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Abstract
Background and Objective: This study focused on evaluation of SBPase promoter in driving transgenes under drought, high light
intensity and salinity as major abiotic stresses limiting plant growth and production in various areas of the world. Wheat production has
remained constant despite the rapidly growing population around the world. Materials and Methods: This had made it necessary to
develop other varieties with higher yield in order to satisfy the future demand. When elite wheat varieties’ photosynthesis is genetically
manipulated, it gives a high possibility for yield increase. Lack of a properly defined molecular tool-box promoter for driving gene
expression for manipulation of photosynthesis, hinders the progression of this field. Gus histochemical staining and quantitative PCR were
used to examine the function of Brachypodium distachyon  sedoheptulose-1, 7-bisphosphatase (SBPase) promoter to drive the expression
of GUS in the stably transformed wheat plants under various stresses conditions. Results: Results revealed that B. distachyon  SBPase
promoter fully drive the GUS expression in the stable wheat transformants (cv. Cadenza) in the leaf tissues under normal and high light
conditions. It also drove GUS gene expression under drought and salinity stress conditions. In addition, the promoter responds to
light/dark/light alternation as light responsive genes. Conclusion: The Bd  SBPase promoter provides innovative molecular tool to drive
genes in wheat leaves under natural, drought, high light intensity and salinity conditions as well as to allow for multigene photosynthetic
manipulation for yield increase under various abiotic conditions.
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INTRODUCTION

Wheat is one of the main staple crops that provides more
than 20% of the daily ingested calories1. Recently, wheat
production has stagnated, whereas it is estimated that an
increase of 70% of global wheat supply shall be required by
the year 2050 in order to meet the demands of the rising
global population2-4. Developing higher yield varieties has
become necessary to meet the predicted global rising in food
demand4,5. This has also been exacerbated by global climate
change where the average global temperature has increased
by 1.8EC since 1880 and the level of carbon dioxide is
expected to rise from 408-550 ppm over the next 40 years6,7.
The global climate changes increase the impact of abiotic
stresses, drought, high light intensity, salinity, on plants, but
producing crop varieties tolerant to these stresses could
significantly increase crop yield in the affected areas8.

Genetic manipulations involving photorespiration9,10,
Calvin-Benson cycle11-15 and electron transport16,17 showed
significant increase in yield. In addition, multigene stacking
approach for improving yield in tobacco14 and Arabidopsis17

was investigated. In wheat, over-expression of multiple genes
is not well established due to the lack of a well-defined
molecular toolbox. When constitutive promoters, such as
figwort mosaic virus (FMV)18 and cauliflower mosaic virus19

(CaMV)  35S  were  used  in  driving  transgenes  in  plants
resulted  in  gene  silencing  through  co-suppression20  or
ectopic expression21. This led to the identification and
characterization of plant tissue specific promoters. This
included   leaf-specific   and   light-regulated   S.   tuberosum
ST-LS121, tomato fruit specific promoters22, seed endosperm
specific promoters23-27, guard cell specific promoters28 and a
variety of tobacco and Arabidopsis photosynthetic tissue
specific promoters15. Currently, rice actin 1 and the maize
ubiquitin 1 constitutive promoters are frequently used to
direct transgene expression in wheat29,30. In addition, genes
within the aerial regions of wheat plants are expressed by
semi-constitutive rice tungro virus31,32. Recently, the Rubisco
gene promoter has successfully been employed in transient
expression tests to direct expression in tobacco leaves and
immature wheat embryos33. Sparks et al.34 carried out a
research in maize and rice using wheat rubisco small subunit
promoters that aimed at down-regulating gene expression in
photo respiration. Using multigene approach to enhance a
multigene character requires additional promoters because
using repetitious components in transgenic constructs
negatively affect the expression and stability of introduced
genes35. Therefore, it is very important to establish a robust
tool-kit of several promoters for future studies to facilitate

multigene modification of wheat traits as well as its response
to various biotic and abiotic stresses.

