

Current Research in Bacteriology

ISSN 1994-5426

Current Research in Bacteriology 8 (3): 48-61, 2015 ISSN 1994-5426 / DOI: 10.3923/crb.2015.48.61 © 2015 Asian Network for Scientific Information

Identification of Coagulase-Negative Staphylococci by *SodA* Gene Sequence Analysis

Aziyah Abdul-Aziz, Sharifah Aminah Syed Mohamad and Mohamad Faiz Foong Abdullah Centre for Molecular Microbial Pathogenicity, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia

Corresponding Author: Aziyah Abdul-Aziz, Centre for Molecular Microbial Pathogenicity, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia

ABSTRACT

A total number of 50 internal sodA gene sequences with 416 nucleotides was analyzed to determine the discriminative power of the gene for the identification of the Coagulase-Negative Staphylococci (CoNS). The mean similarity between these CoNS species was found to be 80.4% indicating a good discriminative power although low sequence divergence was observed between some of the species. The relatedness between these staphylococcal species was further explored by constructing phylogenetic analysis. Six clusters was revealed, with four of these supported by significant bootstrap values of >95% while the other two clusters were less robustly supported at bootstrap values of about 92%. Following that, the identification of 200 clinical isolates of CoNS isolates were determined phenotypically by a commercial diagnostic kit and also genotypically using the sodA gene sequencing method. The Microgen Staph ID was found to be quite reliable for commonly isolated clinical CoNS species e.g., S. capitis subsp. capitis, S. haemolyticus and a majority of the S. epidermidis isolates. However, for the less commonly encountered species, the kit was unreliable. Identification by sodA sequencing method was found to be more reliable with homology values of at least 98%. However, like other nucleotide sequence based identification, the discriminative power of sodA at subspecies level was poor whereby the final identification had to be supplemented with biochemical tests.

Key words: Discriminative power, phenotypic, genotypic, phylogenetics, Microgen Staph ID

INTRODUCTION

The Coagulase-Negative Staphylococci (CoNS) is a group of *Staphylococcus* species which is distinguished from the more virulent *Staphylococcus aureus* by their inability to coagulate plasma. To date, there are more than 50 species of CoNS that have been identified including recent additions e.g., *S. jettensis* and *S. argenteus* (Tong *et al.*, 2015). The CoNS were once considered relatively avirulent and have long been dismissed as culture contaminants since they are normal inhabitants of human skin and mucous membranes. The potential pathogenicity of CoNS in human medicine was first reported in 1958 but only in the 1970s that these organisms have become increasingly recognized as agents of clinically significant infections especially hospital-acquired opportunistic infections (Becker *et al.*, 2014; Piette and Verschraegen, 2009). The CoNS are also known to be a leading cause of infections in infants. In the USA, data collected through The National Institute of Child Health and Human Development Neonatal Research Network revealed that CoNS accounted for 48% of late-onset sepsis in very low birth weight or VLBW infants (Stoll *et al.*, 2002). In UK, the neonatal infection surveillance networks reported that CoNS

accounted for 54% of similar incidence in infants (Vergnano *et al.*, 2011). The occurrence of CoNS have also been commonly associated with various medical devices such as prosthetic valves, cerebrospinal fluid shunts as well as intravascular, urinary and dialysis catheters (Chaudhury and Kumar, 2007; De Allori *et al.*, 2006; Gatermann *et al.*, 2007; Koksal *et al.*, 2009; Rasigade *et al.*, 2012).

The increasing significance of CoNS serves the justification for a more accurate species identification to allow a precise determination of host-pathogenic potential of each of the various CoNS species (Heikens *et al.*, 2005; Poyart *et al.*, 2001; Sivadon *et al.*, 2005). Various methods have been proposed, both phenotypically and genotypically. In common routine diagnostics identification was based on biochemical tests and the fatty acid profile. However, while these methods are able to identify *S. aureus*, it fails to distinguish other staphylococci including the CoNS group (Martineau *et al.*, 1998; Stoakes *et al.*, 1994). The conventional biochemical tests for CoNS were also found to be unsatisfactory, unreliable and irreproducible. The CoNS can only be distinguished by a limited number of stable biochemical tests, hence, making identification to species level a difficult task. Similarly, the automated identification systems such as the as the ID32 STAPH® strip (bioMérieux) and the VITEK 2 identification card (bioMérieux) were also found to be unreliable due to the variable phenotypic characters as a result of expression of the different metabolic activities (Delmas *et al.*, 2008; Kim *et al.*, 2008).

A number of sequence-based identification methods which rely on the analysis of PCR products derived from some specific DNA targets have been developed as an alternative to phenotypic identification of *Staphylococcus* species. Analysis of 16S rRNA gene used to be the most common method used for bacteria classification and identification. However, the use of this gene is limited due to high degree of sequence similarity between closely related species (Becker *et al.*, 2004; Goh *et al.*, 1996; Gribaldo *et al.*, 1997; Kwok *et al.*, 1999). Hence, other highly conserved sequence has been exploited which includes *sodA* (Poyart *et al.*, 2001), *gap* (Bergeron *et al.*, 2011; Ghebremedhin *et al.*, 2008), *hsp60* (Ghebremedhin *et al.*, 2008; Kwok *et al.*, 1999), *rpoB* (Drancourt and Raoult, 2002; Mellmann *et al.*, 2006), *tuf* (Heikens *et al.*, 2005) and *dnaJ* (Shah *et al.*, 2007) gene sequencing methods. However, the sequences of some genes are not sufficient to discriminate between closely related *Staphylococcus* at both species and subspecies level and the databases only includes a limited number of species.

In this study, the discriminative power of the sodA gene for CoNS identification would first be evaluated using available sodA gene sequences downloaded from the GenBank database. This gene encodes for manganese-dependent superoxide dismutase, Mn-SOD. Using a pair of degenerate primers, a 429 bp long DNA fragment was amplified and characterized. The number of sodA sequences of CoNS analyzed in the present study is the largest so far with 50 species as compared previous partial analysis (Poyart et al., 2001; Ghebremedhin et al., 2008). Sequences from newly-reported CoNS species such as S. nepalensis, S. microti, S. rostra, S. fleuretti and subspecies of S. succinus were also included which gave a total of 50 species and sub-species of CoNS altogether. Following that, the identification of 200 strains of local clinical CoNS isolates will be first performed phenotypically using the commercial Microgen Staph ID (Microgen, UK) kit and subsequently compared to the sodA gene sequencing method.

MATERIALS AND METHODS

Analyses of the sodA gene sequence: DNA sequences of available CoNS sp from the GenBank database was aligned using the Clustal W software (Thompson et al., 1994). Similarity matrices for aligned sequences were generated using the BioEdit software (Hall, 1999) and the mean

similarity was calculated. Phylogenetic tree construction was performed by the neighbor-joining algorithm (Saitou and Nei, 1987) using the MEGA5 software (Kumar *et al.*, 2004) and resampled with bootstrap values based on 1000 replications (Felsenstein, 1985). For comparison purposes, the *sodA* gene of *S. aureus* was also included in this study.

Collection of samples: A total of 200 CoNS strains were collected from the Pathology Lab of the Hospital Tuanku Ampuan Rahimah, Klang in between December, 2010 to May, 2011. These clinical strains were taken from warded patients and selected randomly from various clinical settings including blood, respiratory, pus, fluid and urine isolates. The identity of the CoNS isolates was further verified by their inability to coagulate blood plasma using the Pro-Lab ProlexTM Blue-Staph Latex Test Kit.

Phenotypic identification of the CoNS isolates: Biochemical identification to species level was performed using the Microgen Staph ID kit. The bacterial cell culture was inoculated into the 12 microwells of each strip which employs 13 standardised biochemical substrates as according to the manufacturer's instructions. Upon incubation, results based on the colour change of each well were recorded on a provided worksheet and interpreted using the MicrogenTM Identification System Software (MID-60) to identify the test organisms.

Amplification of the *sodA* gene sequence: As most of these partial *sodA* sequences were generated by sequencing the PCR amplicons and deposited into the GenBank database by different groups of workers, the length of the sequences can vary greatly. Thus, the majority of these were trimmed to an internal sequence of 416 nt which corresponds to nucleotides 52-468 of the *S. epidermidis* coding region for the *sodA* gene sequence.

Amplification of the *sodA* gene sequence of the 200 CoNS isolates were performed using degenerate primers d1 (5' CCITAYICITAYGAYGCIYTIGARCC' 3) and d2 (5' ARRTARTAIGCRTGYTCCCAIACRTC' 3) which amplify a fragment of the superoxide dismutase gene that represents approximately 83% of the entire gene (Poyart *et al.*, 2001).

