

Current Research in Bacteriology

ISSN 1994-5426

Current Research in Bacteriology

ISSN 1994-5426 DOI: 10.3923/crb.2016.9.16

Research Article

Prevalence of Carbapenem Resistant Gram Negative Bacilli Harboring bla_{NDM-1} Gene Isolated in a Tertiary Care Hospital

^{1,2}Manisa Sahu, ⁴Priyadharshini Sekar, ³Revathy Ramalingam, ¹Pallavi Bhalekar, ³E. Suguna, ⁴Gnana Soundari Palani, ⁴Padma Krishnan and ⁵Godfred A. Menezes

Abstract

Background: Increase in antimicrobial resistance is of major concern worldwide. This is largely attributed to broad spectrum β -lactamase production. New Delhi Metallo β-lactamase-1 (NDM-1) is a recently identified type of metallo-β-lactamase which has been increasingly viewed as a potential threat to global health. **Objective:** The aim of this study was to perform molecular detection of bla_{NDM-1} gene to determine its occurrence among clinical isolates of Gram negative bacteria. **Methodology:** A total of 178 Gram negative bacilli isolated from different clinical samples including urine, tissue, sputum, blood, pus, endotracheal secretion (ET secretion), stool, pleural fluid, cup tip, Peripherally Inserted Central Catheter (PICC) tip, drain tube and bile were included in the study. The isolates were identified by Vitek 2 GN cards and antibiotic susceptibility testing was performed by using Vitek 2 AST-N280 and AST-N281 cards (bioMe'rieux, SA, France), as per manufacturer's instructions. The isolates were stocked and used for further study. PCR to detect the presence of bla_{NDM-1} gene was performed with all the isolates. The ERIC-PCR was performed with 17 bla_{NDM-1} positive representative isolates. Of the 178 isolates, a remarkably high incidence of 29.8% bla_{NDM-1} gene was found. Of the 53 bla_{NDM-1} positive cases, 17 representative isolates were studied for clonal relatedness by ERIC-PCR. Results: It was found that Klebsiella pneumoniae and Acinetobacter baumannii had 2 and 1 clonally related clusters, respectively. Pseudomonas aeruginosa and Escherichia coli were clonally divergent. We suggest that the genotypic detection of NDM-1 along with routine antimicrobial susceptibility test should be performed in all health centers worldwide. The blandering gene has "An alarming potential" to spread and diversify among bacterial populations. **Conclusion:** Hence early identification of cases of NDM-related infections and prevention of their spread by implementing screening, hygiene measures and the isolation of carriers is required.

Key words: New Delhi metallo β-lactamase-1, bla_{NDM-1} gene, carbapenem resistant, Gram-negative isolates

Received: March 17, 2016 Accepted: May 09, 2016 Published: June 15, 2016

Citation: Manisa Sahu, Priyadharshini Sekar, Revathy Ramalingam, Pallavi Bhalekar, E. Suguna, Gnana Soundari Palani, Padma Krishnan and Godfred A. Menezes, 2016. Prevalence of carbapenem resistant gram negative bacilli harboring *bla*_{NDM-1} gene isolated in a tertiary care hospital. Curr. Res. Bacteriol., 9: 9-16.

Corresponding Author: Godfred A. Menezes, College of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Molecular Diagnostics and Personalized Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia Tel: +966 507091946

Copyright: © 2016 Manisa Sahu *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Microbiology, S.L. Raheja Hospital, Mahim (W), 400016 Mumbai, Maharastra, India

²Department of Clinical Microbiology, Tata Medical Centre, Kolkata, India

³Department of Physiology/Central Research Laboratory (CRL), Sree Balaji Medical College and Hospital, 600 044 Chennai, India

⁴Department of Microbiology, Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus, 600113 Chennai, India

⁵College of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Molecular Diagnostics and Personalized Therapeutics Unit (MDPTU), Ha'il University, Ha'il, Kingdom of Saudi Arabia

INTRODUCTION

Increase in antimicrobial resistance during the past decade in Enterobacteriaceae has become a major concern worldwide. This is largely attributed to broad spectrum β-lactamase production (Menezes and Menezes, 2013). Further, the emergence and global spread of carbapenem-resistant Enterobacteriaceae (CRE) is of great distress (Zou et al., 2015). Among the metallo β-lactamase's (MBLs), Verona integron-encoded metallo-β-lactamase (VIM), imipenemase (IMP) and New Delhi metallo-β-lactamase (NDM) are the most prevalent types. The bla_{NDM-1} was originally identified in Klebsiella pneumoniae and Escherichia coli in 2008 in Sweden from a traveller returning from India (Yong et al., 2009). The bla_{NDM-1} encodes a broad-spectrum β-lactamase that inactivates all β-lactams except aztreonam (Shenoy et al., 2014). The gene bla_{NDM-1} is mainly located on a plasmid and hence can transcend the genus/family barrier with ease and spread across the world (Menezes and Menezes, 2013). Currently, there are 16 variants of *bla*_{NDM}.

