ISSN 1682-296X (Print) ISSN 1682-2978 (Online)

Bio Technology

ANSImet

Asian Network for Scientific Information 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

© 2014 Asian Network for Scientific Information

Characterization of a Gene Encoding Acetylornithine Deacetylase from Rice

^{1,2}Md. Shafiqul Islam Sikdar and ²Jung-Sup Kim ¹Department of Agronomy,

Hajee Mohammad Danesh Science and Technology University, 5200, Dinajpur, Bangladesh ²Faculty of Biotechnology, Jeju National University, 690-756, Jeju, Korea

Abstract: Acetylornithine Deacetylase (AODA) is an enzyme involved in arginine biosynthesis in bacteria and plants and is required for the release of ornithine from acetylornithine. AODA activity has been reported in many bacteria and few plants. In the consecutive study of recently identifying a gene encoding for ornithine carbamoyltransferase (OsOTC) in rice, it was characterized a gene encoding AODA from rice (OsAODA) in this study. Sequence analysis revealed that a full-length open reading frame consisted of 443 amino acids which corresponded to a protein with a molecular weight of approximately 48.7 kDa. The predicted amino acid sequence of OsAODA was highly homologous to that of the enzyme of plants and many bacteria. Expression of OsAODA in argE mutants of *Escherichia coli* showed that the gene was able to functionally complement to the mutant. These results suggest that the OsAODA gene encodes an enzyme for acetylornithine deacetylase in rice.

Key words: Acetylornithine deacetylase, argE, arginine, rice (*Oryza sativa*)

INTRODUCTION

Arginine (Arg) represents as much as 40% of the total nitrogen in seed storage proteins (VanEtten et al., 1963) and is highly catabolized during germination as a nitrogen source in pea cotyledons (De Ruiter and Kolloffel, 1985). Arg is serving as a precursor to synthesize the important nitrogen-containing compounds such as nitric oxide, creatine, urea and polyamines (Morris, 2006). Arg synthesis and its regulation have been well characterized in prokaryotes, fungi and animals (Caldovic and Tuchman, 2003; Cunin et al., 1986; Davis, 1986). In contrast, there have been few studies in this area for plant metabolism since the last major review of this topic nearly two decades ago (Shargool et al., 1988).

In Arg biosynthesis, two different enzymes are required for catalysis of the fifth step, where one is acetylornithine deacetylase (AODA, N2-acetyl-Lomithine amidohydrolase; EC 3.5.1.16; the argE gene product) which catalyses deacetylation of N-acetylornithine (NAO) yielding ornithine and acetate (Vogel and Bonner, 1956). The other enzyme is glutamate N-acetyltransferase (GAT, EC 2.3.1.35) which catalyses the transfer of the acetyl group from NAO into glutamate yielding ornithine and N-acetylglutamate (Fig. 1). This linear pathway is regulated by Arg-induced feedback-inhibition of N-acetylglutamate synthase which

is involved in the first step of this pathway (Leisinger and Haas, 1975). AODA converts NAO into ornithine which is used for the synthesis of citrulline and Arg in the urea cycle. Ornithine is required for the Arg synthesis as well as for polyamines which function in DNA replication and cell division in bacteria (Girodeau et al., 1986). After an Arg auxotrophic bacterial strain was transformed with a plasmid containing argE, AODA activity and an Arg+ phenotype was observed (Meinnel et al., 1992). Bacterial AODA, an enzyme in Arg synthetic pathway, is a metallohydrolase and harbors a dinuclear active site in bacteria (McGregor et al., 2005). The Arg biosynthetic pathway has been observed in all Gram-negative and most Gram-positive bacteria, including Enterobacteriaceae (Vogel and MacLellan, 1970), Myxococcus (Harris and Singer, 1998), Vibrionaceae (Xu et al., 2000), the thermophilic archaeon Sulfelobus (Van de Casteele et al., 1990) and Bacillus thermoglucosidius (Sakanyan et al., 1990). Few inhibitors have been reported for the argE product (McGregor et al., 2007) to date and fluoride ions were shown to be uncompetitive inhibitors, exhibiting a modest Ki of 3.4 mM. Due to the crucial role argE in prokaryotic cell growth and proliferation, the development of specific and potent inhibitors of the argE product are of key importance (Hlavacek et al., 2010).