The PCR reaction mix was prepared using Gotaq Flexi kit (Promega) in a total volume of 50 μ L; 10 μ L of 5X Go-Taq Buffer, 1 μ L of a 200 μ M concentration of each dNTP, 1 μ L of 25 mM MgCl₂ solution, 2 μ L of 10 μ M of each primer, 0.5 μ L of 1 U of Go-Taq DNA polymerase (Promega) and 2 μ L of 150 ng of DNA as the template.

The PCR was performed in Piko Thermal Cycler (Thermo Scientific) with the following conditions: 3 min at 95°C for initial cycle, followed by 30 cycles of amplification of the followings; 60 sec of annealing at 37°C, 45 sec of elongation at 72°C and 30 sec of denaturation at 95°C. The last cycle was performed at 72°C for 10 min.

The PCR amplicons were sequenced and the DNA sequences of the gene were then identified by matching against the NCBI database using the BLAST interface.

RESULTS

Analysis of the discriminative power of the sodA gene sequence for the identification of CoNS isolates: The analysis was performed by first downloading the available sodA gene sequences from the GenBank database. However, as most of these partial sodA sequences were deposited into the GenBank database by different groups of workers, the length of the sequences can vary greatly. Thus, the majority of these were trimmed to an internal sequence of 416 nt which corresponds to nucleotides 52-468 of the S. epidermidis coding region for sodA gene sequence.

Similarity matrix of the partial *sodA* gene sequence of CoNS isolates: Results from the analysis showed that the mean similarity of the partial *sodA* sequences of the 50 CoNS was 80.4% as calculated from the similarity matrix shown in Fig. 1, with a minimum similarity of 56.0%. This is very similar to the value of mean similarity of 81.5% obtained by Poyart *et al.* (2001).

However, some exceptions at interspecies level were noted. Although, the majority of the partial sodA sequences showed remarkable discrimination, some pairs were quite similar to each other. For example, S. condimenti share 97% similarity in its partial sodA sequence with both subspecies of S. carnosus while S. delphini was 96% similar to S. pseudintermidus. Similarly, S. condimenti and S. piscifermentans were 95% similar to each other and the same degree of similarity was observed between S. fleuretti and S. vitulinus. In addition, only 6% sequence divergence was observed between the partial sodA sequences of the following pairs: S. caprae and S. capitis, both the subspecies of S. carnosus and S. piscifermentans, the three subspecies of S. scuiri; S. vitulinus, S. pasteuri and S. warneri and also between S. saprophyticus and S. xylosus.

The same trend was also observed in nucleotide-sequence identification using other genes. The 16S rDNA sequence similarity has been shown to be very high at 90-99% in 29 Staphylococcus species studied (Kwok et al., 1999). A sequence similarity of 95 and 99% was seen between S. caprae and S. capitis using the 16S rRNA and hsp60 gene, respectively (Ghebremedhin et al., 2008) while the partial rpoB sequences of these two species were lower at 84.5% (Drancourt and Raoult, 2002) as compared to 94% similarity observed in the present study. Staphylococcus sciuri and S. vitulinus species showed 90.1-98.6% similarity in their hsp60 gene sequences (Kwok and Chow, 2003; Kwok et al., 1999) while a similarity of 94% between these species were detected in the present study. Similarly, the sodA sequence revealed a similarity of 89% between S. simulans and S. carnosus while the sequence similarity was 87, 95 and 96% with rpoB, gap and 16s rRNA gene sequence, respectively (Ghebremedhin et al., 2008).

A much higher similarity was observed at subspecies level. As shown in Fig. 1, both *S. cohnii* subsp. *cohnii* and *S. cohnii* subsp. *urealyticum* shared a partial *sodA* sequence similarity of 96%, making sequence based identification between these two species a difficult task. Similarly, only 1% of sequence divergence was observed between *S. hominis* subsp. *hominis* and *S. hominis* subsp. *novobiosepticus* and also between the two species of *S. schleiferi*. In addition, the partial *sodA* gene sequence failed to differentiate between the two subspecies of *S. capitis*, *S. carnosus*, *S. saprophyticus* and *S. succinus* and also the three subspecies of *S. sciuri* as the similarity among the subspecies was 100%. This finding is consistent with other conserved genes used for staphylococcal identification including *dnaJ* (Shah *et al.*, 2007), *hsp60* (Kwok and Chow, 2003) and 16S rRNA (Ghebremedhin *et al.*, 2008; Kwok and Chow, 2003) where majority of complete discrimination at subspecies level was unsuccessful due to of high similarities among the subspecies.

In general, the results suggest that apart from the subspecies level, the sodA internal sequence is able to show more species discrimination as compared to the sequence of other conserved genes such as the 16S rRNA with mean similarity of 90% (Shah $et\ al.$, 2007), rpoB with mean similarity of 86% (Drancourt and Raoult, 2002; Mellmann $et\ al.$, 2006) and hsp60 with mean similarity of 82% (Kwok $et\ al.$, 1999). Following general convention, a 95% identity threshold was adopted as the limit for a positive identification and unambiguous assignment to a particular species.

Phylogenetic analysis of Staphylococcus derived from partial sodA gene sequences: The relatedness between the sodA internal sequences of the staphylococcal species were further explored using standard phylogenetic tree. Figure 2 represents the phylogenetic tree drawn using the neighbour-joining method based on the internal sequence of the sodA gene.

	-		s s	
Staphylococcus species	No L	2 3 4 5 6 7 8 9 10	Percentage of similarity matrix of the 5 <i>00</i> 44 gene in 5 <i>00</i> 49 gene in 5 <i>00</i> 49 gene in 5 <i>00</i> 49 gene in 5 <i>0</i> 49 gr 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	Percentage of similarity matrix of the Sorar gene in Supplyococcars sp. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51
S. arletter S. aureus	1 ID 2 85	<u>a</u>		
S. aureus subsp. aureus	3 85	100 ID		
S. auricularis		83 ID		
S. capitis subsp. capitis		86 86 ID		
S. capitis subsp. capitis	9 6	86 85 100 ID		
5. caprae	03 0	94 E		
5. carnosus suosp. carnosus 5. carnosus subsp. utilis		81 82 81 81 79 100		
S. chromo genes	_	81 84 86 86 84 78 78		
S. cohnii subsp. cohnii		84 84 85 85 84 81 81 82	OI OI	
S. cohnii subsp. u realyticum	12 89	86 84 86 86 84 81 81 82		
S. condimenti		81 83 82 82 81 97 97 79	83 ID	
S. delphini		87 97 97 80 76 77 77	79 77 ID	
S. epidermidis		87 83 90 90 89 81 81 82	86 81 78 ID	
S. equorum	16 84	83 83 85 84 85 80 80 81	89 80 81 82 ID	
S. equorum subsp. linens		84 85 86 86 87 81 81 82	91 81 79 84 96 ID	
S. felis		79 78 81 81 80 78 78 79	78 78 76 82 78 78 ID	
S. fleuretti		74 76 76 75 74 74 73	73 74 71 75 72 73 76 ID	
S. gallinarum	20 81	86 88 87 86 84 83 83 85	92 84 80 86 89 90 79 76 ID	
S. haemolyticus		86 86 88 87 90 78 78 83	87 79 79 86 86 88 80 79 88 ID	
S. hominis subsp. hominis	52 88	86 84 88 87 87 82 82 82	89 83 78 89 85 87 80 75 89 88	
S. hominis subsp. novo biosepticus		86 85 87 87 87 82 82 82	89 84 79 89 85 86 79 75 89 89	Θ;
S. hyicus		62 61 65 65 64 60 60 64	63 60 64 63 63 62 63 57 62 62	63 E
S. intermedius		78 78 60 81 82 77 77 82	80 77 91 80 79 79 78 71 82 80	81 62 ID
S. kloosii	26 92	85 83 86 87 86 82 82 81	88 82 80 85 89 90 81 75 91 87	87 62 83 ID
S. lentus		72 72 75 75 74 74 74 73	74 74 73 72 74 74 74 89 74 72	74 56 72 75 ID
S. tugdunensts	87 06	85 85 82 82 83	70 75 07 70 77 77 70 77 70 70 70	88 61 81 88 72 ID
S. unraw		00 10 19 19 13 13 00	90 90 70 70 70 91 77 70 93 91	19 62 84 19 12 12 ID
5. massutensis	30 02	20 79 83 83 84 79 79 83	80 80 1/ 1/ 89 81 82 83 81 00 00 00 00 00 00 00 00 00	81 60 /9 83 /3 81 /8 ID
S. microit	32 77	97 97 97 67 67 67 87	77 76 76 78 77 77 77 78 78 78 78	81 60 78 78 74 77 77 80
S. nepalensis		84 84 87 86 84 82 82 81	92 83 78 85 87 90 79 74 90 86	87 62 80 88 74 86 77 81 76 77
S. pasteuri		88 85 91 90 91 82 82 85	88 83 81 87 85 87 80 76 88 87	86 64 82 89 76 85 79 83 80 79 86
S. piscifermentans		82 83 84 84 82 94 94 82	83 95 77 82 81 83 78 75 86 82	85 59 77 83 73 82 76 81 77 76 83 84
S. pseudintermedius		P 77 77 80 80 80 77 77 79 79 80 80 80 80 80 80 80 80 80 80 80 80 80	79 77 96 78 79 79 77 71 80 79	79 63 91 80 73 79 83 78 77 76 78 82 77
S. rostri		76 75 77 77 77 75 75 78	75 76 78 74 79 77 76 72 77 76	76 63 77 75 73 77 76 78 89 85 74 77 76 77 ID
S. sacharolyticus	38 85	85 82 88 88 80 80 81	85 79 76 90 83 85 79 72 84 85	85 63 79 86 70 83 77 80 79 78 84 87 80 76 77 ID
S. saprophyticus subsp. bovis		85 86 87 87 88 81 81 83	92 81 81 85 91 93 79 75 92 89	86 62 83 91 75 87 78 81 79 77 91 88 83 81 76 86 ID
S. saprophyticus subsp. saprophyticus		85 86 87 87 88 81 81 83	92 81 81 85 91 93 79 75 92 89	86 62 83 91 75 87 78 81 79 77 91 88 83 81 76 86 10 ⁰ ID
S. schleiferi subsp. coagulans		81 79 83 83 82 81 80 81	80 80 81 82 78 80 79 72 80 81	82 65 80 81 71 81 80 79 78 78 79 84 81 81 77 83 81 81 ID
S. schletjeri subsp. schletjeri	42 81	83 81 80 82	80 80 81 82 /9 80 /9 /2 80 81	82 65 81 81 72 82 80 80 79 78 80 84 81 81 77 83 81 81 89 ID
S. scurri subsp. carnancus	64 64	74 76 76 73 74 74 73	75 75 71 76 72 75 76 92 75 74	70 5/ 12 10 89 13 12 11 15 16 13 18 14 12 14 15 15 15 15 15 15 15 15 15 15 15 15 15
S. sciuri subsp. sciuri		74 76 76 75 74 74 75	75 75 71 76 72 73 79 92 75 74	57 72 75 89 73 72 71 75 75 77 78 74 77 75 75 75 75 73 73 99 100
S. simulans		83 82 86 86 84 89 89 83	83 90 78 83 83 85 78 73 85 81	84 60 78 84 73 81 75 82 76 76 84 86 91 78 75 81 84 84 81 82 73 73 73
S. succinus subsp. casel		86 85 88 88 86 82 82 83	83 80 85 90 93 79 74 93 88	74 86 78 83 77 78 90 88 85 80 77 86 92 92 80 80 74
S. succinus subsp. succinus		86 85 89 88 87 82 82 83	80 83 80 85 91 93 80 75 93 88	88 62 82 93 74 86 78 84 77 78 89 88 85 80 77 85 91 91 81 80 74 74 74 87 100 ID
S. vitulinus		72 74 77 77 76 74 74	75 74 72 72 72 74 76 95 76 74	57 73 77 90 73 74 74 74 75 75 77 75 73 73 73 76 76 74 74 94 94 94 73 75 1D
S. warneri	51 89	84 84 90 90 90 81	82 80 86 84 86 79 75 87 87	85 63 82 86 76 86 77 84 80 77 87 94 83 81 77 85 88 82 83 77 76 77 85 86 87 77 ID
S. xylosus	51 90	84 86 86 81 81	90 82 79 85 90 92 79 75 92	63 81 92 73 86 77 80 76 77 89 87 82 79 75 86 94 94 81 81 /4 /4 /4 84 92 92 /5