Appropriate and rapid detection of NDM-1 producers is critical in implementing infection control measures. To better control NDM-1 producers, it is essential to understand the mediating mechanisms and their molecular epidemiology. In this study, we performed the molecular detection of $bla_{\text{NDM-1}}$ gene among carbapenem resistant Gram negative clinical isolates cultured from clinical samples in a hospital in Mumbai, India. The ERIC-PCR was performed to study the clonal relatedness of $bla_{\text{NDM-1}}$ gene positive carbapenem resistant Gram Negative Bacilli (GNB).

MATERIALS AND METHODS

Place of study and study period: The study isolates were from S.L. Raheja Hospital, Mumbai, India cultured during March, 2013 to May, 2014.

Patient population: Both males and females attending OP and IP across all age groups were included in the study.

Samples: Bacterial isolates were obtained from urine, tissue, sputum, blood, pus, endotracheal secretion (ET secretion), stool, pleural fluid, cup tip, Peripherally Inserted Central Catheter (PICC) tip, drain tube and bile.

Clinical bacterial strains: A total of 178 GNB isolates resistant to carbapenem were included in the study.

Control strains: *Escherichia coli* ATCC 25922, *Klebsiella pneumoniae* BA 2146 were used as controls where required.

Bacterial isolation, identification and antibiotic sensitivity testing: The isolates were identified by Vitek 2 GN cards and antibiotic susceptibility testing was performed by using Vitek 2 AST-N280 and AST-N281 cards (bioMe'rieux, SA, France), as per manufacturer's instructions. The isolates were stocked and used for further study. Tigecycline MIC breakpoints were as per European Committee on Antimicrobial Susceptibility Testing (EUCAST., 2011) clinical breakpoints. The MIC breakpoints for other antimicrobial agents were interpreted as per Clinical and Laboratory Standards Institute (CLSI., 2013) guideline. The cefoperazone MIC breakpoint used for cefoperazone/sulbactam was as described by Tunyapanit *et al.* (2014).

DNA extraction: For DNA extraction, a single bacterial colony from an overnight grown culture was suspended in $100 \, \mu L$ of sterile MilliQ water and boiled for 5 min. The suspension was centrifuged at 8,000 rpm for 10 min. The supernatant containing bacterial DNA was used as template for PCR (Harish and Menezes, 2015).

PCR amplification for the detection of bland gene: PCR amplification of bla_{NDM-1} gene was carried out by using primers as described in an earlier study (Nordmann et al., 2011). The primers used were NDM-Fm5'-GGTTTGGCGATCTGGTTTTC-3' and NDM-Rm5'-CGGAATGGCTCATCACGATC-3', which amplified a 621 bp internal fragment of the *bla*_{NDM-1} gene. The DNA from known *bla*_{NDM-1} positive and negative isolates were used as controls. The PCR was performed in a final reaction volume of 25 µL, containing 10 pmol each of forward and reverse primers, 2 µL of template DNA, 0.5 µL of 25 mM dNTPs, 2.5 µL of 10X amplification buffer, 0.5 U of Tag DNA polymerase. The PCR program consisted of following thermal cycling conditions: Initial denaturation step at 94°C for 10 min, followed by 36 cycles of 94°C for 30, 52°C for 40 and 72°C for 50 sec, followed by a final elongation at 72°C for 5 min. The application was performed using eppendorf thermocycler. The PCR products were run on 2% agarose (HI Media, Mumbai, India) gel, containing 1X tris-borate-EDTA (TBE) buffer and detected by ethidium bromide (Sigma) at 100 V for 30 min. The amplified PCR products were documented using Alpha Gel Imager (Alpha Innotech, USA) and the PCR band of 621 bp was

visualized (Fig. 1).

Table 1: Distribution of occurrence of *bla*_{NDM-1} gene among clinical samples/isolates

	Isolates Positive for bla_{NDM-1} gene n = 35										
Clinical samples	Acinetobacter baumannii	Pseudomonas aeruginosa	Escherichia coli	Klebsiella pneumoniae	Citrobacter freundii	Alcaligenes faecalis					
Blood (1)	1	-	-		-	-					
Tissue (11)	5	4	1	1	-	-					
Urine (19)	2	2	7	7	1	-					
Sputum(9)	2	0	2	5	-	-					
Pus (2)	-	-	1	1	-	-					
ET secretion (6)	3	-	-	3	-	-					
Pleural fluid (2)	-	1	-	-	-	1					
Drain fluid (1)	-	-	-	1	-	-					
Cup tip (1)	-	-	-	1	-	-					
PICC tip (1)	-	-	1	-	-	-					
Total (53)	13	7	12	19	1	1					

