

International Journal of Botany

ISSN: 1811-9700

Effect of Biofertilizer and Plant Growth Regulators on Growth of Summer Mungbean

${ }^{1}$ Muhammad Kamrul Islam, ${ }^{2}$ Shah Md. Asraful Islam, ${ }^{3} \mathrm{Md}$. Harun-or-Rashid,
${ }^{2}$ A.F.M.G. Faruque Hossain and ${ }^{2}$ Mohammed Mahamodul Alom
${ }^{1}$ Department of Crop Botany, ${ }^{2}$ Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
${ }^{3}$ Breeding Division, Bangladesh Jute Research Institute, Dhaka-1207, Bangladesh

Abstract

The experiment was carried out at the field laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh during the period from March 2002 to June 2002 to evaluate the effect of biofertilizer (Bradyrhizobium) and plant growth regulators (GA_{3} and IAA) on growth of summer mungbean (Vigna radiata L.). The experiment was laid out by RCBD with three replications and two factors (variety and treatment). There were altogether 12 treatment combinations. Most of the growth parameters such as number of branches plant ${ }^{-1}$, number of leaves plant ${ }^{-1}$, number of effective nodules plant ${ }^{-1}$, number of non-effective nodules plant ${ }^{-1}$, root dry weight plant ${ }^{-1}$, nodule dry weight plant ${ }^{-1}$ was the height due to the application of biofertilizer (Bradyrhizobium). On the other hand, plant height, leave dry weight plant ${ }^{-1}$, shoot dry weight plant ${ }^{-1}$ and total dry weight plant ${ }^{-1}$ was the height due to the application of plant growth regulators $\left(\mathrm{GA}_{3}\right.$ and IAA). However, biofertilizer (Bradyrhizobium) and plant growth regulators (GA_{3} and IAA) showed statistically identical performance on Crop Growth Rate (CGR) and Relative Growth Rate (RGR). In addition, among the mungbean varieties, Binamoog-5 performed better than that of Binamoog-2 and Binamoog-4.

Key words: Biofertilizer, Bradyrhizobium, GA_{3}, IAA , growth, summer mungbean

INTRODUCTION

Mungbean (Vigna radiata L.) is an important pulse crop of global economic importance. It ranks first position in price, fourth in acreage and sixth in production in Bangladesh (BBS, 2001). Mungbean has a special importance in intensive crop production system of the country for its short growing period (Ahmed, 1989). Mungbean covers an area of 55,100 ha and production was about 36,000 metric tons (BBS, 2001). The average yield of mungbean in Bangladesh is about $570 \mathrm{~kg} \mathrm{ha}^{-1}$, which is much lower than that of India and some other countries of the world. So use of seed inoculation with effective Bradyrhizobium strains and application of plant growth regulators seem to be the most effective way for the cultivation of summer mungbean. Inoculation with Bradyrhizobium increased 4.3 to 162% grain yield over uninoculated control in mungbean cultivation (Vaishya et al., 1983) Bradyrhizobium can also play an important role in nodule formation and nitrogen fixation. Indole Acetic Acid (IAA) and Gibberellic Acid (GA_{3}) are the important growth regulators. It was reported that GA_{3} stimulate stem elongation and yield (Deotale et al., 1998),
increase dry weight (Hore et al., 1988) as well as grain yield (Maske et al., 1998). Foliar application of IAA also found to be increased plant height, number of leaves plant ${ }^{-1}$, fruit size with consequent enhancement in seed yield in different crops like groundnut (Lee, 1990), cowpea (Khalil and Mandurah, 1989). In view of above facts, the present research work was designed to evaluate the effect of bio-fertilizer (Bradyrhizobium) and plant growth regulators (IAA and GA_{3}) on the growth parameters of summer mungbean varieties (Barimoog-2, Barimoog-4 and Barimoog-5).