Fig. 1: Identity matrix based on the internal sequences of the sodA gene in Staphylococcus sp. The numbers representing each of the Staphylococcus sp correspond with the numbers displayed on top of the table. The mean similarity matrix calculated is 80.4%

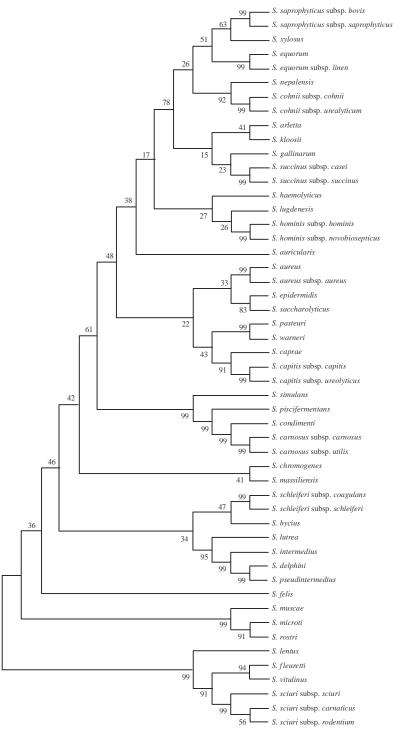


Fig. 2: Phylogenetic tree based on partial sodA gene sequence of 50 Staphylococcus species and subspecies. Phylogenetic tree based on the sodA internal sequence showing relationships among the 51 staphylococcal strains. The tree was established using the neighbour-joining method from an analysis of sequences listed in Fig. 1. The percentage of bootstrap value indicated at each branch was calculated from 1000 resamplings. Each of the shaded area represents a cluster

In agreement with Poyart et al. (2001), three major clusters supported by significant bootstrap values of >95% were observed. These are the S. sciuri, S. simulans and the S. intermedius clusters. The S. sciuri group consists of the three subspecies of S. sciuri together with S. lentus, S. vitulinus and the newly reported S. fleuretti. As noted by Poyart et al. (2001), members of this cluster differ from the other staphylococcal species by the presence of an extra codon-GCT-at nucleotide number 220 of the sodA internal sequence (or nucleotide 274 of the corresponding sodA gene of S. epidermidis). This codon codes for an extra alanine residue at amino acid number 92 of the corresponding S. epidermidis sodA protein. All members of the S. sciuri cluster were also observed to carry two unique signature sequences within their sodA gene, first is the CCTTC moiety at nucleotide 226 and the second is a GTTCTAC at nucleotide 257.

The second cluster consists of *S. simulans*, *S. piscifermentans*, *S. condimenti*, *S. carnosus* subsp. *carnosus* and *S. carnosus* subsp. *utilis*. This cluster is supported by a bootstrap value of 99% and has a unique feature of an extra codon-AAA-at nucleotide 349 (corresponding to nucleotide 403 of the *sodA* coding region), resulting in an extra lysine residue at amino acid number 135 of the corresponding protein. The third, *S. intermedius* cluster was supported by a bootstrap value of 95% and consists of *S. intermedius*, *S. pseudintermedius*, *S. lutrae* and *S. delphini*.

The phylogenetic tree also revealed the presence of an additional three clusters. The fourth cluster, the *S. muscae* cluster, consists of *S. muscae*, *S. rostri* and *S. microti* and robustly supported by a bootstrap value of 99%. The fifth and sixth clusters consist of *S. caprae*, *S. capitis* subsp. capitis and *S. capitis* subsp. urealyticum in one and *S. nepalensis*, *S. cohnii* subsp. cohnii and *S. cohnii* subsp. urealyticum in the other, were less robustly supported at bootstrap values of 91 and 92%, respectively.

Identification of CoNS isolates by microgen staph ID: Using the Microgen Staph ID biochemical test kit, a total of 14 species of CoNS were identified, with *S. epidermidis* accounting for the highest number of isolates at 75, followed by *S. haemolyticus*, *S. hominis* and *S. capitis* with 48, 17 and 14 isolates, respectively.

Some of these identifications were however unconvincing. *Staphylococcus chromogenes* is known as an animal pathogen and is also one of the predominant CoNS species in bovine mastitis. To date, no case of human infection caused by this bacterium has been reported. Similarly, *S. hyicus*, *S. intermedius* and *S. schleiferi* subsp. *coagulans* have been known as part of the commensal flora of various animals while infection in human is very rare (Bes *et al.*, 2002; Casanova *et al.*, 2011; Fudaba *et al.*, 2005). Hence, results from the identification by the MicrogenTM Identification System Software were doubtful.

In general, although some of the isolates displayed excellent to good differentiation at a probability of >90%, some identification were poor with probabilities of less than 80%, adding to the uncertainties of the actual identity of these species of CoNS.

Amplification and identification of CoNS via the sodA gene sequence: Figure 3 shows some representative of the result of amplification of the sodA gene of the 200 CoNS clinical isolates. A single amplicon of 429 bp was observed in all of the staphylococcal species studied. In total, the sodA gene identified S. epidermidis with 74 isolates followed by S. haemolyticus (60), S. hominis (36) and S. capitis (17). The remaining isolates include S. cohnii, S. lugdenensis, S. saprophyticus, S. sciuri and S. warneri.