ET: Endotracheal secretion, PICC: Peripherally inserted central catheter

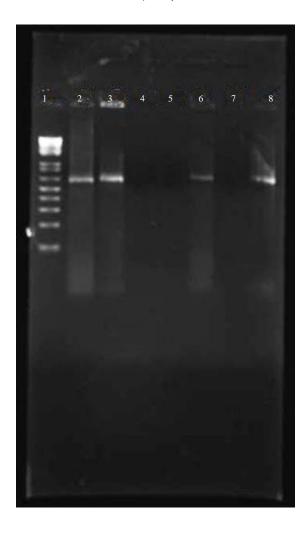


Fig. 1: Electrophoresis gel image demonstrating *bla*_{NDM-1} gene, Lane 1: Molecular mass marker (100 bp DNA ladder), Lane 2: Positive control, Lane 4: Negative control, Lane 3, 6 and 8: Test sample-positive (621 bp PCR product), Lane 5 and 7: Test sample-negative

Repetitive Enterobacterial Intergenic Concensus-Polymerase Chain Reaction (ERIC-PCR): The ERIC-PCR was performed as described by Dalla-Costa et al. (1998). Primers that were used are ERICIR, 5'ATGTAAGCTCCTGGGG-ATTCAC3' and ERIC2, S'AAGTAAGTGACTGGGGT-GAGCG3'. The PCR was performed in a final reaction volume of 25 µL, containing 10 pmol each of forward and reverse primers, 2 µL of template DNA, 0.5 µL of 25 mM dNTPs, 2.5 µL of 10X amplification buffer, 2.5 U of *Tag* DNA polymerase. The PCR program consisted of following thermal cycling conditions: Initial denaturation step at 95°C for 5 min, followed by 35 cycles of 92°C for 45 sec, 52°C for 1 min and 70°C for 10 min, followed by a final elongation at 70°C for 20 min. The application was performed using eppendorf thermocycler. The PCR products were run on 2% agarose (HI Media, Mumbai, India) gel, containing 1X tris-borate-EDTA (TBE) buffer and detected by ethidium bromide (Sigma) at 50 V for 1 h. The amplified PCR products were documented using Alpha Gel Imager (Alpha Innotech, USA).

RESULTS

Bacterial isolation and identification: During the 15 months study period, a total of 178 Gram negative isolates resistant to carbapenem were cultured. The isolates comprised of *Klebsiella pneumoniae* (86), *Pseudomonas aeruginosa* (33), *Acinetobacter baumannii* (24), *Escherichia coli* (22), *Enterobacter aerogenes* (3), *Enterobacter cloacae* (3), *Citrobacter freundii* (2), *Citrobacter Koseri* (1), *Alcaligenes faecalis* (1) and *Morganella morgani* (1).

Antibiotic sensitivity testing and PCR for *bla*_{NDM-1} gene: Of the 178 carbapenem resistant isolates, 53 (29.8%) were found to be positive for the *bla*_{NDM-1} gene (Table 1) by PCR. The 53 *bla*_{NDM-1} positive isolates included, *Acinetobacter*

Curr. Res. Bacteriol., 9 (1): 9-16, 2016

Table 2: Demographic details of the subjects and antibiogram of the isolates positive for NDM-1 (n = 53)