MATERIALS AND METHODS

The experiment was conducted in the field laboratory of the Department of Crop Botany, Bangladesh Agricultural University, Mymensingh in 2002. There were four treatments viz., (i) $\mathrm{T}_{1}=$ Control (untreated), (ii) $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium), (iii) $\mathrm{T}_{3}=$ Indole acetic acid (IAA) and (iv) $\mathrm{T}_{4}=$ Gibberellic acid $\left(\mathrm{GA}_{3}\right)$. Three mungbean varieties viz., (I) $\mathrm{V}_{1}=$ Barimoog-2, (ii) $\mathrm{V}_{2}=$ Barimoog -4 and (iii) $\mathrm{V}_{3}=$ Barimoog- 5 were used in the experiment. The land was prepared by three ploughing
followed by laddering. The stubbles were removed from the land. The land was laid out by RCBD with three replications and two factors (variety and treatment). There were altogether 12 treatment combinations. So the total numbers of plots were 36 and the size of unit plot was $2 \times 2 \mathrm{~m}$. The block-to-block and plot-to-plot distance was 1 m . The land was fertilized @ $15 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{~N}, 13 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{P}$ and $13 \mathrm{~kg} \mathrm{ha}^{-1} \mathrm{~K}$, while bio-fertilizer plot received only PK at the same rate. The fertilizers were applied at final land preparation. Seed rate was $25 \mathrm{~kg} \mathrm{ha}^{-1}$. Seeds were sown in line sowing method maintaining 3 cm depth. Line to line distance was 25 cm . Liquid Bradyrhizobium mix culture were mixed thoroughly with seeds and placed in a cool dry place and sown in the fixed plots. Solution of 600 ppm IAA and $100 \mathrm{ppm} \mathrm{GA}_{3}$ was sprayed by hand sprayer at 30 days after sowing. First and second weeding and thinning was done at 15 and 35 days after sowing and plant-to-plant distance was maintained 4 cm . Four plants from each plot were sampled for recording growth and dry mater production at 30,40 and 50 days after sowing. The collected data were statistically analyzed and the treatments mean were compared by DMRT (Gomez and Gomez, 1984).

RESULTS AND DISCUSSION

Effect of bio-fertilizer and plant growth regulators (IAA and GA_{3}) on growth of summer mungbean was determined at 30,40 and 50 days after sowing (Table 1). Bio-fertilizer and plant growth regulators showed significant variation on plant height, number of branches plant ${ }^{-1}$ and number of leaves plant ${ }^{-1}$ in all counting dates. At 30 Days After Sowing (DAS), plant height varied from 24.08 to 27.76 cm , where the highest plant height was found in T_{2} and the lowest plant height was found in control. But, at 40 and 50 DAS, the highest plant height was found in T_{4} and the lowest plant height was found in control. This result is identical to Thakur and Panwar (1995) who found longer plant of Vigna radiata by the inoculation of Bradyrhizobium strain. Mislevy et al. (1989) also found increased height in soybean plant by spraying GA_{3}. The highest number of branches plant ${ }^{-1}$ and number of leaves plant ${ }^{-1}$ were found in T_{2} and the
lowest in control at 30,40 and 50 days after sowing. Similarly, Thakur and Panwar (1995) found increased number of branches plant ${ }^{-1}$ in Vigna radiate by inoculation with Bradyrhizobium. Deotale et al. (1998) also reported that seed treatment with $100 \mathrm{ppm} \mathrm{GA}_{3}$ increase number of branches and leaves.

Effect of varieties on growth of summer mungbean was determined at 30,40 and 50 days after sowing (Table 2). Varieties showed significant variation on plant height, number of branches plant ${ }^{-1}$ and number of leaves plant ${ }^{-1}$ in all counting dates. The highest plant height, number of branches plant ${ }^{-1}$ and number of leaves plant ${ }^{-1}$ were found in Barimoog-2 variety and the lowest in Binamoog-5 at 30, 40 and 50 days after sowing. It was in agreement with the result of Thakuria and Saharia (1990) who reported that plant height differed among the varieties.

Interaction effect of varieties with bio-fertilizer and plant growth regulators (IAA and GA_{3}) on growth of summer mungbean was determined at 30,40 and 50 days after sowing (Table 3). At 30 and 40 DAS, plant heights were not significant. However, at 30 and 40 DAS the highest number of plant heights was found in $V_{1} T_{2}$ and $\mathrm{V}_{1} \mathrm{~T}_{4}$ and the lowest were found in $\mathrm{V}_{3} \mathrm{~T}_{1}$, respectively. But, at 50 DAS , plant height varied significantly and ranged from 34.64 to 47.27 cm , where the highest plant height was found in $V_{1} T_{4}$ and the lowest in $V_{3} T_{1}$. On the other hand, the treatments combination showed significant influence on number of branches plant ${ }^{-1}$ at 30 DAS , but not in 40 and 50 DAS. At 30 DAS, the highest number of branches plant ${ }^{-1}$ was found in $V_{1} \mathrm{~T}_{2}$ and $\mathrm{V}_{3} \mathrm{~T}_{2}(1.00)$, on the contrary, branches did not produce in $\mathrm{V}_{1} \mathrm{~T}_{1}, \mathrm{~V}_{1} \mathrm{~T}_{3}, \mathrm{~V}_{1} \mathrm{~T}_{4}$ and $\mathrm{V}_{3} \mathrm{~T}_{1}$. At 40 and 50 DAS , the highest number of branches plant ${ }^{-1}$ was found in $V_{3} T_{2}$ and the lowest in $V_{1} T_{1}$. Moreover, the treatments combination did not show any significant influence on number leaves plant ${ }^{-1}$ at 30,40 and 50 DAS . At 30 DAS , the highest number of leaves plant ${ }^{-1}$ was found in $V_{2} T_{2}$ and the lowest in $V_{1} T_{1}$ and $V_{1} T_{3}$. At 40 and 50 DAS , the highest number of leaves plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}$.