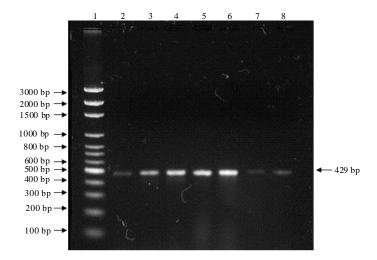


Fig. 3: Amplification of the *sodA* gene sequence in the CoNS isolates. Lane 1: 100 bp DNA ladder, Lane 2: ATCC 35984 (positive control, lane 3-8 are samples of CoNS isolates displaying positive amplification for the *sodA* gene with an expected amplicon of 429 bp

Comparison of results from Microgen Staph ID and the *sodA* sequencing method: Table 1 shows the differences in results of the identification of some of the CoNS isolates via the Microgen Staph ID kit and *sodA* sequence analysis. Both the Microgen Staph ID and *sodA* sequence results were in agreement for the majority of the common CoNS isolates. However, for less common species, a high number of discrepancies between both sets of data were observed.

Both the Microgen Staph ID and sodA sequence results were in agreement for the majority of the S. epidermidis. However, 14.9% or 11 of the isolates identified by Microgen as S. epidermidis were identified as either S. hominis subsp. hominis or S. hominis subsp. novobiosepticus with each exhibiting a BLAST percentage identity of 99% except for isolate B213 which was identified as S. capitis subsp. ureolyticus instead with percentage identity of 100%. Similarly, almost all of the S. haemolyticus isolates were correctly identified by Microgen except for two isolates. Isolate B172 and P15 gave a low percentage of probability of 67.4 and 86.7%, respectively which were later identified as S. hominis subsp. hominis using sodA sequences.

Both the Microgen Staph ID kit and sodA analysis correctly identified all of the S. capitis subsp. capitis isolates with percentage of probability ranging from 86.47-99.24% and percentage of identity of at least 99%. However, the kit was appears to misidentify S. capitis subsp. ureolyticus. These isolates were misidentified either as S. epidermidis (B213), S. schleiferi subsp. coagulans (P27) or S. xylosus (B111) albeit the high percentage probability of between 80-96% generated by the Microgen software. For S. hominis subsp. hominis, a total of 40% or 12 of isolates were correctly identified by the Microgen Staph ID as reconfirmed by the sodA sequencing method while the remaining eight were misidentified.

Identification by Microgen Staph ID for the rest of the CoNS isolates was correspondingly unreliable. The kit failed to identify any of the *S. cohnii*, *S. hominis* subsp. *novobiosepticus*, *S. saprophyticus* and *S. sciuri* isolates. Results by BLAST showed that none of the clinical isolates were either *S. chromogenes*, *S. hyicus*, *S. intermedius*, *S. lentus* or *S. schleiferi* subsp. *coagulans* which are known to be associated with infections in animals. Similarly, none of the clinical isolates were *S. simulans* or *S. xylosus* as identified by the Microgen Staph ID kit, although these two species are generally known to be related to humans.

Table 1: Discrepancies between identification by biochemical tests and sodA gene sequence analysis

