al., 2002), a-proteobacterium SD 21 (Francis and Tebo, 2001), Streptomycetes sp. (Arias et al., 2003; Endo et al., 2003), c-proteobacterium JB (Bains et al., 2003), B. halodurans Lbh-1 (Ruijssenaars and Hartmans, 2004), Thermus thermophilus TTC1370 (Miyazaki, 2005) and Marinomonas mediterranea (Kalme et al., 2007).

PRODUCTION OF LACCASE

Influence of substrates: The processing of agro-industrial waste residues enhance suitable feed stocks for bioconversion into chemicals, including enzymes by fermentation processes, thereby adding value to what normally constitutes a waste product (Giese et al., 2008). Laccases catalyze the oxidation of a large variety of reducing phenolic and aromatic compounds, which makes
them useful for biotechnological purposes (Couto and Herrera, 2006). These polyphenol oxidases have been obtained from fermentation of agricultural wastes such as tea waste (Muniswaran et al., 1994), sago hampas (Smits et al., 1996), palm oil waste (Prasertsan et al., 1997; Suffian et al., 2010), cotton waste (Jaszek et al., 1998), corn cob (Couto et al., 1999), wheat bran (De Souza et al., 2002), banana waste (Reddy et al., 2003), barley (Gomez et al., 2005), coconut flesh (Couto and Sanroman, 2005), groundnut shell (Couto and Herrera, 2006), sawdust (Vikineswary et al., 2006), sugarcane bagasse (Meza et al., 2005), banana skin (Osma et al., 2007), rice straw (Niladevi et al., 2007) and orange bagasse (Giese et al., 2008).

Solid State Fermentation (SSF): The production of laccase by bacteria under Solid-State Fermentation (SSF) is found to be economical. It is defined as a process occurrence in absence or near absence of any free-flowing water (Couto and Herrera, 2006). The presence of moisture of about 15% is necessary for solid state fermentation. The most commonly used solid substrates for SSF are cereal grains, wheat bran, sawdust, wood shavings and several other plant and animal materials (Glazer andNikaido, 2007). The microorganisms grow under SSF conditions are relatively close to their natural habitat (Murugesan et al., 2007). There has been an increasing development towards the consumption of organic residues such as agricultural, forestry and industries that produce value added products from raw materials by SSF technique (Kalogeris et al., 2003).

In Streptomyces cyaneus, a laccase-type phenol oxidase was produced under solid state fermentation conditions and it was suggested that this enzyme was found to be involved in solubilization and mineralization of lignin from a suitable substrate such as wheat straw (Berrocal et al., 2000). Vikineswarya et al. (2006), produced laccase from Pycnoporus sanguineus under Solid State Fermentation (SSF) of sago hampas, Oil Palm Frond Parenchyma tissue (OPFPt) and rubber wood sawdust. Laccase productivity was higher in the range of 7.5-7.6 $\mathrm{U} \mathrm{g} \mathrm{g}^{-1}$ substrate during degradation of sago hampas and OPFPt on 11th day of fermentation when compared to rubber wood sawdust ($5.7 \mathrm{Ug}^{-1}$).

Sub-Merged Fermentation (SMF): Liquid batch or submerged fermentation (SmF) is frequently used for laccase production with fungi, despite the fact that this mode is quite different from the natural living conditions of these organisms. Fermentation parameters can be controlled easily in liquid batch culture and existing bioreactor configurations have provided satisfactory
laccase production (Thiruchelvam and Ramsay, 2007). Nevertheless, liquid fermentation is not optimal for all fungal species. For example, SmF was more eficient than semi-solid cultivation for laccase production from T. versicolor but laccase produced from T. villosa under semi solid conditions were found to be favoruable (Minussi et al., 2007).

Influence of incubation time and temperature: Thermophilic microorganisms that showed optimal growth temperatures above $45^{\circ} \mathrm{C}$ have served as a natural source of industrially relevant and thermostable enzymes. The laccases isolated from Marasmius quercophilus were found to be optimum at $60^{\circ} \mathrm{C}$ and also found that pre-incubation of enzymes at 40 and $50^{\circ} \mathrm{C}$ greatly increased laccase activity (Farnet et al., 2000). The best studied bacterial laccase is the $\cot \mathrm{A}$ gene product $(\operatorname{Cot} A)$, which is a component of the spore coat of B. subtilis (Hullo et al., 2001). The important characteristic property of CotA is its thermal stability having a half-life at $80^{\circ} \mathrm{C}$ of about 2 h and optimum temperature of $75^{\circ} \mathrm{C}$ (Martins et al., 2002).