Effect of bio-fertilizer and plant growth regulators (IAA and GA_{3}) on nodule production, Crop Growth Rate (CGR) and Relative Growth Rate (RGR) of summer

Table 1: Effect of bio-fertilizer and plant growth regulators (IAA and GA_{3}) on growth of summer mungbean at 30,40 and 50 days after sowing

Treatments	Plant height (cm)			No. of branches plant ${ }^{-1}$			No. of leaves plant ${ }^{-1}$		
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS
T_{1}	24.08 b	32.35c	38.73c	0.11 b	2.16 c	2.89 c	7.16 b	10.66 b	12.08 b
T_{2}	27.76a	35.52b	43.10 b	0.83a	2.55 a	3.22a	7.66a	11.69a	12.97 a
T_{3}	24.49 b	36.17 b	44.04 b	0.11 b	2.41 ab	3.08 ab	7.17 b	11.11b	12.58 a
T_{4}	24.53b	38.57a	45.65 a	0.11 b	2.33 bc	3.05b	7.19 b	11.08 b	12.66a
CV (\%)	5.72	4.92	4.43	13.09	8.07	4.76	4.95	5.18	4.58
Level of sign		**	**	**	**	**	**	**	*

NS $=$ Non significant, *Significant at 5% level, **Significant at 1% level, $\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium), $\mathrm{T}_{3}=\mathrm{IAA}, \mathrm{T}_{4}=\mathrm{GA}_{3}$

Intl. J. Bot., 2 (1): 36-41, 2006
Table 2: Effect varieties on growth of summer mungbean at 30,40 and 50 days after sowing

Varieties	Plant height (cm)			No. of branches plant ${ }^{-1}$			No. of leaves plant ${ }^{-1}$		
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS
Barimoog-2	26.12a	37.50a	44.20a	0.25 c	2.20 b	2.87 b	7.10 b	10.62 b	12.31 b
Barimoog-4	25.45a	36.87a	43.18 b	0.29 b	2.37a	3.10a	7.33ab	11.29a	12.52ab
Barimoog-5	24.07 b	32.59b	41.25 c	0.33a	2.52a	3.21 a	7.45a	11.50a	12.89a
4.58 CV (\%)	5.72	4.92	4.43	12.09	8.07	4.76	4.95	5.18	4.58
Level of significance	**	**	**	**	**	**	*	**	*

NS $=$ Non significant, *Significant at 5% level, **Significant at 1% level

Table 3: Interaction effect of varieties with bio-fertilizer and plant growth regulators (IAA and GA_{3}) on growth of summer mungbean at 30,40 and 50 days after sowing

Variety \times treatments	Plant height (cm)			No. of branches plant ${ }^{-1}$			No. of leaves plant ${ }^{-1}$		
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40DAS	50 DAS
$\mathrm{V}_{1} \mathrm{~T}_{1}$	25.07	34.72	41.17 d	0.00 e	2.00	2.76	6.92	9.58	11.83
$\mathrm{V}_{1} \mathrm{~T}_{2}$	28.26	37.17	43.72 bc	1.00 a	2.42	3.00	7.58	11.50	12.67
$\mathrm{V}_{1} \mathrm{~T}_{3}$	25.86	37.59	44.66 b	0.00 e	2.25	2.92	6.92	10.75	12.08
$\mathrm{V}_{1} \mathrm{~T}_{4}$	25.32	40.53	47.27 a	0.00 e	2.16	2.83	7.00	10.67	12.67
$\mathrm{V}_{2} \mathrm{~T}_{1}$	24.64	33.47	40.39 d	0.33 c	2.25	2.92	7.25	11.08	12.06
$\mathrm{V}_{2} \mathrm{~T}_{2}$	27.58	36.77	43.28 bc	0.50 b	2.50	3.25	7.65	11.67	13.00
$\mathrm{V}_{2} \mathrm{~T}_{3}$	24.48	37.73	43.81 bc	0.17 d	2.42	3.08	7.17	11.16	12.58
$\mathrm{V}_{2} \mathrm{~T}_{4}$	25.12	39.53	45.27 b	0.17 d	2.33	3.17	7.25	11.25	12.50
$\mathrm{V}_{3} \mathrm{~T}_{1}$	22.53	28.87	34.64 e	0.00 e	2.25	3.00	7.33	11.33	12.42
$\mathrm{V}_{3} \mathrm{~T}_{2}$	27.44	32.62	42.31 cd	1.00 a	2.75	3.42	7.75	11.92	13.25
$\mathrm{V}_{3} \mathrm{~T}_{3}$	23.14	33.21	43.65 bc	0.17 d	2.58	3.25	7.42	11.42	13.08
$\mathrm{V}_{3} \mathrm{~T}_{4}$	23.17	35.67	44.41 b	0.17 d	2.50	3.17	7.33	11.33	12.83
CV (\%)	5.72	4.92	4.43	12.09	8.07	4.76	4.95	5.18	4.58
Level of significance	NS	NS	*	**	NS	NS	NS	NS	NS