Enzymes in plant Arg biosynthesis and their metabolic control have not been fully characterized; however, they appear to be similar to those of prokaryotes

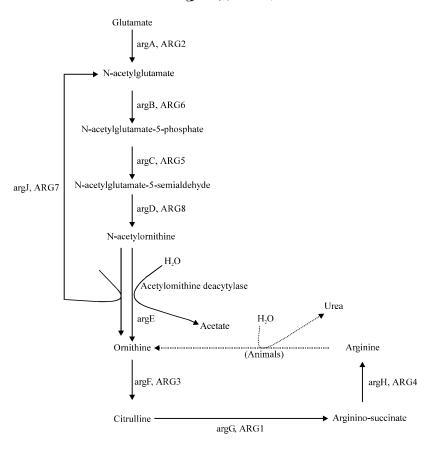


Fig. 1: Schematic diagram of the arginine biosynthesis pathway in plants. The figure was adopted and slightly modified from Sikdar and Kim (2009)

and lower eukaryotes. Subcellular compartmentation of Arg synthesis is still poorly understood. With few exceptions, plant genes encoding enzymes in Arg synthesis have not been identified and their gene products have not been characterized (Slocum, 2005). Major cereal crops such as rice, wheat, corn etc contain lower amounts of protein compared to leguminous crops. To improve the nutritional qualities of cereal crops, it is necessary to investigate the Arg biosynthesis pathway in crop plants. Therefore, in this study, a gene encoding AODA from rice is characterized.

MATERIALS AND METHODS

Strains and plasmids: Two *E. coli* strains were used in this study, 2435 and Gif41. The genotype of the strains was 2435 [recA441, sulA11, lacU169, thr1, leu6, his4, argE3, ilv (ts), galK2 rp] and Gif41 [hfr(PO1), thrC1001, λ -, e14-, relA1, spoT1, thi-1] (Theze *et al.*, 1974), respectively. The 2435 strain was obtained from the

Korean Collection for Type Cultures (KCTC), Korea and the Gif41 strain was provided by the *E. coli* Genetic Stock Center (CGSC) at Yale University, USA.

DNA sequence analysis: The EST clone (GenBank Accession Number AK105916, cDNA ID 001-204-H10) used in this study was obtained from the Rice Genome Resource Center (RGRC), National Institute of Aerobiological Science (NIAS), Japan. The clone was derived from a rice cDNA library (Osato et al., 2002) from developing seeds. The methods used for DNA sequencing and sequence analysis were described previously (Sikdar and Kim, 2010). Nucleotide sequences and amino acid sequences were compared with sequences present in the GenBank and EMBL databases and analyzed using BLAST (Wheeler et al., 2003) and the CLUSTAL W multiple sequence alignment program (Thompson et al., 1994) or Biology WorkBench 3.2 (http://workbench.sdsc.edu; San Diego Supercomputer Center; University of California San, Diego, USA).

Comparison of sequences was performed at the nucleotide and amino acid level. Motifs were searched by GenomeNet Computation Service at Kyoto University (http://www.genome.ad.jp) and a Phylogenetic tree with bootstrap value was prepared using the Mega 4.1 program (Kumar *et al.*, 2008).

Polymerase chain reaction (PCR) and construct for expression: The specific primers were designed from the sequence information around the translational start and stop codons of OsAODA to amplify the full-length Open Reading Frame (ORF) and to express the gene product in E. coli. The Polymerase Chain Reaction (PCR) (Sambrook and Russell, 2001) was conducted to amplify the full-length ORF. After a plasmid was purified from a pellet harvested from a liquid culture containing ampicillin (Amp), the cDNA was amplified by using designed primers from the OsAODA sequence: OsAODA-F (5'-AGGATCCGCTCAAGGAAGCGCATCAGATGG C-3') andOsAODA-R(5'-AGGATCCTGTGGCCTTAGCCTGA GGTTCCTC-3') with restriction sites underlined. The polymerase chain reaction was performed using a MY Cyler TM PCR system (BioRad, U.S.A) for 40 cycles with 95°C for 1 min, 45°C for 1 min and 72°C for 2 min, with 10 μM primers. PCR products were analyzed on 1% (w/v) agarose gel. The 1.38 kb PCR fragment was subcloned into pBluescript II KS+ (Stratagene Inc., USA) to produce pB::OsAODA. Restriction analysis was performed to confirm the construct with the right orientation.