Table 2: L	Jemograp	nic details of the subje	cts and antibiogram of the is	olates positive for NDIV	1-1 (n = :	Antibiotic sensitivity						
Sample	Age/sex	History	Pathogen	Empiric therapy	PTO	CL	 Tg	Cefo/sul	 I	Mem	PT	NDM-1
Blood	44/M	Febrile neturopenia	Acinetobacter baumannii	Cef/taz	Alive	S≤0.5	S≤0.5	R≥64	R≥16	R≥16	R≥128	Positive
Tissue	69/M	DFI	Pseudomonas aeruginosa	Pip/taz	Alive	S≤0.5	ND	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Sputum	67/M	DM/HTN/CKD	Escherichia coli	Pip/taz	Dead	$S\!\leq\!0.5$	$S\!\leq\!0.5$	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Pus	66/F	Breathlessness	Klebsiella pneumoniae	Mero, linezolid	Dead	$S\!\leq\!0.5$	ND	R≥64	ND	R≥16	$R\!\ge\!128$	Positive
Tissue	73/M	DM/HTN/Fever	Pseudomonas aeruginosa	Cefo/sul	Alive	$S\!\leq\!0.5$	ND	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Cup tip	67/M	Lung cancer	Klebsiella pneumoniae	Mero, teico, colistin	Dead	$S\!\leq\!0.5$	ND	R≥64	$R \ge 16$	R≥16	$R\!\ge\!128$	Positive
Urine	67/M	Fever with chills	Klebsiella pneumoniae	Azithro, ceftriaxone	Alive	$S\!\leq\!0.5$	ND	R≥64	$R\!\ge\!16$	R≥16	$R\!\ge\!128$	Positive
Urine	59/M	UTI	Acinetobacter baumannii	Mero, teico, amik	Alive	$S \le 0.5$	$S \le 0.5$	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Urine	86/F	Increase WBC count	Escherichia coli	Cefp	Alive	$S \le 0.5$	$S \le 0.5$	R≥64	ND	R (8)	$R\!\ge\!128$	Positive
Tissue	65/M	Necrotising fascitis	Acinetobacter baumannii	Clindamycin, Pip/taz	Alive	S≤0.5	S≤0.5	R≥64	R≥16	R≥16	R≥128	Positive
ET	59/F	DM/HTN/	Acinetobacter baumannii	Pip/taz	Alive	S≤0.5	S≤0.5	R≥64	R≥16	R≥16	R≥128	Positive
secretion		Hypothyroidism										
Tissue	69/M	DFI	Acinetobacter baumannii	Teico, mero	Alive	S≤0.5	S≤0.5	R≥64	R≥16		R≥128	Positive
Tissue	57/M	AKA	Acinetobacter baumannii	lmip	Alive	S≤0.5	ND	S≤8	R≥16	R≥16	R≥128	Positive
Tissue	76/M	DFI/amputation	Acinetobacter baumannii	Mero	Alive	S≤0.5	S≤0.5	S≤8	R≥16	R≥16	R≥128	Positive
Urine	61/M	DFI	Escherichia coli	Cefo/sul	Alive	S≤0.5	S≤0.5	R≥64	R≥16	R≥16	R≥128	Positive
Urine	85/M	UTI	Citrobacter freundii	Cefo/sul	Alive	S≤0.5	S≤0.5	R≥64	R≥16		R≥128	Positive
Tissue	67/M	DFI	Pseudomonas aeruginosa	Cefo/sul	Alive	S (1)	R	R≥64	R≥16	R≥16	R≥128	Positive
Urine	64/M	DM/HTN/IHD	Pseudomonas aeruginosa	Cefo/sul	Alive	S≤0.5	ND	R≥64	R≥16	R≥16	R≥128	Positive
Urine	85/F	Fever/UTI	Acinetobacter baumannii	Nil	Alive	S≤0.5	ND	S≤8	R≥16	R≥16	R≥128	Positive
Urine	47/M	BMC	Klebsiella pneumoniae	Cefo/sul	Alive	S≤0.5	ND C O F	R≥64	R≥16		R≥128	Positive
Urine	75/F	DM/Fever	Escherichia coli	Cefo/sul	Alive	ND	S≤0.5	R≥64	R (8)	R≥16	R≥128	Positive
Urine	53/F	DM/HTN/CKD	Klebsiella pneumoniae	Cefo/sul	Dead	R	ND	R≥64	R≥16	R≥16	R≥128	Positive
Sputum	62/M 78/M	Appendix with PRES	Acinetobacter baumannii	Cefo/sul	Alive	S≤0.5	S≤1 ND	R≥64	R≥16	R≥16	R≥128	Positive
Urine	76/W 27 d/M	Fever NRDS	Escherichia coli	Pip/taz, ofloxacin	Alive	S≤0.5 S≤0.5	ND S≤0.5	R≥64	R≥16		R≥128	Positive Positive
Picc tip	27 a/m 72/M		Escherichia coli	Pip/taz Cefo/sul	Dead Dead	3≤0.5 S≤0.5	3≤0.5 1 [4]	R≥64 R≥64	R (8) R≥16	R≥16 R≥16	R≥128 R≥128	Positive
Sputum Tissue	72/M 52/M	Dry cough, MDS Fever/Foot	Klebsiella pneumoniae Acinetobacter baumannii	Cefp	Alive	3≤0.5 S≤0.5	1 [4] S≤0.5	R≥64	r≥10 1(8)	R≥16	R≥128	Positive
		amputation		·								
Urine	83/M	UTI -	Klebsiella pneumoniae	Cefo/sul	Alive	S≤0.5	R	R≥64	R≥16	R≥16	R≥128	Positive
Sputum	53/M	Fever	Acinetobacter baumannii	Cefo/sul, ciplox, mero	Dead	S≤0.5	S [1]	R≥64	R≥16	R≥16	R≥128	Positive
Sputum	64/m	Cough	Klebsiella pneumoniae	Cefp	Alive	S≤0.5	R	R≥64	R≥16		R≥128	Positive
Urine	70/F	Chronic UTI	Escherichia coli	Cefo/sul	Alive	S≤0.5	S≤0.5	R≥64	R≥16		R≥128	Positive
Pus	75/F	Abdominal resection	Escherichia coli	Cefotaxime	Alive	S≤0.5	S≤0.5	R≥64	S≤0.25	S≤0.25	R≥128	Positive
Urine	62/M	Fever with chills	Escherichia coli	Cefo/sul	Alive	$S\!\leq\!0.5$	R	R≥64	$R \ge 8$	R≥16	$R\!\ge\!128$	Positive
ET	52/F	Acute febrile illness	Klebsiella pneumoniae	Cefotaxime	Alive	$S\!\leq\!0.5$	R	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
secretion	1											
ET	46/M	Encephalitis	Klebsiella pneumoniae	Colistin, mero	Alive	S≤0.5	R	R≥64	R≥16	R≥16	R≥128	Positive
secretion												
Sputum	40/M	Pancreatitis, septicemia	Klebsiella pneumoniae	Meropenem	Alive	S≤0.5	S [1]	R≥64	R≥16	R≥16	R≥128	Positive
Drain flui	d 61/M	CA gall bladder	Klebsiella pneumoniae	Nil	Alive	$S\!\leq\!0.5$	ND	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Urine	73/M	Urinary frequency	Pseudomonas aeruginosa	Cefo/sul	Alive	$S\!\leq\!0.5$	S [1]	R≥64	$R\!\ge\!16$	R≥16	$R\!\ge\!128$	Positive
Tissue	76/M	DM, PVD SORES	Klebsiella pneumoniae	Cefo/sul	Alive	$S\!\leq\!0.5$	ND	R≥64	$R\!\ge\!16$	R≥16	$R\!\ge\!128$	Positive
Tissue	68/M	DM	Pseudomonas aeruginosa	Cefo/sul, Iz	Alive	$S\!\leq\!0.5$	R	R≥64	$R\!\ge\!16$	R≥16	R	Positive
Sputum	72/F	IHD	Klebsiella pneumoniae	Cefo/sul, Clari	Alive	$S \le 0.5$	R	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Sputum	93/F	COPD	Klebsiella pneumoniae	Cl, lz	Alive	S [2]	R	S≤8	R≥16		R≥128	Positive
Pleural	57/M	DM, breathlessness	Klebsiella pneumoniae	Mero	Alive	S≤0.5	S≤0.5	R≥64	R≥16	R≥16	$S \leq 4$	Positive
fluid												
Urine	34/F	UTI	Klebsiella pneumoniae	Cefo/sul	Alive	$S \le 0.5$	S≤0.5	R≥64	R≥16	R≥16	R≥128	Positive
Urine	34/F	Fever, sigmoid malignancy	Escherichia coli	Ciplox	Alive	S≤0.5	S≤0.25	R [32]	R≥16	R (8)	R≥128	Positive
ET	73/M	Acute febrile illness	Acinetobacter baumannii	Amik, metro	Alive	$S\!\leq\!0.5$	R	R≥64	$R\!\ge\!16$	R≥16	$R\!\ge\!128$	Positive
Urine	78/F	Fever with uropathy	Klebsiella pneumoniae	Cefo/sul	Alive	S≤0.5	S≤0.5	R≥64	R≥16	R≥16	R≥128	Positive