NS $=$ Non significant, *Significant at 5% level, **Significant at 1% level
$\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium), $\mathrm{T}_{3}=\mathrm{IAA}, \mathrm{T}_{4}=\mathrm{GA}_{3}, \mathrm{~V}_{1}=$ Barimoog-2, $\mathrm{V}_{2}=$ Barimoog-4 and $\mathrm{V}_{3}=$ Barimoog- 5
Table 4: Effect of bio-fertilizer and plant growth regulators (IAA and GA_{3}) on nodulation, Crop Growth Rate (CGR) and Relative Growth Rate (RGR) of summer mungbean

Treatments	No. of effective nodule plant ${ }^{-1}$			No. of non-effective nodule plant ${ }^{-1}$			Crop Growth Rate (CGR) $\left(\mathrm{g} \mathrm{m}^{-2} \mathrm{~d}^{-1}\right)$	Relative Growth Rate$(R G R)\left(\mathrm{g} \mathrm{~g}^{-1} \mathrm{~d}^{-1}\right)$
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS		
T	2.10 b	4.66b	3.99b	0.61 bc	1.16b	1.31	6.95 b	0.042
T_{2}	9.33a	11.33a	11.44a	2.88a	3.66a	2.11	8.15a	0.043
T_{3}	2.11 b	4.21c	3.77 b	0.72 b	0.99 b	1.30	8.74 a	0.045
T	2.10 b	4.11c	4.22 b	0.33 c	1.27 b	1.17	8.55a	0.043
CV (\%)	9.04	6.17	8.54	13.79	10.13	7.28	7.77	4.63
Level of significance	**	**	**	**	**	NS	**	NS

NS $=$ Non significant, *Significant at 5% level, **Significant at 1% level
$\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium), $\mathrm{T}_{3}=\mathrm{IAA}, \mathrm{T}_{4}=\mathrm{GA}_{3}$

Table 5: Effect varieties on nodulation, Crop Growth Rate (CGR) and Relative Growth Rate (RGR) of summer mungbean

Varieties	No. of effective nodule plant ${ }^{-1}$			No. of non-effective nodule plant ${ }^{-1}$			Crop Growth Rate (CGR) $\left(\mathrm{g} \mathrm{m}^{-2} \mathrm{~d}^{-1}\right)$	Relative Growth Rate$(\mathrm{RGR})\left(\mathrm{g} \mathrm{~g}^{-1} \mathrm{~d}^{-1}\right)$
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS		
Barimoog-2	3.49c	5.24 c	5.16c	0.70c	1.41 b	1.34	7.55 b	0.045a
Barimoog-4	3.83 b	6.08 b	5.91 b	1.20 b	1.70 b	1.48	7.33b	0.038 b
Barimoog-5	4.41a	6.91a	6.49a	1.49a	2.20a	1.59	9.41a	0.046 a
CV (\%)	9.04	6.17	8.54	12.79	10.13	7.28	7.77	4.63
Level of significance	**	**	**	**	**	NS	**	**

NS $=$ Non significant, ${ }^{*}$ Significant at 5% level, **Significant at 1% level
mungbean was determined (Table 4). Bio-fertilizer and plant growth regulators showed significant variation on number of effective nodules plant ${ }^{-1}$ and non-effective nodules plant ${ }^{-1}$ (except 50 DAS). The highest number of effective and non-effective nodules plant ${ }^{-1}$ was found in T_{2}. Similarly, Shangakhara and Marambe (1989)
observed significantly higher nodulation in Vigna radiata by inoculatiing Rhizobium. Pandher et al. (1991) also observed increasing number of root nodules in Vigna radiatai cv. ML 131 by using Rhizobium strains. Besides, Kavathiya and Pandey (2000) found 69 nodules plant ${ }^{-1}$ by inoculating mungbean seed with Rhizobium. The

Table 6: Interaction effect of varieties, and bio-fertilizer and plant growth regulators (IAA and GA_{3}) on nodulation, Crop Growth Rate (CGR) and Relative Growth Rate (RGR) of summer mungbean