	Table 1: Discrepancies between identification by biochemical tests and $sodA$ gene sequence analysis							
B118 S. chromogenes 95.80 S. haemolyticus 100	Isolate	Microgen staph ID	Probability (%)	SodA sequence genotyping	ID (%)			
B9 S. chromogenes 91.02 S. hominis subsp. hominis 100 B194 S. chromogenes 87.90 S. hominis subsp. hominis 190 B207 S. chromogenes 75.32 S. hominis subsp. hominis 99 B10 S. chromogenes 71.33 S. hominis subsp. hominis 100 B204 S. chromogenes 71.33 S. hominis subsp. hominis 190 U3 S. cohnii subsp. urealyticum 86.41 S. cohnii subsp. cohnii 100 B213 S. epidermidis 96.22 S. capitis subsp. nevobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B4 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. hominis 99 B205 S. epidermidis 99.43	B170	S. chromogenes	99.92	S. haemolyticus	99			
B194 S. chromogenes 87.90 S. hominis subsp. hominis 100 B207 S. chromogenes 75.32 S. hominis subsp. hominis 99 B204 S. chromogenes 71.33 S. hominis subsp. hominis 99 U3 S. cohnii subsp. urealyticum 86.41 S. cohnii subsp. cohnii 100 B213 S. epidermidis 96.22 S. capitis subsp. nevolvicus 100 B128 S. epidermidis 79.90 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25	B118	S. chromogenes	95.80	S. haemolyticus	100			
B207 S. chromogenes 75.32 S. hominis subsp. hominis 99 B10 S. chromogenes 71.33 S. hominis subsp. hominis 100 B204 S. chromogenes 71.33 S. hominis subsp. hominis 99 U3 S. cohnii subsp. urealyticum 86.41 S. cohnii subsp. cohnii 100 B213 S. epidermidis 96.22 S. capitis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. hominis 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B20 S. epidermidis 85.25	B9	S. chromogenes	91.02	S. hominis subsp. hominis	100			
B10 S. chromogenes 71.33 S. hominis subsp. hominis 190 B204 S. chromogenes 71.33 S. hominis subsp. hominis 190 B213 S. cohnii subsp. urealyticum 86.41 S. cohnii subsp. cohnii 100 B213 S. epidermidis 79.90 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B40 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B44 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B14 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. nominis 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 86.72	B194	S. chromogenes	87.90	S. hominis subsp. hominis	100			
B204 S. chromogenes 71.33 S. hominis subsp. hominis 99 U3 S. cohnii subsp. urealyticum 86.41 S. cohnii subsp. preolyticus 100 B213 S. epidermidis 99.22 S. capitis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.19 S. hominis subsp. hominis 99 B16 S. epidermidis 94.33 S. hominis subsp. hominis 99 B20 S. epidermidis 85.25 S. hominis subsp. hominis 99 B10 S. epidermidis <td< td=""><td>B207</td><td>S. chromogenes</td><td>75.32</td><td>S. hominis subsp. hominis</td><td>99</td></td<>	B207	S. chromogenes	75.32	S. hominis subsp. hominis	99			
U3 S. cohnii subsp. urealyticum 86.41 S. cohnii subsp. cohnii 100 B213 S. epidermidis 96.22 S. capitis subsp. urealyticus 100 B128 S. epidermidis 79.90 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B40 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. hominis 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B175 S. haemolyticus 86.70	B10	S. chromogenes	71.33	S. hominis subsp. hominis	100			
B213 S. epidermidis 96.22 S. capitis subsp. ureolyticus 100 B128 S. epidermidis 79.90 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B40 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 99.48 S. hominis subsp. hominis 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. hoemolyticus 67.36 S. hominis subsp. hominis 99 B172 S. hoemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 99 B15 S. hominis subsp. hominis 99.38 <	B204	S. chromogenes	71.33	S. hominis subsp. hominis	99			
B128 S. epidermidis 79.90 S. hominis subsp. novobiosepticus 99 B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B40 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. hoemolyticus 67.36 S. hominis subsp. hominis 99 B173 S. hominis subsp. hominis 53.20 S. epidermidis 99 B174 S. hominis subsp. hominis 53.20 S. epidermidis 99 B15 S. hominis subsp. hominis 99.38 <td>U3</td> <td>S. cohnii subsp. urealyticum</td> <td>86.41</td> <td>S. cohnii subsp. cohnii</td> <td>100</td>	U3	S. cohnii subsp. urealyticum	86.41	S. cohnii subsp. cohnii	100			
B6 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B40 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. nominis 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 B173 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B161 S. hominis subsp. hominis 53.20 S. epidermidis 99 B15 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B15 S. hominis subsp. hominis 91.12 <td>B213</td> <td>$S.\ epidermidis$</td> <td>96.22</td> <td>S. capitis subsp. ureolyticus</td> <td>100</td>	B213	$S.\ epidermidis$	96.22	S. capitis subsp. ureolyticus	100			
B40 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 94.33 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 B15 S. hominis subsp. hominis 59 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 99 B15 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B15 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 B16 S. hominis subsp. hominis 91.12 S. sapro	B128	$S.\ epidermidis$	79.90	S. hominis subsp. novobiosepticus	99			
B48 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 94.33 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 B173 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 99 B15 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B15 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 B16 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus <td>B6</td> <td>$S.\ epidermidis$</td> <td>99.48</td> <td>S. hominis subsp. novobiosepticus</td> <td>99</td>	B6	$S.\ epidermidis$	99.48	S. hominis subsp. novobiosepticus	99			
B134 S. epidermidis 99.48 S. hominis subsp. novobiosepticus 99 B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 85.25 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 B172 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B173 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B161 S. hominis subsp. hominis 53.20 S. epidermidis 100 B15 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B15 S. hominis subsp. hominis 91.22 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus	B40	$S.\ epidermidis$	99.48	S. hominis subsp. novobiosepticus	99			
B16 S. epidermidis 98.19 S. hominis subsp. hominis 99 B205 S. epidermidis 94.33 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 P15 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 99 R15 S. hominis subsp. hominis 93.8 S. saprophyticus subsp. saprophyticus 99 R15 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 99.8 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 99.98 S. naemolyticus subsp. saprophyticus 99 B136 S. hyicus	B48		99.48	S. hominis subsp. novobiosepticus	99			
B205 S. epidermidis 94.33 S. hominis subsp. hominis 99 B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 P15 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 100 B15 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B51 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 52.05 S. cohnii subsp. urealyticus 99 B136 S. hyicus 99.98 S. hemolyticus 99 B193 S. hyicus 81.86 S. hemolyticus 99 B194 S. lugdenensis 72.02 S. hae	B134	$S.\ epidermidis$	99.48	S. hominis subsp. novobiosepticus	99			
B50 S. epidermidis 85.25 S. hominis subsp. hominis 99 B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 B172 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 B51 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 B61 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B16 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B13 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B13 S. hyicus 99.98 S. haemolyticus subsp. saprophyticus 99	B16	$S.\ epidermidis$	98.19	S. hominis subsp. hominis	99			
B100 S. epidermidis 85.25 S. hominis subsp. hominis 99 B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 P15 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 99 R15 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 U1 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 52.05 S. cohnii subsp. useprophyticus 99 B136 S. hyicus 99.98 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B194 S. intermedius 84.27 S. haemolyticus 99 B146 S. leugdenensis 72.02 S. haemolyt	B205	$S.\ epidermidis$	94.33	S. hominis subsp. hominis	99			
B172 S. haemolyticus 67.36 S. hominis subsp. hominis 99 P15 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 U1 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 52.05 S. cohnii subsp. urealyticum 99 B193 S. hyicus 99.98 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B194 S. lugdenensis 72.02 S. haemolyticus 99 B146 S. lugdenensis 74.95 S. hominis subsp. hominis 1	B50	$S.\ epidermidis$	85.25	S. hominis subsp. hominis	99			
P15 S. haemolyticus 86.70 S. hominis subsp. hominis 99 B61 S. hominis subsp. hominis 53.20 S. epidermidis 100 R15 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 U1 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 52.05 S. cohnii subsp. urealyticum 99 B136 S. hyicus 99.98 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B11 S. intermedius 84.27 S. haemolyticus 99 B146 S. leutus 92.90 S. scivir 100 B185 S. lugdenensis 72.02 S. haemolyticus 99	B100	$S.\ epidermidis$	85.25	S. hominis subsp. hominis	99			
B61 S. hominis subsp. hominis 53.20 S. epidermidis 100 R15 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 U1 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 52.05 S. cohnii subsp. urealyticus 99 B138 S. hyicus 99.98 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B11 S. intermedius 84.27 S. haemolyticus 99 B146 S. lentus 92.90 S. sciuri 100 B185 S. lugdenensis 72.02 S. haemolyticus 99 B162 S. lugdenensis 74.95 S. hominis subsp. hominis 100	B172	S. haemolyticus	67.36	S. hominis subsp. hominis	99			
R15 S. hominis subsp. hominis 53.20 S. epidermidis 100 B51 S. hominis subsp. hominis 99.38 S. saprophyticus subsp. saprophyticus 99 P26 S. hominis subsp. hominis 97.32 S. saprophyticus subsp. saprophyticus 99 U1 S. hominis subsp. hominis 91.12 S. saprophyticus subsp. saprophyticus 99 B136 S. hyicus 52.05 S. cohnii subsp. urealyticum 99 B193 S. hyicus 99.98 S. haemolyticus 99 B193 S. hyicus 81.86 S. haemolyticus 99 B11 S. intermedius 84.27 S. haemolyticus 99 B11 S. intermedius 84.27 S. haemolyticus 99 B166 S. lugdenensis 72.02 S. haemolyticus 99 B167 S. lugdenensis 74.95 S. hominis subsp. hominis 100 B177 S. lugdenensis 74.95 S. hominis subsp. hominis 100 B182 S. schleiferi subsp. coagulans 81.83 S. capitis subsp. u	P15	S. haemolyticus	86.70	S. hominis subsp. hominis	99			