Functional complementation and growth inhibition assay:

The two strains, 2435 and Gif41, were transformed with pB::OsAODA and pBluescript II KS+ which was used as a control, by electroporation (ECM399, BTX, USA) using a cuvette with a 1 mm electrode gap. During this process, competent cells were first produced by washing with water and glycerol (Kim and Leustek, 1996). The resulting competent cells after electroporation were plated on LB medium (20 g L⁻¹) with Amp (100 µg mL⁻¹). The selection of transformed cells and culture conditions were described previously (Sikdar and Kim, 2010) except excluding a specific amino acid in this case of Arg. The plates were incubated at 37°C overnight and the growing colonies were retested for growth on Arg free medium (Kim and Leustek, 1996).

The argE mutant *E. coli* (2435) harboring the pB::OsAODA construct, control plasmid and wild-type (Gif41) with control plasmid were grown at 37°C in MM containing 19 amino acids excluding Arg, IPTG (Sigma, Germany), 20% glucose (20 mL L⁻¹) and Amp

(25 μg mL⁻¹). The bacterial cell growth was monitored through optical density measurements every hour using a spectrophotometer (UV1101, Biochrom, England) at 595 nm (OD₅₉₅) (Sikdar and Kim, 2010).

RESULTS AND DISCUSSION

Sequence analysis of OsAODA: An EST clone (GenBank accession Number AK105916, cDNA ID 001-204-H10) obtained from the Rice Genome Resource Center (RGRC) was analyzed to determine the nucleotide sequence. The cDNA (OsAODA) sequence contained a full-length open reading frame and consisted of 1332bp which encoded for a protein that had a molecular weight of approximately 48.7 kDa. The expected isoelectric point of the protein was 5.03. Data analysis indicates that the OsAODA sequence was identical to the genomic region located in chromosomes II, Os02g0690800 in rice. Alignment of the amino acid sequences with the predicted amino acid sequence for the OsAODA (Fig. 2) demonstrated that the OsAODA was highly homologous among diverse plant species, including Brassica oleracea (73%), Ricinus communis (71%) and Arbidopsis thaliana (63%). In addition, it was also similar to those from some bacteria, such as E. coli (25%) and Bacillus subtilis (25%) in the level of amino acid sequences.

Phylogenic analysis based on a comparison of the related sequence further indicated that OsAODA was divergent and evolved from ancestor bacterial AODA (Fig. 3). The number at the nodes indicate the bootstrap support values based on the neighbor-joining analysis of 1000 re-sampled data sets using Mega 4.1 (Kumar *et al.*, 2008). The numbers on branches correspond to the percentage of bootstrap analysis supporting the grouping of each branch.