Variety \times treatment	No. of effective nodule plant ${ }^{-1}$			No. of non-effective nodule plant ${ }^{-1}$			Crop Growth Rate (CGR) $\left(\mathrm{g} \mathrm{m}^{-2} \mathrm{~d}^{-1}\right)$	Relative Growth Rate$(R G R)\left(\mathrm{g} \mathrm{~g}^{-1} \mathrm{~d}^{-1}\right)$
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS		
$\mathrm{V}_{1} \mathrm{~T}_{1}$	1.66 e	3.66	3.00 ef	0.17 de	$1.00 \mathrm{e}-\mathrm{f}$	1.00	6.02 f	0.044 bcd
$\mathrm{V}_{1} \mathrm{~T}_{2}$	8.33 c	10.33	10.66 b	2.00 b	3.00c	1.75	6.64ef	0.041 cde
$\mathrm{V}_{1} \mathrm{~T}_{3}$	2.00 de	3.66	2.66 f	0.66 cd	0.66 g	1.50	8.83 bc	0.051a
$\mathrm{V}_{1} \mathrm{~T}_{4}$	2.00 de	3.33	4.33 d	0.00 e	$1.00 \mathrm{~d}-\mathrm{g}$	1.13	8.72 bcd	0.048 ab
$\mathrm{V}_{2} \mathrm{~T}_{1}$	2.33 de	4.66	3.66de	0.66 cd	0.83 fg	1.45	6.16 f	0.036 e
$\mathrm{V}_{2} \mathrm{~T}_{2}$	9.33 b	11.33	11.33 b	3.33a	3.66 b	2.33	7.77 cd	0.040 cde
$\mathrm{V}_{2} \mathrm{~T}_{3}$	2.00 de	4.33	4.33 d	0.50c-e	$1.00 \mathrm{~d}-\mathrm{g}$	1.15	7.83cd	0.039 de
$\mathrm{V}_{2} \mathrm{~T}_{4}$	1.66 e	4.04	4.33 d	0.33 de	$1.33 \mathrm{~d}-\mathrm{f}$	1.00	7.55 de	0.036 e
$\mathrm{V}_{3} \mathrm{~T}_{1}$	2.33de	5.66	5.33c	1.00c	1.66 d	1.50	8.88 bcd	0.046 abc
$\mathrm{V}_{3} \mathrm{~T}_{2}$	10.33a	12.33	12.33a	3.33a	4.33a	2.25	10.03a	0.049 ab
$\mathrm{V}_{3} \mathrm{~T}_{3}$	2.33 de	4.66	4.33 d	1.00c	$1.33 \mathrm{~d}-\mathrm{f}$	1.25	9.55 ab	0.045 bcd
$\mathrm{V}_{3} \mathrm{~T}_{4}$	2.66 de	5.00	4.00 d	0.66 cd	1.50 de	1.38	9.39 ab	0.043 bcd
CV (\%)	9.04	6.17	8.54	13.79	10.13	7.28	7.77	5.71
Level of Significance	*	NS	**	*	*	NS	**	**

NS $=$ Non significant, *Significant at 5% level, **Significant at 1% level
$\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium), $\mathrm{T}_{3}=\mathrm{IAA}, \mathrm{T}_{4}=\mathrm{GA}_{3}, \mathrm{~V}_{1}=$ Barimoog-2, $\mathrm{V}_{2}=$ Barimoog-4 and $\mathrm{V}_{3}=$ Barimoog-5

	Leaf dry weight plant ${ }^{-1}$			Root dry weight plant ${ }^{-1}$			Shoot dry weight plant ${ }^{-1}$			Nodule dry weight plant ${ }^{-1}$			Total dry weight plant ${ }^{-1}$		
Treatments	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS
T_{1}	0.87 b	2.57 b	3.58 c	0.06 b	0.28 c	0.61 c	0.29 b	1.13 b	1.89 c	4.57 b	5.41 b	4.22 b	1.24 b	4.00 c	6.90 b
T	1.29 a	2.84 ab	3.81 bc	0.09a	0.36 a	0.79a	0.38a	1.25 ab	2.30 b	7.00a	11.77 a	12.33a	1.57 a	4.46 b	6.91 a
T_{3}	0.89 b	3.23a	3.99 ab	0.07 b	0.32 b	0.68 b	0.31 b	1.31 a	2.56 ab	2.01 c	4.86 b	4.77 b	1.28 b	4.62 ab	7.24a
T	0.88b	3.16a	4.13a	0.06 b	0.32 b	0.66 b	0.29 b	1.41 a	2.66 a	2.14 c	4.65 b	4.66 b	1.25 b	4.90 a	7.47 a
CV (\%)	13.63	9.00	7.44	6.76	6.23	7.09	9.02	8.76	7.12	12.11	11.97	10.44	9.41	6.90	9.22
Level of significance	**	**	**	**	**	**	**	**	**	**	**	**	**	**	*

NS $=$ Non significant, ${ }^{*}$ Significant at 5% level, ${ }^{* *}$ Significant at 1% level
$\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium), $\mathrm{T}_{3}=\mathrm{IAA}, \mathrm{T}_{4}=\mathrm{GA}_{3}$