B51 $S.\ hominis\ subsp.\ hominis$ 99.38 $S.\ saprophyticus\ subsp.\ saprophyticus$ 99P26 $S.\ hominis\ subsp.\ hominis$ 97.32 $S.\ saprophyticus\ subsp.\ saprophyticus$ 99U1 $S.\ hominis\ subsp.\ hominis$ 91.12 $S.\ saprophyticus\ subsp.\ saprophyticus$ 99B136 $S.\ hyicus$ 52.05 $S.\ cohnii\ subsp.\ urealyticum$ 99B193 $S.\ hyicus$ 99.98 $S.\ haemolyticus$ 99B193 $S.\ hyicus$ 81.86 $S.\ haemolyticus$ 99P12 $S.\ hyicus$ 81.86 $S.\ haemolyticus$ 99B11 $S.\ intermedius$ 84.27 $S.\ haemolyticus$ 99B146 $S.\ lentus$ 92.90 $S.\ sciuri$ 100B185 $S.\ lugdenensis$ 72.02 $S.\ haemolyticus$ 99B162 $S.\ lugdenensis$ 74.95 $S.\ hominis\ subsp.\ hominis$ 100B177 $S.\ lugdenensis$ 74.95 $S.\ hominis\ subsp.\ hominis$ 100B182 $S.\ schleiferi\ subsp.\ coagulans$ 81.83 $S.\ capitis\ subsp.\ ureolyticus$ 100B183 $S.\ schleiferi\ subsp.\ coagulans$ 97.73 $S.\ epidermidis$ 98B163 $S.\ schleiferi\ subsp.\ coagulans$ 93.85 $S.\ epidermidis$ 98B27 $S.\ simulans$ 72.19 $S.\ haemolyticus$ 99B163 $S.\ schleiferi\ subsp.\ coagulans$ 72.19 $S.\ haemolyticus$ 99B111 $S.\ xylosus$ 79.92 $S.\ capitis\ subsp.\ ureolyticus$ 100B154 $S.\$	B61	S. hominis subsp. hominis	53.20	S. epidermidis	99			
P26 $S.$ hominis subsp. hominis 97.32 $S.$ saprophyticus subsp. saprophyticus 99 U1 $S.$ hominis subsp. hominis 91.12 $S.$ saprophyticus subsp. saprophyticus 99 $B136$ $S.$ hyicus 52.05 $S.$ cohnii subsp. urealyticum 99 $B193$ $S.$ hyicus 99.98 $S.$ haemolyticus 99 $P12$ $S.$ hyicus 81.86 $S.$ haemolyticus 99 $B11$ $S.$ intermedius 84.27 $S.$ haemolyticus 99 $B146$ $S.$ lentus 92.90 $S.$ sciuri 100 $B185$ $S.$ lugdenensis 92.90 $S.$ sciuri 100 $B162$ $S.$ lugdenensis 98.37 $S.$ hominis subsp. hominis 100 $B177$ $S.$ lugdenensis 74.95 $S.$ hominis subsp. hominis 100 $B177$ $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 $B182$ $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 $B163$ $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 98 $B27$ $S.$ simulans 72.19 $S.$ haemolyticus 99 $B111$ $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 $B154$ $S.$ xylosus 99.94 $S.$ cohnii subsp. urealyticum 99 $R33$ $S.$ xylosus 99.61 $S.$ haemolyticus 100	R15	S. hominis subsp. hominis	53.20	S. epidermidis	100			
U1 $S.$ hominis subsp. hominis 91.12 $S.$ saprophyticus subsp. saprophyticus 99 B136 $S.$ hyicus 52.05 $S.$ cohnii subsp. urealyticum 99 B193 $S.$ hyicus 99.98 $S.$ haemolyticus 99 P12 $S.$ hyicus 81.86 $S.$ haemolyticus 99 B11 $S.$ intermedius 84.27 $S.$ haemolyticus 99 B146 $S.$ lentus 92.90 $S.$ sciuri 100 B185 $S.$ lugdenensis 72.02 $S.$ haemolyticus 99 B162 $S.$ lugdenensis 98.37 $S.$ hominis subsp. hominis 100 B177 $S.$ lugdenensis 74.95 $S.$ hominis subsp. hominis 100 B178 $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 B182 $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 B163 $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 B163 $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 99 B49 $S.$ simulans 72.19 $S.$ haemolyticus 99 B111 $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 B154 $S.$ xylosus 99.94 $S.$ cohnii subsp. ureolyticum 99 R33 $S.$ xylosus 99.61 $S.$ haemolyticus 100	B51	S. hominis subsp. hominis	99.38	S. saprophyticus subsp. saprophyticus	99			
B136 S. hyicus 52.05 S. cohnii subsp. urealyticum 99 B193 S. hyicus 99.98 S. haemolyticus 99 P12 S. hyicus 81.86 S. haemolyticus 99 B11 S. intermedius 84.27 S. haemolyticus 99 B146 S. lentus 92.90 S. sciuri 100 B185 S. lugdenensis 72.02 S. haemolyticus 99 B162 S. lugdenensis 98.37 S. hominis subsp. hominis 100 B177 S. lugdenensis 74.95 S. hominis subsp. hominis 100 B182 S. schleiferi subsp. coagulans 81.83 S. capitis subsp. ureolyticus 100 B182 S. schleiferi subsp. coagulans 97.73 S. epidermidis 99 B163 S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S.	P26	S. hominis subsp. hominis	97.32	S. saprophyticus subsp. saprophyticus	99			
B193 S. hyicus 99.98 S. haemolyticus 99 P12 S. hyicus 81.86 S. haemolyticus 99 B11 S. intermedius 84.27 S. haemolyticus 99 B146 S. lentus 92.90 S. sciuri 100 B185 S. lugdenensis 72.02 S. haemolyticus 99 B162 S. lugdenensis 98.37 S. hominis subsp. hominis 100 B177 S. lugdenensis 74.95 S. hominis subsp. hominis 100 P27 S. schleiferi subsp. coagulans 81.83 S. capitis subsp. ureolyticus 100 B182 S. schleiferi subsp. coagulans 97.73 S. epidermidis 99 B163 S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154 S	U1	S. hominis subsp. hominis	91.12	S. saprophyticus subsp. saprophyticus	99			
P12 $S.$ hyicus 81.86 $S.$ haemolyticus 99 B11 $S.$ intermedius 84.27 $S.$ haemolyticus 99 B146 $S.$ lentus 92.90 $S.$ sciuri 100 B185 $S.$ lugdenensis 72.02 $S.$ haemolyticus 99 B162 $S.$ lugdenensis 98.37 $S.$ hominis subsp. hominis 100 B177 $S.$ lugdenensis 74.95 $S.$ hominis subsp. hominis 100 P27 $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 B182 $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 B163 $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 98 R27 $S.$ simulans 72.19 $S.$ haemolyticus 99 B49 $S.$ simulans 51.46 $S.$ haemolyticus 99 B111 $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 B154 $S.$ xylosus 99.94 $S.$ cohnii subsp. urealyticum 99 R33 $S.$ xylosus 99.61 $S.$ haemolyticus 100	B136	S. hyicus	52.05	S. cohnii subsp. urealyticum	99			
B11S. intermedius 84.27 S. haemolyticus 99 B146S. lentus 92.90 S. sciuri 100 B185S. lugdenensis 72.02 S. haemolyticus 99 B162S. lugdenensis 98.37 S. hominis subsp. hominis 100 B177S. lugdenensis 74.95 S. hominis subsp. hominis 100 P27S. schleiferi subsp. coagulans 81.83 S. capitis subsp. ureolyticus 100 B182S. schleiferi subsp. coagulans 97.73 S. epidermidis 99 B163S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27S. simulans 72.19 S. haemolyticus 99 B49S. simulans 51.46 S. haemolyticus 99 B111S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33S. xylosus 99.61 S. haemolyticus 100	B193	S. hyicus	99.98	S. haemolyticus	99			
B146 $S.$ lentus 92.90 $S.$ sciuri 100 B185 $S.$ lugdenensis 72.02 $S.$ haemolyticus 99 B162 $S.$ lugdenensis 98.37 $S.$ hominis subsp. hominis 100 B177 $S.$ lugdenensis 74.95 $S.$ hominis subsp. hominis 100 P27 $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 B182 $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 B163 $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 98 R27 $S.$ simulans 72.19 $S.$ haemolyticus 99 B49 $S.$ simulans 51.46 $S.$ haemolyticus 99 B111 $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 B154 $S.$ xylosus 99.94 $S.$ cohnii subsp. urealyticum 99 R33 $S.$ xylosus 99.61 $S.$ haemolyticus 100	P12	S. hyicus	81.86	S. haemolyticus	99			
B185 $S.$ lugdenensis 72.02 $S.$ haemolyticus 99 B162 $S.$ lugdenensis 98.37 $S.$ hominis subsp. hominis 100 B177 $S.$ lugdenensis 74.95 $S.$ hominis subsp. hominis 100 P27 $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 B182 $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 B163 $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 98 R27 $S.$ simulans 72.19 $S.$ haemolyticus 99 B49 $S.$ simulans 51.46 $S.$ haemolyticus 99 B111 $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 B154 $S.$ xylosus 99.94 $S.$ cohnii subsp. urealyticum 99 R33 $S.$ xylosus 99.61 $S.$ haemolyticus 100	B11	S. intermedius	84.27	S. haemolyticus	99			
B162 S. lugdenensis 98.37 S. hominis subsp. hominis 100 B177 S. lugdenensis 74.95 S. hominis subsp. hominis 100 P27 S. schleiferi subsp. coagulans 81.83 S. capitis subsp. ureolyticus 100 B182 S. schleiferi subsp. coagulans 97.73 S. epidermidis 99 B163 S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	B146	S. lentus	92.90	S. sciuri	100			
B177 $S.$ lugdenensis 74.95 $S.$ hominis subsp. hominis 100 P27 $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 B182 $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 B163 $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 98 R27 $S.$ simulans 72.19 $S.$ haemolyticus 99 B49 $S.$ simulans 51.46 $S.$ haemolyticus 99 B111 $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 B154 $S.$ xylosus 99.94 $S.$ cohnii subsp. urealyticum 99 R33 $S.$ xylosus 99.61 $S.$ haemolyticus 100	B185	S. lugdenensis	72.02	S. haemolyticus	99			
P27 $S.$ schleiferi subsp. coagulans 81.83 $S.$ capitis subsp. ureolyticus 100 $B182$ $S.$ schleiferi subsp. coagulans 97.73 $S.$ epidermidis 99 $B163$ $S.$ schleiferi subsp. coagulans 93.85 $S.$ epidermidis 98 $R27$ $S.$ simulans 72.19 $S.$ haemolyticus 99 $B49$ $S.$ simulans 51.46 $S.$ haemolyticus 99 $B111$ $S.$ xylosus 79.92 $S.$ capitis subsp. ureolyticus 100 $B154$ $S.$ xylosus 99.94 $S.$ cohnii subsp. urealyticum 99 $R33$ $S.$ xylosus 99.61 $S.$ haemolyticus 100	B162	S. lugdenensis	98.37	S. hominis subsp. hominis	100			
B182 S. schleiferi subsp. coagulans 97.73 S. epidermidis 99 B163 S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	B177	S. lugdenensis	74.95	S. hominis subsp. hominis	100			
B182 S. schleiferi subsp. coagulans 97.73 S. epidermidis 99 B163 S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	P27	S. schleiferi subsp. coagulans	81.83	S. capitis subsp. ureolyticus	100			
B163 S. schleiferi subsp. coagulans 93.85 S. epidermidis 98 R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	B182		97.73		99			
R27 S. simulans 72.19 S. haemolyticus 99 B49 S. simulans 51.46 S. haemolyticus 99 B111 S. xylosus 79.92 S. capitis subsp. ureolyticus 100 B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	B163		93.85		98			
B111S. xylosus79.92S. capitis subsp. ureolyticus100B154S. xylosus99.94S. cohnii subsp. urealyticum99R33S. xylosus99.61S. haemolyticus100	R27	S. simulans	72.19	S. haemolyticus	99			
B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	B49	S. simulans	51.46	S. haemolyticus	99			
B154 S. xylosus 99.94 S. cohnii subsp. urealyticum 99 R33 S. xylosus 99.61 S. haemolyticus 100	B111	S. xylosus	79.92		100			
R33 S. xylosus 99.61 S. haemolyticus 100								
				ž , , ,				
1 0 5. xyiosus 99.20 5. naemolyncus 99	P3	S. xylosus	99.20	S. haemolyticus	99			