Similarly, another strain B. subtilis produced 1.8 times more laccase on sporulation medium than on non-sporulation medium. Spores oxidized mono- and di-methoxyphenols (0.1 mM) at $50^{\circ} \mathrm{C}$ (Hirose et al., 2003). Koschorreck et al. (2008), have cloned a laccase gene (cotA) from B. licheniformis and they expressed in E. coli. The recombinant CotA protein showed maximum temperature levels at 70 and $80^{\circ} \mathrm{C}$, with a residual activity of 43 and 8% during one hour of incubation.

Influence of $\mathbf{p H}$: Many studies have reported a bell shaped pH profile for laccase due to utilization of different substrates and use of molecular oxygen or enzyme itself (Desai and Nityanand, 2011). Murugesan et al. (2007) performed an experiment using a typical laccase from R. praticola which was found to have an optimal pH at neutral region. Cordi et al. (2007) stated that, 3.0-8.0 will be the pH range for laccase when syringaldazine was used as a substrate. Majority of the reports have indicated that initial pH levels were set between $\mathrm{pH} 4.5-6.0$ prior to inoculation but in most cultivation the levels are not maintained (Vasconcelos et al., 2000). Laccase produced from T. modesta showed an initial pH of 7.0 , which is the best for optimal growth and production (Nyanhongo et al., 2002).

Influence of carbon and nitrogen sources: The carbon sources in the medium play an important role in ligninolytic enzyme production. The influence of carbohydrates; glucose, fructose, galactose, galacturonic
acid, xylose, lactose, sucrose, pectin and inulin, were employed as sole carbon source for the production of laccases by Botryosphaeria sp. Veratryl alcohol, a laccase inducer, was added to culture media to study inducible laccase production on the same carbon sources (Elisashvili et al., 2002). Jhadav et al. (2009) carried out the optimization of laccase production using Phanerochaete chrysosporium as source of laccase. Laccase activity was measured using media containing different carbon sources. Laccase production time was standardized using composite minerals such as glucose and guaiacol. The activity was found high in medium containing rice and maize bran than glucose as carbon source.

Ligninolytic systems are activated during the secondary metabolic phase of fungi which are triggered by depletion of nitrogen source (Desai and Nityanand, 2011). Elisashvili et al. (2002) observed that ammonium sulphate in the medium increased the laccase activity from C. unicolor IBB 62 . D'Souza et al. (2006) showed glutamic acid and glycine served better organic nitrogen sources than beef extract and corn steep liquor for production of laccase. Although, S. psammoticus MTCC 7334 showed yeast extract as the best nitrogen source ($34.8 \mathrm{U} \mathrm{g}^{-1}$) and there was no enhancement in enzyme yield with carbon supplementation (Niladevi et al., 2007).

Influence of inducers: Laccase production can be considerably stimulated by the presence of inducers (mainly aromatic or phenolic compounds related to lignin or lignin derivatives) such as veratryl alcohol, guaiacol, gallic acid, ferulic acid and ethanol. Also, laccase production can be considerably stimulated in the presence of inducing substances like ethanol, veratryl alcohol, 2,5 -xylidine, ferulic acid and guaiacol. Laccase production in γ-proteobacterium JB increased 13-fold due to addition of CuSO_{4} after the onset of growth. Similarly, Ethidium bromide, Malachite Green, Phenol Red and Thymol Blue have also enhanced the laccase production by 17-, 19-, 4- and 2-fold. They have also isolated an organism from industrial effluent and tested against fourteen aromatic/organic compounds (Kanam et al., 2004).

Influence of metal ions: According to Zhang et al. (2010), laccase activity was not significantly affected by the presence of $\mathrm{Mg}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cu}^{2+}$ ions and EDTA at the concentrations of $6.25-50 \mathrm{mM}$ but was reduced by Ca^{2+} at $25-50 \mathrm{mM}, \mathrm{Al}^{2+}$ and Fe^{2+} at a concentration of $6.25-50 \mathrm{mM}$. They have also reported that Lentinula edodes laccase was inhibited in the presence of $1 \mathrm{mMCa}^{2+}(70 \%)$ and
$\mathrm{Zn}^{2+}(64 \%)$ and was enhanced by 40% in the presence of $10 \mathrm{mM} \mathrm{Cu}^{2+}$. Palmieri et al. (2000), reported that the addition of CuSO_{4} in the production media resulted in 50 -fold increase in laccase activity when compared to a basal medium without copper sulphate. Similarly, oxidation of manganese ions played an important role in the function of lignolytic complex of wood degradation, since it efficiently oxidized certain non-phenolic compounds of lignin (Gorbacheva et al., 2009).

Galai et al. (2009), identified Stenotrophomonas maltophilia AAP56 a soil bacterium by biochemical and molecular methods. The effect of EDTA, sodium azide, urea, $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Zn}^{2+}$ and Ca^{2+} was determined by incubating for 5 min at $4^{\circ} \mathrm{C}$ prior to substrate addition. The laccase activity recorded $275 \mathrm{U} \mathrm{L}^{-1}$ which is increased by 2.6 -fold in the production of enzyme. They have also indicated that the enzyme was totally inhibited by the addition of EDTA, which proves it's a metaldependent enzyme.