Table 8: Effect of varieties on dry matter production of summer mungbean at 30,40 and 50 days after sowing

Varieties	Leaf dry weight plant ${ }^{-1}$ (g)			Root dry weight plant ${ }^{-1}$ (g)			Shoot dry weight plant ${ }^{-1}$ (g)			Nodule dry weight plant $^{-1}$ (g)			Total dry weight plant ${ }^{-1}(\mathrm{~g})$		
	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS	30 DAS	40 DAS	50 DAS
Barimoog-2	0.83b	2.57 b	3.65 b	0.06 b	0.27 c	0.59 c	0.25 c	0.99b	1.87 b	3.56 b	5.78 b	5.50 b	1.18 b	3.86 b	6.12 c
Barimoog-4	0.96 ab	3.02a	3.81 b	0.07 b	0.32 b	0.67 b	0.33 b	1.40a	2.45a	3.99 ab	6.33 b	6.75 a	1.37 a	4.75 a	6.94 b
Barimoog-5	1.15a	3.26a	4.18a	0.08a	0.36 a	0.80a	0.36 a	1.41a	2.73a	4.24 a	7.91a	7.25a	1.45 a	4.89 a	7.72a
CV (\%)	12.63	9.00	7.44	6.76	6.23	7.09	9.02	8.76	7.12	12.11	12.97	11.44	9.41	6.90	9.22
Level of	**	**	**	**	**	**	**	**	**	*	**	**	**	**	**

significance
NS $=$ Non significant, $*$ Significant at 5% level, ${ }^{* *}$ Significant at 1% level
treatments showed significant influence on CGR but not in Relative Growth Rate (RGR). However, the highest CGR and Relative Growth Rate (RGR) was found in T_{3} and the lowest in control. Sudhakar et al. (1989) also observed that Rhizobium inoculation increased crop growth rate.

Effect of varieties on nodule production, CGR and RGR of summer mungbean was determined (Table 5). The varieties showed significance influence on all these parameters. The highest number of effective and noneffective nodules plant ${ }^{-1}$, CGR and RGR was found in Barimoog- 5 variety and the lowest in Binamoog- 2 variety at all counting dates.

Interaction effect of varieties with bio-fertilizer and plant growth regulators (IAA and GA_{3}) on nodule production, CGR and RGR of summer mungbean was determined (Table 6). The treatments combination showed significant influence on number of effective nodules plant ${ }^{-1}$ at 30 and 50 DAS , but not in 40 . At 30 DAS, the highest number of effective nodules plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}$ (10.33) and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}$ and $\mathrm{V}_{2} \mathrm{~T}_{4}$ (1.66). At 50 DAS , the highest number of effective nodules plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}$ (12.33) and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{3}$ (2.66). In case of non-effective nodules plant ${ }^{-1}$, the treatment showed significant variation at 30 and 40 DAS. At 30 DAS, the highest number of non-

Table 9: Interaction effect of bio-fertilizer and plant growth regulators (IAA and GA_{3}) on dry matter production of summer mungbean at 30,40 and 50 days after sowing

significance
$\mathrm{NS}=$ Non significant, ${ }^{*}$ Significant at 5% level, ${ }^{* *}$ Significant at 1% level
$\mathrm{T}_{1}=$ Control, $\mathrm{T}_{2}=$ Bio-fertilizer (Bradyrhizobium) $, \mathrm{T}_{3}=\mathrm{IAA}, \mathrm{T}_{4}=\mathrm{GA}_{3}, \mathrm{~V}_{1}=$ Barimoog $-2, \mathrm{~V}_{2}=$ Barimoog -4 and $\mathrm{V}_{3}=$ Barimoog-5
effective nodules plant ${ }^{-1}$ was found in $\mathrm{V}_{2} \mathrm{~T}_{2}$ and $\mathrm{V}_{3} \mathrm{~T}_{2}$ (3.33) and non-effective nodules did not produce $\mathrm{V}_{1} \mathrm{~T}_{4}$. At 50 DAS , the highest number of non-effective nodules plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}$ (4.33) and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{3}$ (0.66). Only at 30 DAS, the treatments showed significant variation on nodule dry weight plant ${ }^{-1}$, where the highest was found in $\mathrm{V}_{2} \mathrm{~T}_{2}$ and $\mathrm{V}_{3} \mathrm{~T}_{2}(10.00 \mathrm{mg})$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}(1.60 \mathrm{mg})$. The treatment showed significant variation on CGR and RGR. The highest crop growth rate was found in $V_{3} T_{2}\left(10.03 \mathrm{~g} \mathrm{~m}^{-2} \mathrm{~d}^{-1}\right)$, which is statistically identical to $\mathrm{V}_{3} \mathrm{~T}_{3}$ and $\mathrm{V}_{3} \mathrm{~T}_{4}$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}\left(6.02 \mathrm{~g} \mathrm{~m}^{-2} \mathrm{~d}^{-1}\right)$. The highest relative growth rate was found in $\mathrm{V}_{1} \mathrm{~T}_{3}\left(0.051 \mathrm{~g} \mathrm{~m}^{-2} \mathrm{~d}^{-1}\right)$, which is statistically identical to $\mathrm{V}_{3} \mathrm{~T}_{1}$ and $\mathrm{V}_{3} \mathrm{~T}_{2}$ and the lowest in $\mathrm{V}_{2} \mathrm{~T}_{1}$ and $\mathrm{V}_{2} \mathrm{~T}_{4}\left(0.036 \mathrm{~g} \mathrm{~m}^{-2} \mathrm{~d}^{-1}\right)$.