Identification of the CoNS subspecies: As the partial *sodA* gene sequence method failed to resolve the CoNS isolates at subspecies level, their final identification had to rely on biochemical characteristics. *Staphylococcus capitis* subsp. *ureolyticus* can be differentiated from subsp. *Capitis* by three biochemical tests (Bannerman and Kloos, 1991) which were the presence of urease and the production of acid from sucrose and mannitol (variable for subsp. *Capitis*). The results for these tests were then extracted from the Microgen Staph ID test as they were included as part of the biochemical tests of the kit. Isolates with positive results were thus confirmed as *S. capitis* subsp. *ureolyticus*.

The partial sodA sequencing method also failed to discriminate between the subspecies of S. hominis with only 1% difference in the sequences by three nucleotide changes. However, biochemically, S. hominis subsp. novobiosepticus can be differentiated from subsp. hominis by the lack of arginine dehydrogenase activity and failure to produce acid aerobically from trehalose and N-acteylglucosamine (Kloos $et\ al.$, 1998). $Staphylococcus\ cohnii\ subsp.\ cohnii\ can be\ differentiated$

from subsp. *urealyticum* by the lack of urease and b-glucuronidase activities which are positive for subsp. *urealyticum*. In addition, *S. cohnii* subsp. *cohnii* failed to produce acid from N-acetylglucosamine, another trait that is positive for subsp. *Urealyticum* (Kloos and Wolfshohl, 1991).

Similarly, *S. saprophyticus* subsp. *novis* can be phenotypically distinguished from *S. saprophyticus* subsp. *saprophyticus* on the basis of nitrate reduction and the ability to produce PYR (Hajek *et al.*, 1996) which were part of the tests included in the Microgen Staph ID kit. All three clinical isolates of *S. saprophyticus* were unable to reduce nitrate and did not produced PYR. Thus, they were identified as *S. saprophyticus* subsp. *saprophyticus*. However, the phenotypic characteristics to distinguish between the three subspecies of *S. sciuri* are tedious with a number of variables as outlined by Kloos and friends (Kloos *et al.*, 1997). Hence, other methods have been used to differentiate these subspecies which include ribotyping delineation and DNA-DNA liquid hybridization.

DISCUSSION

The use of sodA gene as a nucleic acid targets provides an alternative technique for the accurate identification and classification of Staphylococcus species. Unfortunately, one perfect identification system for Staphylococcus does not exist. Like other conserved gene used in staphylococcal identification, sodA gene sequence does have some drawbacks as it fails to discriminate some of the closely related bacteria. This was shown in the present study where the sequence failed to differentiate some Staphylococcus isolates at their subspecies level. As such, the identity of these isolates was confirmed via selective biochemical tests instead.

Alternatively, other nucleotide targets can be used instead. For example, dnaJ gene sequence displayed a similarity of 90.9% between S. condimenti and S. carnosus as compared to 97% similarity observed in the present study. At subspecies level, with 7% divergence, dnaJ (Shah $et\ al.$, 2007) and hsp60 (Kwok $et\ al.$, 1999) gene sequences can be used to discriminate S. cohnii subsp. cohnii from S. cohnii subsp. urealyticus as compared to only 4% divergence using sodA gene as observed in this study. Similarly, hsp60 gene (Kwok $et\ al.$, 1999) showed 9% sequence divergence between S. capitis subsp. capitis subsp. ureolyticus.

Accurate identification of staphylococcal isolates is crucial for the correct management of staphylococcal infections. The emergence of clinically significant CoNS and the expanding number of staphylococcal species and subspecies due to new discoveries have led to the need of a more reliable and reproducible method for accurate identification of this species. In addition, the identification of CoNS species is essential to establish epidemiological trends, to determine the cause of specific infections and analysis of treatment failures (De Paulis *et al.*, 2003). Microgen Staph ID appears to be inadequate for the identification of uncommon CoNS species, although it could identify the major clinical species. In contrast, with homology values of at least 98%, the genotypic PCR-amplicon sequencing based technique via the *sodA* gene proved to be a more reliable, easy and valuable approach to identify the various species of CoNS. However, in some closely related isolates staphylococcal identification via *sodA* alone is insufficient and further tests are essential to allow discrimination at subspecies level and confirmed the identity of the isolates.

The genotypic method was found to be more reliable than the phenotypic method for the identification of CoNS. Microgen Staph ID kit correctly identified all of the *S. capitis* subsp. *capitis* isolates and also a majority of both *S. haemolyticus* and *S. epidermidis* isolates. However, the kit appears to be unreliable for the remaining isolates. Only 40% of the *S. hominis* subsp. *hominis*

isolates were correctly identified. The same kit was unable to identify *S. capitis* subsp. *Ureolyticus*, *S. hominis* subsp. *novobiosepticus*, *S. saprophyticus*, *S. sciuri* and *S. cohnii* subsp. *cohnii* although, these species were included in their database. For other species identified in this study such as *S. cohnii* subsp. *urealyticum*, *S. lugdenensis* and *S. warneri*, the number of the isolates belonging to these species was too limited to be conclusive. In addition, the BLAST results of the *sodA* gene showed that none of the clinical isolates were *S. chromogenes*, *S. hyicus*, *S. intermedius*, *S. lentus*, *S. schleiferi* subsp. *coagulans*, *S. simulans* or *S. xylosus* species as indicated by the Microgen software. Without performing a third test for validation, it is difficult to claim that the gene sequence method is more reliable. However, circumstantial observation i.e., the fact that some of the less common species as identified by the Microgen kit are very rarely isolated from clinical samples support this.

Similar findings have also been reported on the superiority of genotypic over phenotypic identification of CoNS. In 2004, a study was conducted to compare the identification of 168 CoNS isolates using both the sodA sequencing method and ID32 STAPH, a commercial system based on biochemical reactions. The ID32 STAPH failed to identify almost 40% of the isolates and the system was also found to be reliable only for S. epidermidis isolates. As such, the final identification had to rely on the sodA gene sequence analysis (Sivadon $et\ al.$, 2004). In another study, phenotypic identification was performed on 47 clinical isolates of CoNS using two systems, the API Staph ID test and BD Phoenix Automated Microbiology system. Although the API Staph ID test was more reliable than the BD Phoenix Automated Microbiology system, the genotypic means via 16S rRNA, tuf and sodA gene sequencing method was found to be a more superior identification method for CoNS isolates (Heikens $et\ al.$, 2005). Similarly, the 5' end of the 16S rDNA of 81 type and reference strains of staphylococcal were sequenced and the results revealed four ambiguities as compared to 13 (23.6%) and 19 (34.5%) isolates misidentified by ID 32 Staph and VITEK 2 (Becker $et\ al.$, 2004).

While the conventional identification schemes based on physiological and biochemical tests are relatively time-consuming and unreliable, the commercial "rapid" identification systems share the problems of failure not only to identify commonly encountered bacteria but also in identifying uncommon isolates. A closer examination on the Staph ID identification matrix showed that the biochemical data was only generated from a limited number of individual isolates, especially in uncommon species thus bringing its reliability into question. The lack of adequate reference strains in the accompanying databases has also been reported in other commercial systems (Renneberg et al., 1995; Spanu et al., 2003) hence providing ambiguous results or presenting two or more suggestions for identification with a comparable safety level. It is disturbing to know that even at a high percentage of probability of more than 99%, there is no guarantee of a correct identification of the CoNS isolates by Microgen Staph ID. This poor performance of the system could be due to the fact that phenotypic differences were established on only 13 biochemical substrates plus two preliminary tests which were insufficient to generate enough conclusive data for discrimination as there are more than 40 types of CoNS species and subspecies available. In addition, the system claimed to be able to identify 26 species and subspecies of Staphylococcus. However, there are more than 50 species and subspecies of Staphylococcus that has been documented, implying that the system would not be able to identify at least half of the Staphylococcus species. Moreover, because Microgen Staph ID is not an automated system, readings were recorded manually which was based on the colour development of the fermentation of the substrates. Hence, there were occasional problems in deciding whether some tests were weakly positive or negative which may contribute to the inaccuracy of the results.