Purification of laccase: Laccase produced from S. psammoticus was partially purified by ammonium sulphate precipitation and immobilized in alginate beads by entrapment method using calcium and copper. The copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity when compared to calcium alginate beads which retained 42.5\% of laccase activity only (Niladevi and Prema, 2008). Zhang et al. (2006) produced laccase from Panus rudis under defined shaken liquid culture without induction. The molecular weight of purified laccase enzyme was 58 kDa which contained 8% carbohydrate and an isoelectric point of 3.5 . McMahon et al. (2007) purified laccase from cell extracts of soil bacterium P. putida F6 using a combination of anion exchange chromatography, gel filtration and found increased laccase activity of 747 and $518 \mathrm{U} \mathrm{mg}^{-1}$. The purified laccase has a relative molecular mass of approximately 59 kDa .

Suzuki et al. (2003) isolated a laccase from the cell extracts of Streptomyces lavendulae REN-7 (STSL). The purified enzyme showed a single protein band on 10% SDS-PAGE with molecular mass of about 73 kDa . Da Cunha et al. (2003) determined the laccase activity spectrophotometrically using syringaldazine and observed the absorbance increase during oxidation of substrates under room temperature. According to Jhadav et al. (2009), the purified laccase obtained from medium containing glucose and guaiacol showed lower activity than its crude counterpart and the efficiency of purified extract was analyzed by 10% SDS-PAGE. Diamantidis et al. (2000) worked on the purification of Azospirillum lipoferum laccase by dialysis where the
proteins were precipitated from the supernatant with ammonium sulphate. Laccase activity was detected in $30-60 \%$ saturated fractions with approximate molecular mass of $60-70 \mathrm{kDa}$ with an acidic isoelectric point (pI) around pH 4.0 (De Souza and Peralta, 2003; Shleev et al., 2004).

APPLICATION OF LACCASE

Pulp and paper industry: In the industrial preparation of paper, the separation and degradation of lignin in wood pulp are conventionally obtained using chlorine or oxygen based chemical oxidants. An enzymatic treatment of non-chlorine bleaching of pulp obtained brighter pulp with low lignin content (Gamelas et al., 2005). Since, wood and other soil materials are naturally degraded by biological origin, the use of lignin degrading enzymes would provide a new alternatives in pulp and paper industries (Madhavi and Lele, 2009). Employing laccase in lignocellulosic fibers will improve the chemical and physical properties of kraft pulp fiber products (Huttermann et al., 2001). Bacterial laccases from S. cyaneus CECT 3335 (Arias et al., 2003) and P. stutzeri (Kumar et al., 2003) have been examined for bio-bleaching of eucalyptus kraft pulps using ABTS and HOBT (Hydroxybenzotriazole) as redox mediators.

Textile industry: Textile industry effluents cause major pollution problems that contributes two-third of its total dyestuff market which consumes large volumes of water and chemicals during processing of wet cloths (Pearce et al., 2003). Due to their complex synthetic origin, the dye stuff were difficult to decolourize (Zollinger, 2002). Therefore, the development of processes based on laccase found to be immediate solution due to degrading potential towards diverse chemical structure (Salony and Bisaria, 2006).

Campos et al. (2001) reported that, purified laccase from T. hirsute and Sclerotium rolfsii have been able to degrade the indigo dye both in fabric and effluents with the combination of redox mediators. In the recent past, phenol induced laccase from T. versicolor was found to be an effective agent for stone washing, denin fabric without using a redox mediators (Pazarloglu et al., 2005). Moreover, Lantto et al. (2004) found that laccase with suitable mediator can activate the wool fabrics for the anti-shrink treatment. Basto et al. (2006) proposed the use of ultrasound treatment for efficient cotton bleaching by laccase. Mustafa et al. (2005) used hydro-organic medium that produced stable yellow coloured products by means of oxidation of ferulic acid by laccase, which can be easily recovered.

Bioremediation: The involvement of laccase in biodegradation was mainly due to its catalytic properties (Maciel et al., 2010). Laccase are used for decolorizing dye house effluents that are hardly decolourized by conventional sewage treatment plants (Novotny et al., 2004). The xenobiotic compound present in contaminated soil, Polycyclic Aromatic Hydrocarbons (PAHs) in natural oil deposits and fossil fuels were easily degraded by laccase (Pointing, 2001; Anastasi et al., 2009). Laccase was found to be responsible for the transformation of 2, 4, 6-trichlorophenol to 2, 6-dichloro-1, 4-hydroquinol and 2, 6-dichloro-1, 4-benzoquinone. Laccase Mediator System (LMS) have been also used to oxidize alkenes, carbazole, ethylcarbazole, fluorene and dibenzothiophene (Niku-Paavola and Viikari, 2000). LMS has been extensively study for the oxidation of recalcitrant PAHs and several other contaminants (Alcalde et al., 2006).