Effect of bio-fertilizer and plant growth regulators (IAA and GA_{3}) on leaf, root, shoot, nodule and total dry weight plant ${ }^{-1}$ of summer mungbean was determined at 30, 40 and 50 DAS (Table 7). Bio-fertilizer and plant growth regulators showed significant influence on leaf, root, shoot, nodule and total dry weight plant ${ }^{-1}$ in all counting dates. At 30 DAS, plant height varied from 0.87 to 1.29 g , where the highest in T_{2} and the lowest in control. But, at 40 and 50 DAS , the highest leaf dry weight plant ${ }^{-1}$ was found in T_{3} and T_{4}, respectively and the lowest in control. The highest root dry weight plant ${ }^{-1}$ was found in T_{3} and the lowest in control in all counting dates. This result is identical to Begum (1989) who reported that inoculation with Rhizobium increased root dry weight than the control. In contrast, at 30, 40 and 50 DAS , the highest shoot dry weight plant ${ }^{-1}$ were found in $\mathrm{T}_{2}, \mathrm{~T}_{3}$ and T_{4}, respectively and the lowest in control. Bhuiya et al. (1986) found higher shoot and nodule dry weight of mungbean by the inoculation of Rhizobium strains. Bhuiyan et al. (1998) stated that inoculation with

Rhizobium increased nodule dry weight. On the other hand, the highest nodule and total dry weight plant ${ }^{-1}$ was found in T_{2} and the lowest in control in all counting dates. Deotale et al. (1998) also observed that seed treatment with 100 ppm GA 3 increase total dry matter of soybean. Besides, Takano et al. (1995) reported that IAA and GA_{3} increased total dry matter in faba bean.

Effect varieties on leaf, root, shoot, nodule and total dry weight plant ${ }^{-1}$ of summer mungbean were determined at 30, 40 and 50 DAS (Table 8). Varieties showed significant variation on leaf, root, shoot, nodule and total dry weight plant ${ }^{-1}$ in all counting dates. The highest leaf, root, shoot, nodule and total dry weight plant ${ }^{-1}$ were found in Barimoog-5 variety and the lowest in Binamoog-2 at 30,40 and 50 DAS.

Interaction effect of varieties with bio-fertilizer and plant growth regulators (IAA and GA_{3}) on leaf, root, shoot and total dry weight plant ${ }^{-1}$ of summer mungbean was determined at 30,40 and 50 DAS (Table 9). The treatment showed significant variation on leaf dry weight plant ${ }^{-1}$ at 30 and 40 DAS. At 30 DAS, the highest leaf dry weight plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}(1.75 \mathrm{mg})$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}$ and $\mathrm{V}_{1} \mathrm{~T}_{4}(0.77 \mathrm{mg})$. At 40 DAS , the highest leaf dry weight plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{3}(3.91 \mathrm{mg})$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}(2.22 \mathrm{mg})$. The treatment showed significant variation on root dry weight plant ${ }^{-1}$ in all counting dates. At 30 DAS, the highest root dry weight plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}(0.10 \mathrm{mg})$ and the lowest in $\mathrm{V}_{2} \mathrm{~T}_{1}(0.07 \mathrm{mg})$. At 40 and 50 DAS , the highest root dry weight plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}$. The treatment showed significant variation on shoot dry weight plant ${ }^{-1}$ only at 50 DAS , where the highest shoot dry weight plant ${ }^{-1}$ was found in $V_{3} \mathrm{~T}_{4}(2.90 \mathrm{mg})$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}$ (1.28 mg). But, the treatment did not show significant variation on total dry weight plant ${ }^{-1}$. However, at 30 DAS,
the highest total dry weight plant ${ }^{-1}$ was found in $\mathrm{V}_{3} \mathrm{~T}_{2}$ $(1.70 \mathrm{mg})$ and the lowest in $\mathrm{V}_{1} \mathrm{~T}_{1}$ and $\mathrm{V}_{1} \mathrm{~T}_{4}(1.08 \mathrm{mg})$. At 40 and 50 DAS , the highest total dry weight plant ${ }^{-1}$ was found in $V_{3} T_{4}$ and the lowest in $Y \mathrm{~T}$.