OsAODA expression in *E. coli* and *in vivo* activity: The recombinant DNA, pB::OsAODA, was constructed using ORF of the PCR-amplified OsAODA fragment. After transformation to *E. coli*, pB::OsAODA activity *in vivo* was monitored in the presence of IPTG and 19 amino acids, excluding Arg. The functional complementation was performed using the argE mutants of *E. coli* to confirm the enzyme activity by the gene product of pB::OsAODA. To check the viability of *E. coli* cells based on OsAODA activity, the cells expressing OsAODA were cultured for 12 h with shaking and a diluted portion was plated on agar medium containing the 19 amino acids and ampicillin (100 mg mL⁻¹) without Arg (Fig. 4). The argE mutants of *E. coli* expressing OsAODA restore its

```
Ecaoda -----esmlatertlerlyapütter-----esmlalidpywe<mark>y</mark>l
OHAODA METGGGPLVVRKVSYAEGRSMVIVEYPGTVPGRAISFVGMHMDVVPAMPDEWDFDFFSIT
ataoda <mark>teteggplvinevay</mark>es<mark>grenliveypesvperilspvemmdvvta</mark>npddwepdppsls
Lcaoda --v<mark>gag-v</mark>riervnyapgrdnlyvtign--g<mark>grvlgysgemdvyapg</mark>dlaawdtdppeepv
ecaoda <mark>tdlg</mark>vncelienagcs--ranlyarlgpags<mark>g</mark>gillsg--esdvypvdggnwsypppals
O # AODA | FDSEDRDRINGRGTTDCLG-EVALVAQIMRRIGEVRPVLKESVIAVFIANEENSLITGIG
At AODA | IDG---DRINGRGTTDCLG-EVALVTEIMRRIGQARPALKSTVVAVFIASEENSSIPGVG
Lcaoda vrd---bklygrgacdmrsglaalvvallemlergqqpagtikllatvgeetgn----yg
E & AODA ER<mark>D --- GKLY GRGT</mark>ADMR GF LACMLAAVPEFLAQ -- PLAQPLELA I SYDEE VG---- CLG
Omaoda voglvroglidele egplywidtade opt i grit welkaige i esglaekainame
Ataoda <mark>vomevedreldkersgplywidtadkopovgt</mark>s<mark>emi</mark>pwkeopt<mark>skipesslaekainame</mark>
Landa aaqltrigyaddloglviaepoddloaityacrgvidyevtsvgraaessrpemginaid
e anda vrtildylasrperpoletigeptelgpylgergrlayreeyggaacesayapggymaig
OHAODA LIMEALKEIQTMFYNDFPPHEKEKLYKFATPSTIKPTRMSYPGGGLMQIPGECTISGDIK
ALAGDA LAME<mark>GLEEIGARFYRDFPPPPPPPPPPPPTPTFTMRPTGMCYPAGGINGIPGECTVSGDVR</mark>
Lcaoda wilefvooaraalarfdesdp------Algritevislinggeoinsvpsaatlggwyr
ecaoda yaarlieritaigevfaapergd--trfdppfttvotglioggralmivpaectfdfevr
O=AODA L<mark>TPFY</mark>STTS<mark>VVKRLOEYV</mark>EDINENIEKLPTRGPVSKYVLPDENLRGRIEI<mark>TIDE</mark>DIM<mark>NGV</mark>
AtAODA L<mark>TPFYD</mark>VRE<mark>VITRLOEYVDDINGNIERLETRGPV</mark>SKYVLPDENLRGRITL<mark>SFDEASA-GV</mark>
Lcaoda ti<mark>pe y provy y de L</mark>er i<mark>ld olno----op</mark> gfdlr i <mark>kytf pee pmgg</mark>dpes slikl<mark>a</mark>o---
E ANDIA TIPOD<mark>o ago vake l</mark>er<mark>y</mark>a orelle om<mark>r</mark>avnsdte i rfyplssypg--lytaa os<mark>aaa oll</mark>
Omaoda Acule srgf Qalcrate i vgevepysitgslplire lodegfd votag yglik tyearn
           <mark>acnld</mark>ep<mark>gf</mark>evicrateev<mark>vghvrpysitgtlplirdlodegfd</mark>votsg<mark>yglmatyharn</mark>
avark<mark>slg</mark>itpopfi<mark>as</mark>tgandgoeftoarkdfts<mark>t</mark>tigogsnmshmpne<mark>y</mark>vn<mark>la</mark>ayynai
A E A OD A
Lahoda
e_aoda <mark>a</mark>eltg<mark>seaf</mark>stvafg<u>te</u>gg-----lfrqa<mark>g</mark>ifsvicgpgsmaggerfdefitiegld<mark>a</mark>cd
OHAODA EYCLFSDMAQGFQVFLSIISQLEADV
ALAGDA EYCLLTDMCQGFDVFIRIISQLEQV
Leaoda O<mark>Y</mark>--<mark>Yodfaqaf</mark>fa
Reaoda ambribasmastra
```