Promoters from dicotyledons have been used in wheat,
but their use in leaf tissue has been unsuccessful34. The
availability of Brachypodium distachyon  annotated genome
and its closeness to wheat led researches to use its
promoters36,37. Recently, it was clearly demonstrated that
SBPase and the fructose 1,6-bisphosphate aldolase (FBPA)
gene promoters from B. distachyon  are fully functional in the
green leaf tissue of transgenic wheat38. Although SBPase
promoter was confirmed to drive gene expression in wheat
leaf   tissue,   its   function   under   abiotic   stresses,   such   as
drought,  high  light  intensity  and  salinity  has  not  been
investigated.

This study focused on functional analysis of SBPase gene
promoter from B. distachyon  in transgenic wheat (T2) in leaf
tissue under abiotic stresses including drought, various light
intensity  and  salinity  which  represent  a  limiting  factor  for
plant growth and production in various parts  of  the world.
This could contribute to the application of transgene and
exogenous promoter in wheat under stress conditions.

MATERIALS AND METHODS

Plant growth conditions: This study was carried out in the
greenhouse at Taif University, Taif, Saudi Arabia during the
period from October, 2017-July, 2018. Seeds of wild type (WT)
and    three    independent    T2    transgenic    wheat    lines
(R2P2, R5P2, R9P2) were germinated in the greenhouse.
Plantlets   were   randomly   distributed   into   four   groups
each     group     contained     three     plants     of     each     line
(WT, R2P2, R5P2, R9P2). Plants of the control group were
grown under normal greenhouse light (1900 µmol mG2 secG1)
and watering (800 mL/week) conditions. For light treatment,
plants were kept in the dark for 12, 24 and 3 h in the
greenhouse condition after dark treatment, greenhouse light
condition (1900 µmol mG2 secG1) or full light intensity outside
of the greenhouse (4250 µmol mG2 secG1). In the full light
outside of the green house, samples were collected at three
time points  at 9:30 am (light intensity 3290 µmol mG2 secG1),
at  12:30  pm  (light  intensity  4970  µmol  mG2  secG1)  and  at
3:30 (light intensity 2575µmol mG2 secG1). For drought
treatment,  plants  were  supplied  with  half  water  supply
(400 mL/week) of the control group (800 mL/week). Watering
was adjusted  to  keep  plants  alive  during  drought
treatment. For salinity treatment, plants were treated with 250
mM NaCl for 2 weeks. Locations of all wheat plants were
rotated in regular to minimize the variation of the growth
conditions.
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DNA isolation: Flag leaves of the main stem of the plants were
lyophilized at -58EC for 36 h, ground to fine powder and used
for DNA extraction. DNA was extracted from the control or
treated plants using CTAB method39 after optimization of the
protocol for lyophilized ground tissues. Optimization included
using 0.5 mL of warm (65EC) CTAB and 5 mg of lyophilized
ground leaf powder. The DNA pellet was washed with 70%
ethanol, air dried, dissolved in 50 µL DH2O and kept at -20EC
until used.

Detection of SBPase-GUS construct: The transgenic plants
carrying the pRRes:pSBPase:: GUS construct was confirmed by
detection of either the SBPase promoter construct or GUS
reporter gene sequence using specific primers (Table 1). The
amplification reactions included 30 cycles of  1  min  at  94EC,
30 sec at 57EC and 45 sec at 72EC. The PCR reactions were
carried  in  25  µL  containing  12.5  µL  of  2X  Master  mix
(Promega, Wisconsin, USA), 10 ng of genomic DNA, 10 pmole
of each forward and reverse primers. Amplified PCR products
were run and separated on 1% agarose gel.