Food industry: Laccase substrates such as carbohydrates, unsaturated fatty acids, phenols and thiol-containing proteins are important components of various foods and beverages (Kirk et al., 2002). Various enzymatic treatments have been proposed for fruit juice stabilization, among which laccases are one of the choice of treatment (Alper and Acar, 2004). Minussi et al. (2002) have reported the potential application of laccase in different forms such as beverage processing, bioremediation (food industry waste water), ascorbic acid determination, pectin gelation, baking and also act as biosensor. Several studies reported the use of laccase in ascorbic acid determination, sugar beet pectin gelation, baking and as well as olive mill wastewater treatment (Couto and Herrera, 2006; Selinheimo et al., 2006; Minussi et al., 2007).

Other sectors: In organic synthesis, laccase become a new biocatalyst that extended its application during the last decade (Mayer and Staples, 2002). Laccase acts as a mediator in the polymer production process without enzyme catalyzed cross-linking (Ikeda et al., 2001). Moreover, T. versicolor laccase expressed in S. cerevisiae have improved the production of fuel ethanol from renewable raw materials (Larsson et al., 2001).

Many products generated by laccases are antimicrobial, detoxifying or active personal care agents, anesthetics, anti-inflammatory, antibiotics and sedatives (Nicotra et al., 2004). Due to their specificity and bio-based nature, laccase become a field of interest in pharmaceutical sector. Laccase have shown capable of fighting against aceruloplasminemia disease (a medical condition of lacking ceruloplasmin, a multi- Cu serum oxidase whose ferroxidase activity regulates iron homeostasis) (Harris et al., 2004).

CONCLUSION

Bacterial laccases are overcoming the disadvantages of instability and in-process applications when compared to fungal laccase. They are highly active and much more stable at high temperatures and high-pH values. Bacterial laccases become an industrially important enzyme that are applied in various processes like detoxification of industrial effluents, mostly from the paper and pulp, textile and petrochemical industries, important tool for medical diagnostics, cleaning agent for certain water purification system and catalyst for manufacturing anti-cancer drugs. The important obstacles to commercialize the bacterial laccases was the lack of sufficient enzyme stocks and the cost of redox mediators. Thus, efforts have to be made in order to achieve cheap over-production of this biocatalyst and also alteration of enzyme by chemical means to obtain more robust and active enzymes.

ACKNOWLEDGMENTS

Authors are grateful to the Chancellor Dr. Paul Dhinakaran, the Vice Chancellor Dr. Sundar Manoharan and the Registrar Dr. Joseph Kennady, Karunya University, Coimbatore, India for their kind support to carry out this publication.

REFERENCES

Alcalde, M., M. Ferrer, F.J. Plou and A. Ballesteros, 2006. Environmental biocatalysis: From remediation with enzymes to novel green processes. Trends Biotechnol., 24: 281-287.
Alexandre, G. and I.B. Zhulin, 2000. Laccases are widespread in bacteria. Trends Biotechnol., 18: 41-42.
Ali, M. and T.R. Sreekrishnan, 2001. Aquatic toxicity from pulp and paper mill effluents: A review. Adv. Environ. Res., 5: 175-196.
Alper, N. and J. Acar, 2004. Removal of phenolic compounds in pomegranate juices using ultrafiltration and laccase-ultrafiltration combinations. Food/Nahrung, 48: 184-187.
Anastasi, A., T. Coppola, V. Prigione and G. Varese, 2009. Pyrene degradation and detoxification in soil by a consortium of basidiomycetes isolated from compost: Role of laccases and peroxidases. J. Hazard. Mater., 165: 1229-1233.
Arias, M.E., M. Arenas, J. Rodriguez, J. Soliveri, A.S. Ball and M. Hernandez, 2003. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Applied Environ. Microbiol., 69: 1953-1958.