Fig. 2: Amino acid sequence alignment of AODA using the Boxshade program after CIUSTAL W alignment. Completely conserved, identical and similar residues are visually shown as green, yellow and cyan, respectively. Accession numbers are as follows: AK105916 (OsAODA from *Oryza sativa*, this study), NP_193517 (AtAODA from *Arabidopsis thaliana*), ZP_05553724 (LcAODA from *Lactobacillus coleohominis*) and ZP_07247995 (EcAODA from *Escherichia coli*)

viability like wild type. These results indicated that OsAODA growth retardation and viability of the gene product of pB::OsAODA was capable of functioning as a complement and provided evidence of functional AODA activity.

Arginine sensitivity of *E. coli* **mutants was influenced by the expression of OsAODA:** A growth study was performed to determine whether the OsAODA gene would

increase the sensitivity of bacterial cells to Arg. The pB::OsAODA construct was transformed into an argE mutant *E. coli* strain 2435. The other two pBluescript II KS+ which were used as controls, were also transformed into wild type mutant *E. coli* strain (Gif41) and argE mutant strain 2435. The pB:: OsAODA activity was monitored through a growth assay in the absence of Arg. Bacterial cells were grown in MM containing 19 amino acids, excluding Arg, IPTG and Amp. The wild type

Biotechnology 13 (2): 54-60, 2014

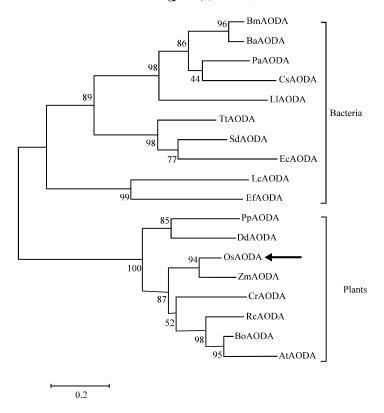


Fig. 3: Phylogenetic tree: Phylogenetic analysis of OsAODA related proteins using Clustal W. Accession numbers are as follows: ZP_03571630 (BmAODA from Burkholderia multivorans), ZP_02909425 (BaAODA from Burkholderia ambifaria), YP_001351487 (PaAODA from Pseudomonas aeruginosa), YP_574432(CsAODA from Chromohalobacter salexigens), ZP_06188127 (LIAODA from Legionella longbeachae), YP_003072038 (TtAODA from Teredinibacter turnerae), YP_525839 (SdAODA from Saccharophagus degradans), YP_001465454 (EcAODA from Escherichia coli), ZP_05553724 (LcAODA from Lactobacillus coleohominis), ZP_04648914 (EfAODA from Enterococcus faecalis), EFA86188 (PpAODA from Polysphondylium pallidum), XP_647163 (DdAODA from Dictyostelium discoideum), AK105916 (OsAODA from Oryza sativa, this study), NP_001149829 (ZmAODA from Zeamays), XP_001699756 (CrAODA from Chlamydomonas reinhardtii), P_002519823 (RcAODA from Ricinus communis), (BoAODA from Brassica oleracea), NP_193517 (AtAODA from Arabidopsis thaliana)

Fig. 4(a-c): Functional complementation assay. The argE mutant *E. coli* strain (2435) containing pB::OsAODA or control and wild-type *E. coli* (Gif41) containing the control plasmid which designated as (a) 2435+OsAODA, (b) 2435+control and (c) Gif41+control

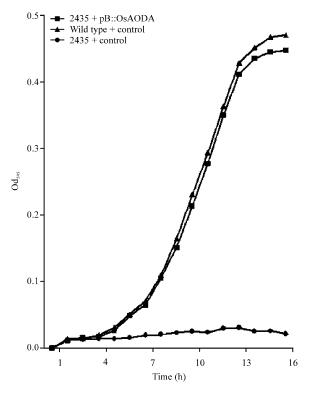


Fig. 5: Growth curves of *E. coli* mutant 2435 harboring pB::OsAODA and control plasmid and the Gif41 containing control plasmid. Bacterial cells were grown at 37°C in MM containing all amino acids, except Arg. Growth was monitored via optical density measurements at 595 nm (OD₅₉₅)