RNA isolation, cDNA synthesis and qPCR:  Flag leaf tissues
(0.2 g fresh weight) were collected and ground on dry ice.
Then, the total RNA was isolated using the NucleoSpin® RNA
Plant Kit (Macherey-Nagel, Fisher Scientific, Loughborough, 
UK).   The   cDNAs   were   synthesized   using   the   Fermentas

Table 1: Sequence and information of primers used in this study
Primers Sequence 5'÷3'
PCR-pSBPase-F TCGACGTCCATATGGCCCA
PCR-pSBPase-R TGCTGCGATGCGAGCTGC
PCR-GUS-F ACTACGGGAAAGGACTGGAA
PCR-GUS-R GTCACAACCGAGATGTCCTC
qPCR-GUS-F GTCATCCTCTGGGAACCACT
qPCR-GUS-R CGAACGGCTCTTCATAGACA

Revert Aid Reverse Transcriptase kit as per manufacturer’s
instructions (Fermentas Life Sciences, Paisley, UK). Expression
of the GUS gene was determined by qPCR. The reactions of
qPCR were carried out using SensiFast SYBR No-ROX mix
(Bioline Reagents Ltd., London, UK) as stated by manufacturer
using the primers in Table 1. The reactions included 45 cycles
of 5 sec at 94EC, 10 sec at 60EC and 5 sec at 72EC and
determined from three different technical reps per lines. Fold
of expressions were determined as stated by Pfaffl40.

Histochemical  gus  assays:  Histochemical  activity  of  GUS
gene in situ  was analyzed and assayed as explained in41.
Tissues from the wild type plants (WT) were used as controls38.

Statistical analysis: All data in this study are acquired at least
from three independent biological replicates. All statistical
analyses were done using one-way variance (ANOVA) with a
post hoc test at p<0.5 significance level.

RESULTS

Detection of pSBPase-GUS construct in wheat T2 plants: The
presence  of  the  recombinant  plasmid  pRRes:pSBPase::GUS
(Fig. 1a) was confirmed by PCR amplification. Most tested
plants were identified positive and carrying the construct as
they  amplified  DNA  diagnostic  fragment  of  approximately
2 kb which indicated the presence of the SBPase promoter of
the recombinant plasmids pRRes:pSBPase::GUS compared to
the WT line with no detected bands  (Fig.  1b).  The  presence
of the GUS gene was also confirmed by the detection of the
500 bp fragments (Fig. 1c). Detection of both fragments
confirmed the presence and integrity of the pSBPase::GUS
construct.

Fig. 1(a-c): Detection of SBPase promoter and GUS gene using PCR into transgenic T2 wheat  (a) pSBPase::GUS construct used
for  biolistic  transformation  of  transgenic  lines,  (b)  PCR  detection  of  SBPase  promoter  sequences  in  T2  plants,
1-3,  5-6:  Representative  transgenic  plants  and  (c)  PCR  detection  of  GUS  gene  in  T2  transgenic  wheat  plants
1-9: representative of T2 transgenic plants. M: DNA Marker, WT: Wild type
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Fig. 2(a-b): (a)     Histochemical     staining     of     GUS     and
(b)  Quantitative  PCR  estimation  of  GUS  gene
expression in WT and transgenic lines under
normal conditions

Analysis of stable GUS expression: Transgenic wheat plants
carrying the pRRes:pSBPase::GUS construct were used to
validate and test the function of SBPase promoter and its
suitability to express transgenes in wheat under different
abiotic stresses. Analysis included WT, R2P2, R5P3 and R9P2
independent SBPase promoter transgenic lines (Fig. 2a). The
WT samples showed no staining as expected, whereas, leaf
stripes from transgenic lines R2P2, R5P3, R9P2 exhibited
intense GUS staining. No difference in the intensity of the blue
coloration was observed in the two leaf growth stages
indicating that the SBPase promoter is functioning under
normal growth conditions. Quantitatively, qPCR results
showed that GUS was expressed in all lines with little
variations among the three transgenic lines. The  R9P2 showed
the   highest  GUS  expression  compared  to  R2P2  and  R5P3,

Fig. 3(a-b): (a)     Histochemical     staining     of     GUS     and
(b) Quantitative estimation of GUS expression in
WT and transgenic wheat lines in response to dark
(12 and 24 h)/light after dark treatment

which showed very close level of GUS expression. The WT
plants showed no GUS expression as anticipated (Fig. 2b).