Bains, J., N. Capalash and P. Sharma, 2003. Laccase from a nonmelanogenic, alkalotolerantc-proteobacterium JB isolated from industrial waste water drained soil. Biotechnol. Lett., 25: 1155-1159.
Basto, C., T. Tzanov and A. Cavaco-Paulo, 2006. Combined ultra-sound laccase assisted bleaching of cotton. Ultrason. Sonochem., 14: 350-354.
Berrocal, M., A.S. Ball, S. Huerta, J.M. Barrasa, M. Hernandez, M.I. Perez-Leblic and M.E. Arias, 2000. Biological upgrading of wheat straw through solid-state fermentation with Streptomyces cyaneus. Applied Microbiol. Biotechnol., 54: 764-771.
Brouwers, G.J., J.P.M. de Vrind, P.L.A.M. Corstjens, P. Cornelis, C. Baysse and E.W. de Vrind-de Jong, 1999. CumA, a gene encoding a multicopper oxidase, is involved in Mn^{2+} oxidation in Pseudomonas putida GB-1. Applied Environ. Microbiol., 65: 1762-1768.
Campos, R., A. Kandelbauer, K.H. Robra, A. Cavaco-Paulo and G.M. Gubitz, 2001. Indigo degradation with purified laccases from Trametes hirsute and Sclerotium rolfsii. J. Biotechnol., 89: 131-139.
Cha, J.S. and D.A. Cooksey, 1991. Copper resistance in Pseudomonas syringaeby periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA., 88: 891 5-8919.
Claus, H. and Z. Filip, 1997. The evidence of a laccase-like activity in a Bacillus sphaericusstrain. Microbiol. Res., 152: 209-215.
Claus, H., 2003. Laccases and their occurrence in prokaryotes. Arch. Microbiol., 179: 145-150.
Cordi, L., R.C. Minussi, R.S. Freire and N. Duran, 2007. Fungal laccase: Copper induction, semi-purification, immobilization, phenolic effluent treatment and electrochemical measurement. Afr. J. Biotechnol., 6: 1255-1259.
Couto, S.R., M.A. Longo, C. Cameselle and A. Sanroman, 1999. Ligninolytic enzymes from corncob cultures of Phanerochaete chrysosporium under semi-solid-state conditions. Acta Biotechnol., 19: 17-25.
Couto, S.R. and M.A. Sanroman, 2005. Coconut flesh: A novel raw material for laccase production by Trametes hirsute under solid-state conditions. Application to Lissamine Green B decolourization. J. Food. Eng., 71: 208-213.

Couto, S.R. and J.L.T. Herrera, 2006. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv., 24: 500-513.
D'Souza-Ticlo, D., A.K. Verma, M. Mathew and C. Raghukumar, 2006. Effect of nutrient nitrogen on laccase production, it's isozyme pattern and effluent decolorization by the fungus NIOCC \#2a, isolated from mangrove wood. Ind. J. Mar. Sci., 35: 364-372.

Da Cunha, M.A.A., A.M. Barbosa, E.C. Giese and R.F.H. Dekker, 2003. The effect of carbohydrate carbon sources on the production of constitutive and inducible laccases by Botryosphaeria sp. J. Basic. Microbiol., 43: 385-392.

De Souza, C.G.M. and R.M. Peralta, 2003. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J. Basic Microbiol., 43: 278-286.
De Souza, C.G.M., A. Zilly and R.M. Peralta, 2002. Production of laccase as the sole phenoloxidase by a Brazilian strain of Pleurotus pulmonarius in solid state fermentation. J. Basic Microbiol. 42: 83-90.
Deckert, G., P.V. Warren, T. Gaasterland, W.G. Young and A.L. Lenox et al., 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature, 393: 353-358.
Desai, S.S. and C. Nityanand, 2011. Microbial laccase and their applications: A review. Asian J. Biotechnol., 3: 98-124.
Diamantidis, G., A. Effosse, P. Potier and R. Bally, 2000. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol. Biochem., 32: 919-927.
Elisashvili, V., E. Kachlishvili, N. Tsiklauri and M. Bakradze, 2002. Physiological regulation of edible and medicinal higher basidiomycetes lignocellulolytic enzyme activity. Int. J. Med. Mushr., 4: 159-166.
Endo, K., Y. Hayashi, T. Hibi, K. Hosono, T. Beppu and K. Ueda, 2003. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus. J. Biochem., 133: 671-677.
Farnet, A.M., S. Criquet, S. Tagger, G. Gil and J. Le Petit, 2000. Purification, partial characterization and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17. Can. J. Microbiol., 46: 189-194.
Fitz-Gibbon, S.T., H. Ladner, U.J. Kim, K.O. Stetter, M.I. Simon and J.H. Miller, 2002. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci., 99: 984-989.
Francis, C.A. and B.M. Tebo, 2001. CumA multi copper oxidase genes from diverse Mn (II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Applied Environ. Microbiol., 67: 4272-4278.
Galai, S., F. Limam and M. Marzouki, 2009. A new Stenotrophomonas maltophilia strain producing laccase, use in decolorization of synthetics dyes. Applied Biochem. Biotech., 158: 416-431.