E. coli strain Gif41 harboring the control plasmid grew normally and showed the classical S-shape growth curve in the same medium despite the lack of Arg (Fig. 5). The wild type E. coli strain produced Arg itself and supplied Arg to the control; thus, it grew normally in the same medium. However, the argE mutant strain 2435 expressing pB::OsAODA also grew normally and displayed the classical S-shape growth curve in the same medium (Fig. 5). Again, this occurred because the pB::OsAODA produced Arg and provided it to the mutant strain.

In contrast, the mutant 2435 which contained the control plasmid, showed dramatic retardation in growth in the medium due to a lack of the essential amino acid Arg. In this case, the argE mutant *E. coli* strain 2435 could not produce Arg (Fig. 5) which was due to the OsAODA activity. The expression of the OsAODA was functionally complementary and was shown to have functional Arg activity in the rice plant which was a consequence of the pB::OsAODA activity. Based on the above finding, it was concluded that OsAODA expression can functionally complement the argE mutant *E. coli*.

Additional studies are currently underway to examine the substrate specificity of recombinant OsAODA purified from *E. coli*. In addition, we are also examining the physiological functions of this novel enzyme for Arg metabolism by screening T-DNA insertion mutants, in which the OsAODA gene is knocked out in rice. The cloning and characterization of the cDNA encoding for AODA from rice are important to generating bioinformatic predictions, as well as motifs and complementation, in a argE mutant of *E. coli*. These results may constitute a starting point for investigations at the molecular level of Arg biosynthesis in rice which might eventually be used to modify the nutritional compositions of crop plants.

ACKNOWLEDGMENTS

We wish to thank Rice Genome Resource Center (RGRC), National Institute of Agro biological Science (NIAS), Japan and Korean Collection for Type Cultures (KCTC), Republic of Korea for providing an EST clone AK105916 and argE mutant (KCTC # 2435) of *E. coli*, respectively. This research is funded by Korea Research Foundation (KRF-2010-10518), Republic of Korea.

REFERENCES

Caldovic, L. and M. Tuchman, 2003. N-Acetylglutamate and its changing role through evolution. Biochem. J., 372: 279-290.

Cunin, R., N. Glansdorff, A. Pierard and V. Stalon, 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev., 50: 314-352.

Davis, R.H., 1986. Compartmental and regulatory mechanisms in the arginine pathways of *Neurospora crassa* and *Saccharomyces cerevisiae*. Microbiol. Rev., 50: 280-313.

De Ruiter, H. and C. Kolloffel, 1985. Properties of ornithine carbamoyltransferase from Plant Physiol., 77: 695-699.

Girodeau, J.M., C. Agouridas, M. Masson, R. Pineau and F. Le Goffic, 1986. The lysine pathway as a target for a new genera of synthetic antibacterial antibiotics. J. Med. Chem., 29: 1023-1030.

Harris, B.Z. and M. Singer, 1998. Identification and characterization of the *Myxococcus xanthus* ArgE gene. J. Bacteriol., 180: 6412-6414.

Hlavacek, J., J. Picha, V. Vanek, J. Jiracek and J. Slaninova *et al.*, 2010. Inhibitors of Nα-acetyl-1-ornithine deacetylase: Synthesis, characterization and analysis of their inhibitory potency. Amino Acids, 38: 1155-1164.