Functional analysis of pSBPase-GUS in light/dark: Light
intensity could have an impact on gene expression and may
be associated with heat stress. Under dark/ light conditions,
transgenic wheat plants (T2) carrying the pRRes:pSBPase::GUS
construct grown in the dark for 12 and 24 h showed drastic
decrease in pSBPase promoter activity indicated by the activity
of GUS viewed by histochemical staining (Fig. 3a). The normal
activity of the pSBPase promoter was re-constituted 3 h after
plants were moved back to light. It seems that keeping plants
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Fig. 4(a-b): (a) Histochemical staining of GUS in the T2 wheat
plants and (b) Quantitative expression of GUS
gene in WT and transgenic wheat lines in response
to light intensity during the day

in the dark for 12 or 24 h did not show a recognizable
difference in the promoter activity. Interestingly, it can gain its
function upon returning plants back to light (Fig. 3a).
Quantitative expression of GUS gene using qPCR showed
perfect association with GUS activity by histochemical staining
(Fig. 3b).

Fluctuation in  day  light  intensity  does  not  affect
pSBPase-GUS activity: Light intensity differs during the day
being  highest  at  the  middle  of  the  day  and  lower  before
and   after   that   peak.   At   9:30   am   light   intensity   was
3290     µmol     mG2     secG1     at     12:30     intensity     was
4970 µmol mG2 secG1 and at 3:30 it was 2575 µmol mG2 secG1.

Fig. 5(a-b): (a) Histochemical staining of GUS in the T2 wheat
plants and (b) Quantitative expression of GUS
gene in WT and transgenic wheat lines in response
to drought and salinity

The impact of light intensity on the activity of the SBPase
promoter by was investigated by estimation of GUS
expression.   Histochemical   staining   of   leaf   segments   of
the  WT  and  the  transgenic  lines  at  the  three  time  points
(9:30 am, 12:30 pm, 3:30 pm) revealed that the tested
promoter  drove  the  expression  of  GUS  gene  at  the  same
level   indicating   that   the   SBPase   promoter   is   fully
functional  at  various  light  intensities  that  ranged  from
2575-4970 µmol mG2 secG1 (Fig. 4a). Quantitative GUS
expression showed very similar level of expression at the three
light intensity levels during the day (Fig. 4b). This confirmed
the ability of the SBPase promoter to drive GUS expression
under a wide range of light intensity.
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Activity of pSBPase-GUS under drought and salinity
conditions: The SBPase promoter activity was estimated
under drought and salinity stresses. The GUS staining of leaf
stripes of WT and the transgenic lines showed that the
promoter worked in a similar fashion to that of normal
conditions.   Exposure   of   plants   to   250   mM   NaCl
(average salinity stress) or half water quantity supplied to the
control group did not show an impact on GUS histochemical
detection (Fig. 5a). Quantitative expression of GUS derived by
the  pSBPase  promoter  presented  very  close  expression
level  under  drought  (half  water  quantity)  as  well  as  under
250 mM NaCl in the three transgenic lines (Fig. 5b).

DISCUSSION

Three transgenic lines named R2P2, R5P3 and R9P2
containing the pSBPase-GUS construct along with the wild
type were employed in this study to evaluate the functionality
of B. distachyon  SBPase promoter in transgenic wheat lines
under normal as well as abiotic stresses. A two-kilobase
genomic region was isolated and characterized showing a
number of the cis-acting regulatory elements implicated in
light and stress-regulation38. The region was found to be
located directly upstream of the ATG for the B. distachyon
SBPase gene promoter. Very little information has been
published on the regulation of Calvin-benson cycle genes in
wheat. On the other hand, adequate literature that
demonstrates  the  function  of  light  in  the  regulation  of
various Calvin-benson cycle gene expressions has been
published42-46. The SBPase promoter also contained regulatory
light responsive with motifs that resemble these regulatory
sequences38, which had previously been identified in a
number of plant species26,47-52.