Gamelas, J.A.F., A.P.M. Tavares, D.V. Evtuguin and A.M.B. Xavier, 2005. Oxygen bleaching of kraft pulp with polyoxometalates and laccase applying a novel multi-stage process. J. Mol. Cat. B: Enz., 33: 57-64.
Gelpeke, M.D.S., M. Mayfield, G.P.L. Cereghino and M.H. Gold, 1999. Homologus expression of recombinant lignin peroxidase in Phanerochaete chrysporium. Applied Environ. Microbiol., 38: 3205-3210.
Giese, E.C., R.F.H. Dekker and A.M. Barbosa, 2008. Orange bagasse as a substrate for the production of pectinase and laccase by Botryosphaeria rodhina MAMB-05 in submerged and solid state fermentation. Bioresorces, 3: 335-345.
Givaudan, A., A. Effosse, D. Faure, P. Potier, M.L. Bouillant and R. Bally, 1993. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in nonmotile strains of Azospirillum lipoferum. FEMS Microbiol. Lett., 108: 205-210.
Glazer, A.N. and H. Nikaido, 2007. Microbial Biotechnology: Fundamentals of Applied Microbiology. 2nd Edn., Cambridge University Press, Cambridge, UK., ISBN-13: 9780521842105 , Pages 554.
Gomez, J., M. Pazos, S.R. Couto and M.A. Sanroman, 2005. Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. J. Food Eng., 68: 315-319.

Gorbacheva, M., O. Morozova, G. Shumakovich, A. Streltsov, S. Shleev and A. Yaropolov, 2009. Enzymatic oxidation of manganese ions catalysed by laccase. Bioorg. Chem., 37: 1-5.
Harris, Z.L., S.R. Davis-Kaplan, J.D. Gitlin and J. Kaplan, 2004. A fungal multicopper oxidase restores iron homeostasis in acerulo plasminemia. Blood, 103: 4672-4673.
Hirose, J., M. Nasu and H. Yokoi, 2003. Reaction of substituted phenols with thermostable laccase bound to Bacillus subtilis spores. Biotech. Lett., 25: 1609-1612.
Hullo, M.F., I. Moszer, A. Danchin and I. Martin-Verstraete, 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol., 183: 5426-5430.
Huttermann, A., C. Mai and A. Kharazipour, 2001. Modification of lignin for the production of new compounded materials. Applied Microbiol. Biotechnol., 55: 387-394.
Ikeda, R., H. Tanaka, H. Oyabu, H. Uyama and S. Kobayashi, 2001. Preparation of artificial urushi via an environmentally benign process. Bull. Chem. Soc. Jpn., 74: 1067-1073.

Isono, Y. and M. Hoshino, 1989. Laccase-like activity of nucleoside oxidase in the presence of nucleosides. Agric. Biol. Chem., 53: 2197-2203.
Jaszek, M., E. Malarczyk and A. Leonowicz, 1998. Investigation of ligninolytic enzymes during solid state fermentation of cotton wastes by selected strains of basidiomycetes. Proceedings of the 7th International Conference on Biotechnology in the Pulp and Paper Industry, June 16-18, 1998, Vancouver.
Jhadav, A., K.K. Vamsi, Y. Khairnar, A. Boraste and N. Gupta et al., 2009. Optimization of production and partial purification of laccase by Phanerochaete chrysosporium using submerged fermentation. Int. J. Microbiol. Res., 1: 9-12.
Kalme, S., G. Parshetti, S. Jadhav and S. Govindwar, 2007. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112. Bioresour. Technol., 98: 1405-1410.
Kalogeris, E., F. Iniotaki, E. Topakas, P. Christakopoulos, D. Kekos and B.J. Macris, 2003. Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour. Technol., 86: 207-213.
Kalyani, D.C., P.S. Patil, J.P. Jadhav and S.P. Govindwar, 2008. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour. Technol., 99: 4635-4641.
Kanam, M., S. Prince and C. Neena, 2004. Copper and dyes enhance laccase production in γ-proteobacterium JB. Biotechnol. Lett., 26: 1047-1050.
Kiiskinen, L.L., K. Kruus, M. Bailey, E. Ylosmaki, M. Siika-Aho and M. Saloheimo, 2004. Expression of Melanospora albomyces laccase in Trichoderma reesei and characterization of enzyme. Microbiology, 150: 3065-3074.
Kim, C., W.W. Lorentz, J.T. Hoopes and F.F. Dean, 2001. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol., 183: 4866-4875.
Kirk, O., T.V. Borchert and C.C. Fuglsang, 2002. Industrial enzyme applications. Curr. Opin. Biotechnol., 13: 345-351.
Koschorreck, K., S.M. Richter, A.B. Ene, E. Roduner, R.D. Schmid and V.B. Urlacher, 2008. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Applied Microbiol. Biotechnol., 79: 217-224.