- Kim, J. and T. Leustek, 1996. Cloning and analysis of the gene for cystathionine gamma-synthase from *Arabidopsis thaliana*. Plant Mol. Biol., 32: 1117-1124.
- Kumar, S., M. Nei, J. Dudley and K. Tamura, 2008. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings Bioinformatics, 9: 299-306.
- Leisinger, T. and D. Haas, 1975. N-acetylglutamate synthase of *Escherichia coli* regulation of synthesis and activity by arginine. J. Biol. Chem., 250: 1690-1693.
- McGregor, W.C., S.I. Swierczek, B. Bennett and R.C. Holz, 2005. argE-encoded N-acetyl-L-ornithine deacetylase from *Escherichia coli* contains a dinuclear metalloactive site. J. Am. Chem. Soc., 127: 14100-14107.
- McGregor, W.C., S.I. Swierczek, B. Bennett and R.C. Holz, 2007. Characterization of the catalytically active Mn(II)-loaded argE-encoded N-acetyl-l-ornithine deacetylase from *Escherichia coli*. J. Biol. Inorg. Chem., 12: 603-613.
- Meinnel, T., E. Schmitt, Y. Mechulam and S. Blanquet, 1992. Structural and biochemical characterization of the *Escherichia coli* argE gene product. J. Bacteriol., 174: 2323-2331.
- Morris, S.M., 2006. Arginine: Beyond protein 1, 2, 3, 4. Am. J. Clin. Nut., 83: 508s-512s.
- Osato, N., M. Itoh, H. Konno, S. Kondo and K. Shibata *et al.*, 2002. A Computer-based method of selecting clones for a full-length cDNA project: Simultaneous collection of negligibly redundant and variant cDNAs. Genome Res., 12: 1127-1134.
- Sakanyan, V.A., A.S. Hovsepyan, I.L. Mett, A.V. Kochikyan and P.K. Petrosyan, 1990. Molecular cloning and structural-functional analysis of the arginine biosynthesis genes of the thermophilic bacterium Bacillus stearothermophilus. Genetika, 26: 1915-1925.
- Sambrook, J. and D.W. Russell, 2001. Molecular Cloning: A Laboratory Manual. 3rd Edn., Cold Spring Harbor Laboratory Press, New York, ISBN-13: 9780879695774, Pages: 99.
- Shargool, D., J.C. Jain and G. McKay, 1988. Ornithine biosynthesis and arginine biosynthesis and degradation in plant cells. Phytochemistry, 27: 1571-1574.

- Sikdar, S.I. and J. Kim, 2009. Characterization of a gene encoding acetylornithine deacetylase from rice. J. Plant Biotechnol., 36: 397-402.
- Sikdar, S.I. and J. Kim, 2010. Functional analysis of a gene encoding threonine synthase from rice. Afr. J. Biotechnol., 9: 1122-1129.
- Slocum, R.D., 2005. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol. Biochem., 43: 729-745.
- Theze, J., D. Margarita, G.N. Cohen, F. Borne and J.C. Patte, 1974. Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of *Escherichia coli* K-12. J. Bacteriol., 117: 133-140.
- Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994.
 CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
- Van de Casteele, M., M. Demarez, C. Legrain, N. Glansdorff and A. Pierard, 1990. Pathways of arginine biosynthesis in extreme thermophilic archaebacteria and eubacteria. J. Gen. Microbiol., 136: 1177-1183.
- Van Etten, C.H., R.W. Miller, I.A. Wolff and Q. Jones, 1963. Nutrients in seeds, amino acid composition of seeds from 200 angiospermous plant species. J. Agric. Food Chem., 5: 399-410.
- Vogel, H.J. and D.M. Bonner, 1956. Acetylornithinase of Escherichia coli: Partial purification and some properties. J. Biol. Chem., 218: 97-106.
- Vogel, H.J. and W.L. MacLellan, 1970. Acetylornithinase (*Escherichia coli*). Methods Enzymol., 17A: 265-269.
- Wheeler, D.L., D.M. Church, S. Federhen, A.E. Lash and T.L. Madden *et al.*, 2003. Database resources of the National Center for Biotechnology. Nucleic Acids Res., 31: 28-33.
- Xu, Y., Z. Liang, C. Legrain, H.J. Ruger and N. Glansdorff, 2000. Evolution of arginine biosynthesis in the bacterial domain: Novel gene-enzyme relationships from psychrophilic *Moritella* strains (*Vibrionaceae*) and evolutionary significance of N-α-acetyl ornithinase. J. Bacteriol., 182: 1609-1615.