From the above findings, it can be concluded that bio-fertilizer was better than plant growth regulators (IAA and GA_{3}) for the growth of summer mungbean. However, GA_{3} and IAA found better than control. Among the varieties, Binamoog-5 performed better than Binamoog-2 and Binamoog-4.

REFERENCES

Ahmed, S.U., 1989. Response of mungbean (Vigna radiata) to inoculation with Rhizobium as affected by phosphorus levels. MS Thesis, Bangladesh Agricultural University, Mymensingh.
BBS., 2001. The Year Book of Agricultural Statistics of Bangladesh, Statistics Division, Ministry of Planning, Government of the People's Republic of Bangladesh.
Begum, N.S.M., 1989. Response of soybean to Rhizobium inoculation and urea-M application under rainfed and irriation condition. MS Thesis, Bangladesh Agricultural University, Mymensingh.
Bhuiya, Z.H., M.R. Islam, M.J. Uddin and M.S. Hoque, 1986. Performance of some Rhizobium inoculants oon blackgram (Vigna mungo). Bangladesh J. Agric., 11: 55-63.
Bhuiyan, M.A.H., D. Khanam, M.M. Rahman and M.M. Ali, 1998. Variation in the symbiotic effectiveness of Bradyrhizobium strains of soybean. Bangladesh J. Microbiol., 15: 25-30.
Deotale, R.D., V.G. Maske, M.V. Sorte, B.S. Chimurkar and A.Z. Yeme, 1998. Effect of GA_{3} and IAA on morphophysiological parameters of soybean. J. Soils Crops, 8: 91-94.
Gomez, K.A. and A.A Gomez, 1984. Statistical Procedures for Agriculture Research. 2nd Edn., John Wiley and Sons, New York.
Hore, J.K., M.C. Paria and S.K. Sen, 1988. Effect of presowing seed treatment on germination, growth and yield of Allium cepa ver. Red Globe. Harayana J. Hortic. Sci., 17: 83-87.
Kavathiya, Y.A. and R.N. Pandey, 2000. Interaction studies on Meloidogyne javanica, Rhizobium sp. and Macrophomina phaseolina in mungbean. J. Mycol. Plant Phathol., 30: 91-93.

Khalil S. and H.M. Mandurah, 1989. Growth regulation of grain filling in relation to peduncle anatomy in rice cultivators. Indian J. Exp. Biol., 25: 63-65.
Lee, H.S., 1990. Effects of pre-sowing seed treatments with $G A_{3}$ and IAA on flowering and yield components in groundnuts. Korean J. Crop Sci., 35: 1-9.
Maske, B.G., R.D. Detale, N.B. Sorte, H.B. Goramnagar and C.N. Chore, 1998. Influence of GA_{3} and IAA on growth and yield contributing parameters of soybean. J. Soils Crops, 8: 20-21.
Mislevy, P., K.J. Boote and E.G. Martin, 1989. Soybean response to gibberellic acid treatments. J. Plant Growth Regulators, 8: 11-18.
Pandher, M.S., R.K. Sedha, R.P. Gupta and S.R. Sharma, 1991. Response of mungbean (Vigna radiate L.) to inoculation with single and multi strain rhizobial inoculants. Indian J. Ecol., 18: 113-117.
Shangakhara, U.R. and B. Marambe, 1989. Effect of method of inoculation and nitrogen fertilizer on nodulation and yield of selected tropical legumes. J. Agro. Crop Sci., 162: 305-309.
Sudhakar, P., B.G. Singh and L.M. Rao, 1989. Effect of Rhizobium and phosphorus on growth parameters and yield of blackgram (Phaseolus mungo). Indian J. Agril. Sci., 59: 402-404.
Takano, K.P., K. Bialek and J.D. Cohen, 1995. The effect of growth regulators on two spraing legumes, protein peas and french beans. Mekedelingen J. Facultied LandBouwwetensch Apen Rijksuniver Siffeit Gent., 52: 1259-1266.
Thakur, A.K. and J.D.S. Panwar, 1995. Effect of Rhizobium-VAM interactions on growth and yield in mungbean (Vigna radiate) under field condition. Indian J. Plant Physiol., 38: 62-65.
Thakuria, A. and P. Saharia, 1990. Response of mungbean genotypes to plant density and phosphorus levels in summer. Indian J. Agron., 35: 431-432.
Vaishya, U.K., G.R. Gayendragadkar and R.L. Pandey, 1983. Effect of Rhizobiun inoculation on nodulation and grain yield of mungbean (Vigna radiata). Indian J. Microbiol., 23: 228-230.