Table 2: Continue

						Antibiotic sensitivity						
Sample	Age/sex	History	Pathogen	Empiric therapy	PTO	CL	Tg	Cefo/sul	I	Mem	PT	NDM-1
Sputum	86/M	Respiratory infection	Escherichia coli	Mero, clari	Alive	S [2]	R	R≥64	R≥16	R≥16	R≥128	Positive
ET	65/F	Upper urinary	Klebsiella pneumoniae	Mero, metro	Alive	S≤0.5	S [1]	R≥64	R≥16	R≥16	$S\!\leq\!4$	Positive
secretion	ı	tract bleed										
Urine	73/F	Ca lung, dysurea	Klebsiella pneumoniae	Cefo/sul	Alive	S≤0.5	S [1]	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
Tissue	63/M	DM	Escherichia coli	Cefo/sul	Alive	$S\!\leq\!0.5$	S [2]	R≥64	$R \ge 16$	R≥16	$R\!\ge\!128$	Positive
ET	65/M	Gl bleed	Acinetobacter baumannii	Mero	Alive	S≤0.5	S [2]	R≥64	R≥16	R≥16	$R\!\ge\!128$	Positive
secretion	ı											
Pleural	52/M	Breathlessness	Pseudomonas aeruginosa	Nil	Alive	$S\!\leq\!0.5$	R	R≥64	$R \ge 16$	R≥16	$R\!\ge\!128$	Positive
fluid												

Abbreviations: PTO: Post therapy outcome, ND: Not detected, ET: Endotracheal, DFI: Diabetic foot infection, DM: Diabetes mellitus, HTN: Hypertension, CKD: Chronic kidney disease, UTI: Urinary tract infection, AKA: Above-knee amputation, IHD: Ischemic heart disease, CA: Carcinoma, BMCA: Buccal mucosa carcinoma, PRES: Posterior reversible encephalopathy syndrome, NRDS: Neonatal respiratory distress syndrome, MDS: Myelodysplastic syndrome, PVD: Peripheral vascular disease, COPD: Chronic obstructive pulmonary disease, GI: Gastrointestinal, S: Susceptible, I: Intermediate, R: Resistant, Cd: Clindamycin, Clari: Clarithromycin, Cef/taz: Cefepime/tazobactam, Pt: Piperacillin/tazobactam, Cefo/sul: Cefoperazone+sulbactam, Mero: Meropenem, Teico: Teicoplanin, Azithro: Azithromycin, Amik: Amikacin, Cefp: Cefpodoxime, Imi: Imipenem, Cfn: Ceftriaxone, Oflox: Ofloxacin, Ciplox: Ciprofloxacin, Lz: Linezolid, Metro: Metronidazole, Cefot: Cefotaxime, CI: Colistin and Tgc: Tigecycline

baumannii (13); Pseudomonas aeruginosa (7); Escherichia coli (12); Klebsiella pneumoniae (19), Citrobacter freundii (1) and Alcaligenes faecalis (1). These 53 isolates were obtained from different clinical samples-urine (19), tissue (11), sputum (9), blood (1), pus (2), ET secretion (6), pleural fluid (2), drain fluid (1), cup tip (1) and PICC tip (1). The bla_{NDM-1} was positive among 19 of 53 (35.8%) urinary isolates. Of the 53 bla_{NDM-1} cases, 16 (30.2%) were females. None of the stool and bile isolates were found to be positive for bla_{NDM-1}.