It has been difficult to achieve high levels of introduced
transgene expression in the leaves of wheat plants. Attempts
have been made using dicot promoters with little or no
success being recorded. The promoters have either been
ineffective or failing. The common promoters used in monocot
plants   are   maize   Ubi l   and  rice  Act1  promoters  and  they
exhibit efficient function to drive a constitutive expression in
almost all plant tissues. However, their activity is shown to be
only high in young plant tissues and has a tendency to
decrease during mature stages of plant growth. Additionally,
the activity of these promoters has not been examined under
abiotic stresses53,54. Drought and salinity are common abiotic
stresses on plants. A promoter optimized to drive exogenous
gene expression is an advantage and essential molecular tool
for the development and applications of plant biotechnology.

Therefore, in this study, the B. distachyon  SBPase promoter
was examined in wheat leaves to drive GUS expression under
natural as well as abiotic stresses, dark/light, drought and
salinity.

The B. distachyon  SBPase promoter showed high activity
in wheat under normal environmental conditions. Also, the
promoter responded  to  the transition from light/dark/light.
In addition, it functioned at the same level in response to
different day light intensities. Moreover, it drove the GUS
expression under the main two types of abiotic stresses,
drought  and  salinity.  Therefore,  the  results  indicated  that
the promoter has high potential to be used as driver  of  GUS
(or other transgenes) gene expression in mesophyll tissues
under natural conditions, drought, salinity and different light
intensity stresses. However, it showed less activity under dark
conditions. Differences in expression level were clearly
detected in independent transgenic lines under 24 and 12 h
dark   environments.   Alotaibi   et   al.38   has   established   that
B. distachyon promoter is normally active in wheat under
normal conditions. This provides an indispensable tool for
tissue-specific expression of transgenes and an alternative
functional promoter for the currently used promoters for
wheat transformation and biotechnology applications. Also,
results   obtained   from   the   same   study   showed   that   the
B. distachyon  promoter was active in N. benthamiana  before
they are introduced into wheat38. This matches with latest
results, which indicated the functionality of Rubisco wheat
promoter in tobacco33.

Variations in transcript levels were observed in individual
independent T2 progenies in plants expressing GUS gene
under the control of SBPase promoter and grown under dark
as well as light conditions. The highest level of the introduced
gene expression reached more than 50% of the GUS gene
transcript in the plants grown in the dark for 24 h. This could
be interpreted as the SBPase activity was increased in the light
by more than 10-fold as a consequence of the thioredoxin
system through light-modulated activation as it was reported
before55, therefore, the SBPase promoter is expected to be
more active in the light compared to in the dark. As GUS
staining offers a visual result that is convenient for tissue
distribution and protein accumulation, under drought and
salinity stresses, a strong positive blue coloration was
observed in the flag leaf growth stage when the plants were
grown under drought, salinity and different light intensities.
This significantly indicated that the functionality of SBPase
promoter  to  drive  the  GUS  gene  expression  is  intriguingly
high despite of these stresses. This new features of SBPase
promoter will contribute to biotechnology applications in
wheat to drive transgene expression under abiotic stresses.
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CONCLUSION

Results of this study conclude that the B. distachyon
SBPase promoter was able to drive transgene expression in
wheat leaves under normal, drought, high light intensity and
salinity conditions. The SBPase promoter could be used in
transgenic  wheat  production  under  abiotic  stresses  which
can contribute to increasing wheat yield in areas challenged
with such abiotic stresses.

SIGNIFICANCE STATEMENT

This study investigated the functionality of SBPase
promoter in wheat leaf tissue under abiotic stresses including
drought, high light intensity and salinity that can be beneficial
for enhancing the efficiency of photosynthesis in wheat. This
study will help researchers to employ the SBPase promoter in
producing transgenic wheat to be planted in areas with similar
abiotic stresses. With the new reported features of SBPase
promoter, transgenes can be highly expressed under abiotic
stresses to enhance wheat biotechnology application for high
yield.
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