Kumar, S. V., P.S. Phale, S. Durani and P.P. Wangikar, 2003. Combined sequence and structure analysis of the fungal laccase family. Biotechnol. Bioeng., 83: 386-394.
Lantto, R., C. Schonberg, J. Buchert and E. Heine, 2004. Effects of laccase-mediator combinations on wool. Tex. Res. J., 74: 713-717.
Larsson, S., P. Cassland and L.J. Jonsson, 2001. Development of a Sacharomyces cerevisiae strain with enhanced resistances to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterlogous expression of laccase. Applied Environ. Microbiol., 67: 1163-1170.
Lee, Y.A., M. Hendson, N.J. Panopoulos and M.N. Schroth, 1994. Molecular cloning, chromosomal mapping and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: Homology with small copper proteins and multicopper oxidases. J. Bacteriol., 176: 173-188.
Lorenzo, M., D. Moldes, S.R. Couto and A. Sanroman, 2002. Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresour. Technol., 82: 109-113.
Maciel, M.J.M., A.C. e Silva and H.C.T. Ribeiro, 2010. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Elect. J. Biotech., 13: 1-13.
Madhavi, V. and S.S. Lele, 2009. Laccase: Properties and applications. Bio. Res., 4: 1694-1717.
Martins, L.O., C.M. Soares, M.M. Pereira, M. Teixeira, T. Costa, G.H. Jones and A.O. Henriques, 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem., 277: 18849-18859.
Mayer, A.M. and R.C. Staples, 2002. Laccase: New functions for an old enzyme Photochemistry, 60: 551-565.
McMahon, A.M., E.M. Doyle, S. Brooks and K.E. O'Connor, 2007. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme Microb. Technol., 40: 1435-1441.
Meza, J.C., A. Lomascolo, L. Casalot, J.C. Sigoillot and R. Auria, 2005. Laccase production by Pycnoporus cinnabarinus grown on sugar-cane bagasse: Influence of ethanol vapors as inducer. Proc. Biochem., 40: 3365-3371.
Minussi, R.C., G.M. Pastore and N. Duran, 2002. Potential applications of laccase in the food industry. Trends Food Sci. Technol., 13: 205-216.

Minussi, R.C., G.M. Pastore and N. Duran, 2007. Laccase induction in fungi and laccase/ $\mathrm{N}-\mathrm{OH}$ mediator systems applied in paper mill effluent. Bioresour. Technol., 98: 158-164.
Miyazaki, K., 2005. A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9: 415-425.
Muniswaran, P.K.A., P. Selvakumar and C.N.C.L. Narasimha, 1994. Production of cellulases from coconut coir pith in solid state fermentation. J. Chemi. Technol. Biotechnol., 60: 147-151.

Murugesan, K., A. Dhamija, I.H. Nam, Y.M. Kim and Y.S. Chang, 2007. Decolourization of reactive black 5 by laccase: Optimization by response surface methodology. Dyes. Pig., 75: 176-184.
Mustafa, R., L. Muniglia, B. Rovel and M. Girardin, 2005. Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in hydro-organic biphasic system. Food Res. Int., 38: 995-1000.
Nicotra, S., M.R. Cramarossa, A. Mucci, U.M. Pagnoni, S. Riva and L. Forti, 2004. Biotransformation of resveratrol: Synthesis of trans-dehydrodimers catalyzed by laccases from Myceliophtora thermophyla and from Trametes pubescens. Tetrahedron, 60: 595-600.
Niku-Paavola, M.L. and L. Viikari, 2000. Enzymatic oxidation of alkenes. J. Mol. Cat. B: Enz., 10: 435-444.
Niladevi, K.N., R.K. Sukumaran and P. Prema, 2007. Utilization of rice straw for laccase production by Streptomyces psammoticus in solid-state fermentation. J. Ind. Microbiol. Biotechnol., 34: 665-674.
Niladevi, K.N. and P. Prema, 2008. Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World. J. Microbiol. Biotechnol., 24: 1215-1222.
Novotny, C., K. Svobodova, A. Kasinath and P. Erbanova, 2004. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int. Biodeter. Biodegrad., 54: 215-223.
Nyanhongo, G.S., J. Gomes, G. Gubitz, R. Zvauya, J.S. Read and W. Steiner, 2002. Production of laccase by a newly isolated strain of Trametes modesta. Bioresour. Technol., 84: 259-263.
Okazaki, M., T. Sugita, M. Shimizu, Y. Ohode and K. Iwamoto et al., 1997. Partial purification and characterization of manganese oxidizing factors of Pseudomonas fluorescens GB-1. Applied Environ. Microbiol., 63: 4793-4799.