Among the 53 *bla*_{NDM-1} positive isolates, a single *K. pneumoniae* isolate from urine was found to be resistant to colistin and was responsible for the death of the patient. 13/53 isolates, (24.5%) were resistant to tigecycline of which 9 isolates were *K. pneumoniae*, 2 isolates were *P. aeruginosa* and one isolate each of *E. coli* and *A. faecalis* (Table 2). Of the 53 *bla*_{NDM-1} positive cases, 8 had succumbed to death. An isolate of *bla*_{NDM-1} positive *E. coli* was responsible for Neonatal Respiratory Distress Syndrome (NRDS) leading to death. Further, none of the *Enterobacter aerogenes* and *Enterobacter cloacae* was found positive for *bla*_{NDM-1} (Table 2).

ERIC-PCR: The ERIC-PCR was performed to study the clonal relatedness of bla_{NDM-1} positive Gram negative isolates. This was performed for 17 representative isolates, details of which are in Table 3 and Fig. 2. Manual typing of the isolates revealed that 6 out of 9 bla_{NDM-1} positive *K. pneumoniae* isolates belonged to two clonal cluster types i.e., 2 isolates were of clonal cluster type 1, 4 isolates were of clonal cluster type 2. Two isolates of *Acinetobacter baumannii* were also clonally related. None of the other isolates i.e., 3 isolates of *P. aeruginosa* and 3 isolates of *E. coli* shared any clonal relatedness.

DISCUSSION

The NDM-1 producing bacteria are the most frequent cause of urinary tract infections (UTIs). They can also cause wound infections, bloodstream infections and pneumonia (Menezes and Menezes, 2013). In this study, among the bla_{NDM-1} positive cases, majority [19 (35.8%)] were UTI cases followed by wound infections [08 (22.9%)]. Of the 53 bla_{NDM-1} cases, 16 (30.2%) were females, whereas 37 (69.8%) were males. The higher rate of NDM-1 positivity was similar to the study by Shenoy et al. (2014). In this study, age ranged from 44-86 years except for one case of neonate. Our study indicates a high incidence (29.8%) of bla_{NDM-1}. The reports of the incidence of NDM-1 has been highly variable. A recent study from China reported an incidence of 33.3% of NDM-1 among carbapenem resistant isolates (Qin et al., 2014) similar to present study. The 53 bla_{NDM-1} positive isolates cultured in current study included, A. baumannii (13), K. pneumoniae (19), E. coli (12), P. aeruginosa (7), A. faecalis (1) and C. freundii (1). The finding was corresponding with the findings of Shenoy et al. (2014). The NDM-1 producing A. baumannii can lead to outbreak of infections (Decousser et al., 2013).

Variable carbapenem resistance has been reported in NDM-1 positive isolates (Shenoy *et al.*, 2014). Of the *bla*_{NDM-1} positive isolates in present study, a single isolate was found resistant to colistin. Among the isolates, 13 (24.5%) were found resistant to tigecycline. Except for few, most of the NDM-1 producers have been reported to remain susceptible only to colistin and tigecycline. Nevertheless, a high rate of tigecycline resistance (43.2%) has been reported (Shenoy *et al.*, 2014). Due to limited therapeutic options, treatment of infections caused by NDM-1 producing pathogens is a major challenge for clinicians. These organisms

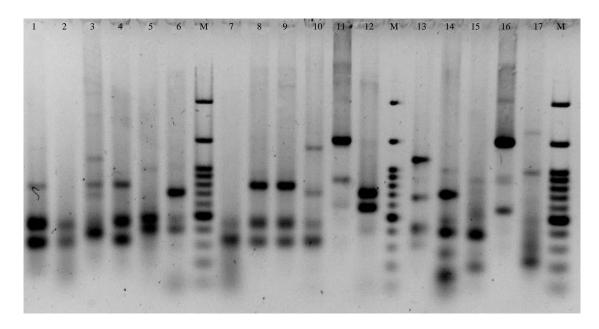


Fig. 2: DNA fingerprints of isolates generated by ERIC-PCR and separated in a 2% (w/v) agarose gel, 1: *K. pneumoniae*, 2: *K. pneumoniae*, 3: *P. aeruginosa*, 4: *K. pneumoniae*, 5: *P. aeruginosa*, 6: *K. pneumoniae*, 7: *K. pneumoniae*, 8: *K. pneumoniae*, 9: *K. pneumoniae*, 10: *E. coli*, 11: *A. baumannii*, 12: *K. pneumoniae*, 13: *E. coli*, 14: *K. pneumoniae*, 15: *E. coli*, 16: *A. baumannii*, 17: *P. aeruginosa* and M: *PCR Marker*-100 bp ladder