REFERENCES

- Bannerman, T.L. and W.E. Kloos, 1991. *Staphylococcus capitis* subsp. *ureolyticus* subsp. nov. from human skin. Int. J. Syst. Bacteriol., 41: 144-147.
- Becker, K., C. Heilmann and G. Peters, 2014. Coagulase-negative staphylococci. Clin. Microbiol. Rev., 27: 870-926.
- Becker, K., D. Harmsen, A. Mellmann, C. Meier, P. Schumann, G. Peters and C. von Eiff, 2004. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of *Staphylococcus* species. J. Clin. Microbiol., 42: 4988-4995.
- Bergeron, M., O. Dauwalder, M. Gouy, A.M. Freydiere and M. Bes *et al.*, 2011. Species identification of staphylococci by amplification and sequencing of the *tuf* gene compared to the *gap* gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur. J. Clin. Microbiol. Infect. Dis., 30: 343-354.
- Bes, M., J. Freney, J. Etienne and V. Guerin-Faublee, 2002. Isolation of *Staphylococcus schleiferi* subspecies *coagulans* from two cases of canine pyoderma. Vet. Rec., 150: 487-488.
- Casanova, C., L. Iselin, N. von Steiger, S. Droz and P. Sendi, 2011. *Staphylococcus hyicus* bacteremia in a farmer. J. Clin. Microbiol., 49: 4377-4378.
- Chaudhury, A. and A.G. Kumar, 2007. *In vitro* activity of antimicrobial agents against oxacillin resistant staphylococci with special reference to *Staphylococcus haemolyticus*. Indian J. Med. Microbiol., 25: 50-52.
- De Allori, M.C.G., M.A. Jure, C. Romero and M.E.C. de Castillo, 2006. Antimicrobial resistance and production of biofilms in clinical isolates of coagulase-negative *Staphylococcus* strains. Biol. Pharmaceut. Bull., 29: 1592-1596.
- De Paulis, A.N., S.C. Predari, C.D. Chazarreta and J.E. Santoianni, 2003. Five-test simple scheme for species-level identification of clinically significant coagulase-negative staphylococci. J. Clin. Microbiol., 41: 1219-1224.
- Delmas, J., J.P. Chacornac, F. Robin, P. Giammarinaro, R. Talon and R. Bonnet, 2008. Evaluation of the Vitek 2 system with a variety of *Staphylococcus* species. J. Clin. Microbiol., 46: 311-313.
- Drancourt, M. and D. Raoult, 2002. *RpoB* gene sequence-based identification of *Staphylococcus* species. J. Clin. Microbiol., 40: 1333-1338.
- Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783-791.
- Fudaba, Y., K. Nishifuji, L.O. Andresen, T. Yamaguchi, H. Komatsuzawa, M. Amagai and M. Sugai, 2005. *Staphylococcus hyicus* exfoliative toxins selectively digest porcine desmoglein 1. Microbial Pathogen., 39: 171-176.
- Gatermann, S.G., T. Koschinski and S. Friedrich, 2007. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin. Microbiol. Infect., 13: 777-781.
- Ghebremedhin, B., F. Layer, W. Konig and B. Konig, 2008. Genetic classification and distinguishing of *Staphylococcus* species based on different partial *gap*, 16S rRNA, *hsp60*, *rpoB*, *sodA* and *tuf* gene sequences. J. Clin. Microbiol., 46: 1019-1025.
- Goh, S.H., S. Potter, J.O. Wood, S.M. Hemmingsen, R.P. Reynolds and A.W. Chow, 1996. HSP60 gene sequences as universal targets for microbial species identification: Studies with coagulase-negative staphylococci. J. Clin. Microbiol., 34: 818-823.
- Gribaldo, S., B. Cookson, N. Saunders, R. Marples and J. Stanley, 1997. Rapid identification by specific PCR of coagulase-negative staphylococcal species important in hospital infection. J. Med. Microbiol., 46: 45-53.

- Hajek, V., H. Meugnier, M. Bes, Y. Brun and F. Fiedler *et al.*, 1996. *Staphylococcus saprophyticus* subsp. *bovis* subsp. nov., isolated from bovine nostrils. Int. J. Syst. Bacteriol., 46: 792-796.
- Hall, T.A., 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acid Symp. Ser., 41: 95-98.
- Heikens, E., A. Fleer, A. Paauw, A. Florijn and A.C. Fluit, 2005. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J. Clin. Microbiol., 43: 2286-2290.
- Kim, M., S.R. Heo, S.H. Choi, H. Kwon and J.S. Park *et al.*, 2008. Comparison of the MicroScan, VITEK 2 and Crystal GP with 16S rRNA sequencing and MicroSeq 500 v2. 0 analysis for coagulase-negative staphylococci. BMC Microbiol., Vol. 8. 10.1186/1471-2180-8-233
- Kloos, W.E. and J.F. Wolfshohl, 1991. Staphylococcus cohnii subspecies: Staphylococcus cohnii subsp. cohnii subsp. nov. and Staphylococcus cohnii subsp. urealyticum subsp. nov. Int. J. Syst. Bacteriol., 41: 284-289.
- Kloos, W.E., D.N. Ballard, J.A. Webster, R.J. Hubner and A. Tomasz *et al.*, 1997. Ribotype delineation and description of *Staphylococcus sciuri* subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int. J. Syst. Bacteriol., 47: 313-323.
- Kloos, W.E., D.N. Ballard, C.G. George, J.A. Webster and R.J. Hubner *et al.*, 1998. Delimiting the genus *Staphylococcus* through description of *Macrococcus caseolyticus* gen. nov., comb. nov. and *Macrococcus equipercicus* sp. nov., *Macrococcus bovicus* sp. nov. and *Macrococcus carouselicus* sp. nov. Int. J. Syst. Bacteriol., 48: 859-877.
- Koksal, F., H. Yasar and M. Samasti, 2009. Antibiotic resistance patterns of coagulase-negative staphylococcus strains isolated from blood cultures of septicemic patients in Turkey. Microbiol. Res., 164: 404-410.
- Kumar, S., K. Tamura and M. Nei, 2004. MEGA₃: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform., 5: 150-163.
- Kwok, A.Y., S.C. Su, R.P. Reynolds, S.J. Bay, Y. Av-Gay, N.J. Dovichi and A.W. Chow, 1999. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus *Staphylococcus*. Int. J. Syst. Bacteriol., 49: 1181-1192.
- Kwok, A.Y.C. and A.W. Chow, 2003. Phylogenetic study of Staphylococcus and Macrococcus species based on partial hsp60 gene sequences. Int. J. Syst. Evol. Microbiol., 53: 87-92.
- Martineau, F., F.J. Picard, P.H. Roy, M. Ouellette and M.G. Bergeron, 1998. Species-specific and ubiquitous-DNA based assays for rapid identification of *Staphylococcus aureus*. J. Clin. Microbiol., 36: 618-623.
- Mellmann, A., K. Becker, C. von Eiff, U. Keckevoet, P. Schumann and D. Harmsen, 2006. Sequencing and staphylococci identification. Emerg. Infect. Dis., 12: 333-336.
- Piette, A. and G. Verschraegen, 2009. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol., 134: 45-54.
- Poyart, C., G. Quesne, C. Boumaila and P. Trieu-Cuot, 2001. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the *sodA* gene as a target. J. Clin. Microbiol., 39: 4296-4301.
- Rasigade, J.P., O. Raulin, J.C. Picaud, C. Tellini and M. Bes *et al.*, 2012. Methicillin-resistant *Staphylococcus capitis* with reduced vancomycin susceptibility causes late-onset sepsis in intensive care neonates. PLoS One, Vol. 7. 10.1371/journal.pone.0031548
- Renneberg, J., K. Rieneck and E. Gutschik, 1995. Evaluation of Staph ID 32 system and Staph-Zym system for identification of coagulase-negative staphylococci. J. Clin. Microbiol., 33: 1150-1153.

- Saitou, N. and M. Nei, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
- Shah, M.M., H. Iihara, M. Noda, S.X. Song and P.H. Nhung *et al.*, 2007. *dnaJ* gene sequence-based assay for species identification and phylogenetic grouping in the genus *Staphylococcus*. Int. J. Syst. Evol. Microbiol., 57: 25-30.
- Sivadon, V., M. Rottman, J.C. Quincampoix, V. Avettand and S. Chaverot *et al.*, 2004. Use of *sodA* sequencing for the identification of clinical isolates of coagulase negative staphylococci. Clin. Microbiol. Infect., 10: 939-942.
- Sivadon, V., M. Rottman, S. Chaverot, J.C. Quincampoix and V. Avettand *et al.*, 2005. Use of genotypic identification by *sodA* sequencing in a prospective study to examine the distribution of coagulase-negative *Staphylococcus* species among strains recovered during septic orthopedic surgery and evaluate their significance. J. Clin. Microbiol., 43: 2952-2954.
- Spanu, T., M. Sanguinetti, D. Ciccaglione, T. DInzeo, L. Romano, F. Leone and G. Fadda, 2003. Use of the VITEK 2 system for rapid identification of clinical isolates of Staphylococci from bloodstream infections. J. Clin. Microbiol., 41: 4259-4263.
- Stoakes, L., M.A. John, R. Lannigan, B.C. Schieven, M. Ramos, D. Harley and Z. Hussain, 1994. Gas-liquid chromatography of cellular fatty acids for identification of staphylococci. J. Clin. Microbiol., 32: 1908-1910.
- Stoll, B.J., N. Hansen, A.A. Fanaroff, L.L. Wright and W.A. Carlo *et al.*, 2002. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics, 110: 285-291.
- Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
- Tong, S.Y.C., F. Schaumburg, M.J. Ellington, J. Corander and B. Pichon *et al.*, 2015. Novel staphylococcal species that form part of a *Staphylococcus aureus*-related complex: The non-pigmented *Staphylococcus argenteus* sp. nov. and the non-human primate-associated *Staphylococcus schweitzeri* sp. nov. Int. J. Syst. Evol. Microbiol., 65: 15-22.
- Vergnano, S., E. Menson, N. Kennea, N. Embleton and A.B. Russell *et al.*, 2011. Neonatal infections in England: The NeonIN surveillance network. Arch. Dis. Childhood-Fetal Neonatal Edn., 96: F9-F14.