Osma, J.F., J.L.T. Herrera, S.R. Couto, 2007. Banana skin: A novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigments, 75: 32-37.
Palmieri, G., P. Giardina, C. Bianco, B. Fontallella and G. Sannina, 2000. Copper induction of laccase isoenzymes in the lignolytic fungus Pleurotus ostreatus. Applied Microbiol. Biotechnol., 66: 920-924.
Parshetti, G., S. Kalme, G. Saratale and S. Govindwar, 2006. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim. Solv., 53: 492-498.
Patel, H., A. Gupte and S. Gupte, 2008. Biodegradation of fluoranthene by basidiomycetes fungal isolate Pleurotus ostreatus HP-1. Applied Biochem. Biotechnol., 157: 367-376.
Pazarloglu, N.K., M. Sariiik and A. Telefoncu, 2005. Laccase: Production by Trametes versicolor and application to denim washing. Process Biochem., 40: 1673-1678.
Pearce, C.I., J.R. Lloyd and J.T. Guthrie, 2003. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigments, 58: 179-196.
Pointing, S.B., 2001. Feasibility of bioremediation by white-rot fungi. Applied Microbiol. Biotechnol., 57: 20-33.
Prasertsan, P., A.H. Kittikul, A. Kunghae, J. Maneesri and S. Oi, 1997. Optimization for xylanase and cellulase production from Aspergillus niger ATTC 6275 in palm oil mill wastes and its application. World J. Microbiol. Biotechnol., 13: 555-559.

Reddy, G.V., B.P. Ravindra, P. Komaraiah, K.R.R.M. Roy and I.L. Kothari, 2003. Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem., 38: 1457-1462.
Roberts, S.A., A. Weichsel, G. Grass, K. Thakali and J.T. Hazzard et al., 2002. Crystal structure and electron transfer kinetics of $\mathrm{Cu} O$, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc. Natl. Acad. Sci. USA., 99: 2766-2771.
Ruijssenaars, H.J. and S. Hartmans, 2004. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiol. Biotechnol., 65: 177-182.
Salony, S.M. and V.S. Bisaria, 2006. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Applied Microbiol. Biotechnol., 71: 646-653.

Selinheimo, E., K. Kruus, J. Buchert, A. Hopia and K. Autio, 2006. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J. Cereal Sci., 43: 152-159.
Shanmugam, S., P. Rajasekaran and J.V. Thanikal, 2009. Synthetic dye decolourization, textile dye and paper industrial effluent treatment using white rot fungi Lentines edodes. Desalination Water Treatment, 4: 143-147.
Shleev, S.V., O.V. Morozova, O.V. Nikitina, E.S. Gorshina and T.V. Rusinova et al., 2004. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie, 86: 693-703.
Smits, J.P., A. Rinzema, J. Tramper, H.M. van Sonsbeek and W. Knol, 1996. Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: Substrate composition changes, C balance, enzyme production, growth and kinetics. Applied Microbiol. Biotechnol., 46: 489-496.
Solano, F., P. Lucas-Elio, D. Lopez-Serrano, E. Fernandez and A. Sanchez-Amat, 2001. Dimethoxyphenol oxidase activity of different microbial blue multicopper proteins. FEMS Microbiol. Lett., 204: 175-181.
Suffian, M., M. Annuar, S.S. Murthy and V. Sabanatham, 2010. Laccase production from oil palm industry solid waste: Statistical optimization of selected process parameters. Eng. Life Sci., 10: 40-48.
Suzuki, T., K. Endo, M. Ito, H. Tsujibo, K. Miyamoto and Y. Inamori, 2003. A thermostable laccase from Streptomyces lavendulae REN-7: purification, characterization, nucleotide sequence and expression. Biosci. Biotechnol. Biochem., 67: 2167-2175.
Takami, H., Y. Takaki and I. Uchiyama, 2002. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucl. Acids Res., 30: 3927-3935.
Thiruchelvam, A.T. and J.A. Ramsay, 2007. Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor. Applied Microbiol. Biotechnol., 74: 547-554.
Van Waasbergen, L.G., M. Hildebrand and B.M. Tebo, 1996. Identification and characterization of a gene cluster invoved in manganese oxidation by spores of a marine Bacillus sp. strain SG-1. J. Bacteriol., 178: 3517-3530.

Vasconcelos, A.F.D., A.M. Barbosa, R.F.H. Dekker, I.S. Scarminio and M.I. Rezende, 2000. Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method. Process Biochem., 35: 1131-1136.

Vikineswary, S., A. Noorlidah, M. Renuvathani, M. Sekaran, A. Pandey and E.B.G. Jones, 2006. Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresour. Technol., 97: 171-177.
Win, D.T., M.M. Than and S. Tun, 2003. Lead removal from industrial waters by water hyacinth. AU J. Technol., 6: 187-192.

Zhang, G.Q., Y.F. Wang, X.Q. Zhang, T.B. Ng and H.X. Wang, 2010. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem., 45: 627-633.

Zhang, M., F. Wu, Z. Wei, Y. Xiao and W. Gong, 2006. Characterization and decolorization ability of a laccase from Panus rudis. Enzyme Microb. Technol., 39: 92-97.
Zollinger, H., 2002. Synthesis, Properties and Applications of Organic Dyes and Pigments. In: Colour Chemistry, Zollinger, H. (Ed.). John Wiley-VCH Publishers, New York, pp: 92-100.