Table 3: Details of the 17 representative isolates chosen for ERIC-PCR

Lane	Sample	Organism	History	Age/Sex	Outcome
1	Sputum	Klebsiella pneumoniae	Pancreatitis, septicemia	40/M	Alive
2	Drain fluid	Klebsiella pneumoniae	CA gall bladder	61/M	Alive
3	Urine	Pseudomonas aeruginosa	Urinary frequency	73/M	Alive
4	Tissue	Klebsiella pneumoniae	DM, PVD sores	76/M	Alive
5	Tissue	Pseudomonas aeruginosa	DM	68/M	Alive
6	Sputum	Klebsiella pneumoniae	IHD	72/F	Alive
7	Sputum	Klebsiella pneumoniae	COPD	93/F	Alive
8	Pleural fluid	Klebsiella pneumoniae	DM, breathlessness	57/M	Alive
9	Urine	Klebsiella pneumoniae	UTI	34/F	Alive
10	Urine	Escherichia coli	Sigmoid malignancy	34/F	Alive
11	ET secretion	Acinetobacter baumannii	Acute febrile illness	73/M	Alive
12	Urine	Klebsiella pneumoniae	Fever with uropathy	78/F	Alive
13	Sputum	Escherichia coli	RTI	86/M	Alive
14	ET secretion	Klebsiella pneumoniae	Upper UT bleed	65/F	Dead
15	Tissue	Escherichia coli	DM	63/M	Alive
16	ET secretion	Acinetobacter baumannii	GI bleed	65/M	Alive
17	Pleural fluid	Pseudomonas aeruginosa	ND	52/M	Alive

CA: Carcinoma, DM: Diabetes mellitus, PVD: Peripheral vascular disease, IHD: Ischemic heart disease, COPD: Chronic obstructive pulmonary disease, UTI: Urinary tract infection, RTI: Respiratory tract infection, ET: Endotracheal and ND: Not documented, Cluster 1: Lane number 2 and 7, Cluster 2: Lane number 1, 8 and 9, Cluster 3: Lane number 11 and 16

frequently are found resistant to most antibiotics except colistin and, less consistently to tigecycline. Consequently, colistin and tigecycline (final resort antimicrobial agents) have been tried with limited success. The lack of effective antimicrobial agents demand newer agents for the treatment of infections caused by NDM-1-producing bacteria and other

carbapenem resistant organisms (Menezes and Menezes, 2013). Rapid spread of CRE species in a hospital in Mumbai has been previously reported (Muir and Weinbren, 2010).

In our study, of the 53 bla_{NDM-1} positive cases, 08 (15%) had succumbed to death which was in accordance of report by Shenoy *et al.* (2014), in which 03 of the 61 (4.9%) patients

had succumbed to death. Infections caused by NDM-1 producing pathogens are tough to treat leading to complications, but do not make pathogens more virulent or transmissible. Further, such infections range from mild to severe, while some have been fatal. The immuno-compromised status of the patient could be a predisposing factor for these infections (Menezes and Menezes, 2013).

Present study imparts insights into the intricate molecular epidemiology of *bla*_{NDM-1} gene in this tertiary care center. Among the different representative strains for which ERIC-PCR was performed, clonal relatedness was observed only with K. pneumoniae and A. baumannii isolates. Both the clonally related A. baumannii were isolated from endotracheal fluid. Clonal cluster type 1, consisting of 4 isolates of K. pneumoniae, were isolated from sputum, tissue, pleural fluid and urine. Clonal cluster type 2, consisting of 2 isolates of *K. pneumoniae*, were isolated from drain fluid from gall bladder and sputum. Though they were all isolated from different clinical samples, with the exception of A. baumannii, there is still a strong possibility of horizontal dissemination of *bla*_{NDM-1} gene within the healthcare setup. This calls for not only strict implementation of infection prevention and isolation protocols that could curtail possible outbreaks, but also routine surveillance of hospital environmental sampling and water supplies (Shanthi et al., 2013).

Clonal relatedness was however not observed in other isolates i.e., 3 isolates of *P. aeruginosa* and 3 isolates of *E. coli*. This is indicative of appearance of multiple clones with limited dissemination between patients, suggesting strong selection pressure on bacterial population, emphasizing the necessity for appropriate governance and administration of antibiotic therapy, within health-care units. Results demonstrate extensive diversity of *bla*_{NDM-1} producers which is consistent with the findings of previous studies (Shanthi *et al.*, 2013; Kumarasamy *et al.*, 2010; Nagaraj *et al.*, 2012; Castanheira *et al.*, 2011).

CONCLUSION

The *bla*_{NDM-1} gene has "An alarming potential" to spread and diversify among bacterial populations. This study demonstrated a high incidence of NDM-1-producing multi-drug resistant Gram negative bacilli from patients with different clinical diseases. There was clonal relatedness among *K. pneumoniae* and *A. baumannii* isolates and clonal diversity among *P. aeruginosa* and *E. coli*. This calls for increased alertness, continuous surveillance and strict enforcement of antibiotic policy with restricted use of inducer

drugs. Carbapenem antibiotics should be treated as the last resort and reserved for severe infections. Spread of NDM-1 producing isolates seriously limit the options for clinical treatment. Thus, enhanced efforts are urgently needed to control the further spread of NDM-1-producing bacterial pathogens. It is very important to identify cases of NDM related infections early and prevent the spread by implementing screening, sanitation measures and isolation of the carriers. Hence, routine antimicrobial susceptibility testing along with genotypic characterization should be performed.

REFERENCES

- CLSI., 2013. Performance standards for antimicrobial susceptibility testing: Twenty-first informational supplement. CLSI Document M100-S23, Vol. 33, No. 1, Clinical and Laboratory Standards Institute, Wayne, PA., USA., January 2013.
- Castanheira, M., L.M. Deshpande, D. Mathai, J.M. Bell, R.N. Jones and R.E. Mendes, 2011. Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: Report from the SENTRY antimicrobial surveillance program, 2006-2007. Antimicrob. Agents Chemother., 55: 1274-1278.
- Dalla-Costa, L.M., K. Irino, J. Rodrigues, I.N.G. Rivera and L.R. Trabulsi, 1998. Characterisation of diarrhoeagenic *Escherichia coli* clones by ribotyping and ERIC-PCR. J. Med. Microbiol., 47: 227-234.
- Decousser, J.W., C. Jansen, P. Nordmann, A. Emirian and R.A. Bonnin *et al.*, 2013. Outbreak of NDM-1-producing *Acinetobacter baumannii* in France, January to May 2013. EuroSurveillance, Vol. 18.
- EUCAST., 2011. Clinical breakpoints. European Committee on Antimicrobial Susceptibility Testing. http://www.eucast.org/clinical_breakpoints
- Harish, B.N. and G.A. Menezes, 2015. Determination of antimicrobial resistance in *Salmonella* spp. In: Salmonella. Schatten, H. and A. Eisenstark (Ed.). Springer, New York, USA., ISBN: 978-1-4939-1624-5, pp: 47-61.
- Kumarasamy, K.K., M.A. Toleman, T.R. Walsh, J. Bagaria and F. Butt *et al.*, 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: A molecular, biological and epidemiological study. Lancet Infect. Dis., 10: 597-602.
- Menezes, G.A. and P.S. Menezes, 2013. New Delhi metallo- β -lactamase (NDM-1): How real is the threat? Internet J. Med. Update, 8: 1-3.
- Muir, A. and M.J. Weinbren, 2010. New Delhi metallo- β -lactamase: A cautionary tale. J. Hosp. Infect., 75: 239-240.
- Nagaraj, S., S.P. Chandran, P. Shamanna and R. Macaden, 2012. Carbapenem resistance among *Escherichia coli* and *Klebsiella pneumoniae* in a tertiary care hospital in South India. Indian J. Med. Microbiol., 30: 93-95.

- Nordmann, P., L. Poirel, A. Carrer, M.A. Toleman and T.R. Walsh, 2011. How to detect NDM-1 producers? J. Clin. Microbiol., 49: 718-721.
- Qin, S., Y. Fu, Q. Zhang, H. Qi and J.G. Wen *et al.*, 2014. High incidence and endemic spread of NDM-1 positive *Enterobacteriaceae* in Henan province, China. Antimicrob. Agents Chemother., 58: 4275-4282.
- Shanthi, M., U. Sekar, M. Sowmiya, J. Malathi, A. Kamalanathan, B. Sekar and H.N. Madhavan, 2013. Clonal diversity of New Delhi metallobetalactamase-1 producing *Enterobacteriaceae* in a tertiary care centre. Indian J. Med. Microbiol., 31: 237-241.
- Shenoy, K.A., E.K. Jyothi and R. Ravikumar, 2014. Phenotypic identification and molecular detection of *bla*_{NDM-1} gene in multidrug resistant Gram-negative bacilli in a tertiary care centre. Indian J. Med. Res., 139: 625-631.

- Tunyapanit, W., P. Pruekprasert, K. Laoprasopwattana and S. Chelae, 2014. Antimicrobial susceptibility of *Acinetobacter baumannii* isolated from hospital patients. ScienceAsia, 40: 28-34.
- Yong, D., M.A. Toleman, C.G. Giske, H.S. Cho, K. Sundman, K. Lee and T.R. Walsh, 2009. Characterization of a new metallo-β-lactamase gene, *bla*_{NDM-1} and a novel erythromycin esterase gene carried on a unique genetic structure in *Klebsiella pneumoniae* sequence type 14 from India. Antimicrob. Agents Chemother., 53: 5046-5054.
- Zou, D., Y. Huang, X. Zhao, W. Liu and D. Dong *et al.*, 2015. A novel New Delhi metallo-β-lactamase variant, NDM-14, isolated in a Chinese hospital possesses increased enzymatic activity against carbapenems. Antimicrob. Agents Chemother., 59: 2450-2453.