

## International Journal of Botany

ISSN: 1811-9700

# Current List of the Native Bromeliads of Soconusco, Chiapas, Southeast Mexico 

Dayam Santiago, Sonia Ruiz, Lourdes Adriano, Miguel Salvador and Isidro Ovando-Medina Area de Biotecnologia, Facultad de Ciencias Químicas, Universidad Autónoma de Chiapas Carretera a Puerto Madero Km 2.0, Tapachula, 30700, Chiapas, Mexico


#### Abstract

In Central America, native bromeliads are an alternative for productive diversification in coffee plantations; however, first, a census in each area should be carried out and inventories must be up-dated. During 2004 and 2005, field explorations were carried out in the Soconusco region, on the Mexico/Guatemala border, in order to collect live specimens and to create a reference collection of plants in the University (UNACH, Universidad Autónoma de Chiapas, Tapachula). To verify if the collected species were native or not, an ethnobotanical study was carried out, with semi-structured interviews applied to people from the visited communities; the information was then compared with the literature. The study revealed few uses of native bromeliads. To date, we have 186 accessions which had been characterized and classified in 6 genera and 29 species. This number of species comprises only $22.8 \%$ of the bromeliads of Chiapas, but represents a high density of species ( 3.113 species $/ 1000 \mathrm{~km}^{2}$ ). Most of the accessions are from middle altitudes ( $500-1500$ m.a.s.L.). We present the first inventory of the flora Bromeliaceae for the region of Soconusco.


Key words: Bromeliaceae, Soconusco, chiapas, mexico, aechmea, bromelia, catopsis, pitcairnia, tillandsia, werauhia

## INTRODUCTION

For many rural communities in Central America, including those belonging to the Mexican state of Chiapas, bromeliads and other vascular epiphytic plants are of great importance from the ecological, economical and cultural points of view (Breedlove and Laughlin, 1993; Mazariegos et al., 2004). This family of plants is exclusively American-with the exception of the African species Pitcairnia feliciana (A. Chevalier) Harms-with more than 2,700 reported species (Luther and Sieff, 1998), mainly found in the tropical zone of the continent.

There are 22 genera of Bromeliaceae recorded from Mexico, comprising 326 species, with Tillandsia, Hechtia and Pitcairnia being the genera with the greatest number of species (Espejo-Serna and López-Ferrari, 1998). There is a lot of information about the vegetation of the state of Chiapas, but in the case of bromeliads, the data are insufficient and inconsistent. The pioneer study of Matuda (1952) reported 52 species grouped into 10 genera. Later, Breedlove (1986) mentioned 126 species, while Espejo-Serna and López-Ferrari (1998) and Espejo et al. (2004), in the most recent checklists of Mexican bromeliads, reported 19 genera and 124 species for Chiapas.

Unfortunately, the bromeliads from Soconusco region, situated on the southeastern side of Chiapas on the Mexico-Guatemala border, have been poorly studied, apart from the previously mentioned study by Matuda. Utley (1994) mentioned 20 species inhabiting the lowlands of Chiapas and 43 species from intermediate altitudes, some of which could be natives of the Soconusco region because of its altitudinal gradient (from the sea level on the coastal zone to ca. 4000 m .a.s.l. on the peak of volcano Tacaná). However, there is no inventory of the bromeliaceae exclusive for this region.

The aim of this study was to elaborate a current list of species of native bromeliads from the Soconusco region.

## MATERIALS AND METHODS

Study site: During 2004 and 2005, field explorations in several selected sites from the Soconusco region were made to collect living specimens of bromeliads. After a preliminary tour, we selected ten rural communities in the region situated at municipalities of Cacahoatán, Escuintla, Tapachula, Tuxtla Chico, Tuzantán and Unión Juárez (Fig. 1), the main criterion for including a community was an abundance of epiphytic bromeliads growing in natural o semi-natural conditions. Sites covered five different

Intl. J. Bot., 2 (1): 64-68, 2006


Fig. 1: Distribution of species of native bromeliads in the region of the Soconusco, Chiapas, Southern Mexico.
vegetation types according to Miranda $(1942,1957)$ and Breedlove (1981): coastal plain (low xerophytic forest), tropical rain forest, montane rain forest, pine-oak forest and shaded coffee agroecosystems. Sites were georeferenced (latitude, longitude and altitude) with the aid of Garmin ${ }^{\text {TM }}$ GPS equipment and plotted using the software OziExplorer(C) version 3.95.3g1.

Collection of bromeliads: Each community was visited at least twice a year to collect living plants, inflorescences, capsules and seeds. To find out whether the collected species were natives or not, and information about the cultural and agronomic significance of the plants, semi-structured interviews were applied to people from the visited communities. Questions explored the local knowledge about the plants, their uses and, principally, if these species of bromeliads were plants that have always existed there (natives) in accordance with oral history, or if they had been introduced into the community. The information obtained was compared with bibliographic
references (Smith, 1958; Breedlove, 1981; Utley, 1994) and so corroborated or discarded.

Classification and data analysis: Specimens were transported to the Department of Biotechnology of the Universidad Autónoma de Chiapas in Tapachula, where a collection of labeled plants in pots and a seed collection were established. At the same time, herbarium specimens were prepared and deposited at Herbarium of the University of the Valley of Guatemala. Accessions were characterized and the classification was made using taxonomic keys (Smith, 1958; Utley, 1994; Butcher, 2000). A photographic catalogue of the collected species (in flowering and/or in vegetative phase) was also made. Data on the number of genera and species were analyzed and compared with bibliographic information. In order to observe the distribution of species, sites were plotted on a regional map (Center of Geographic Information for Soconusco of El Colegio de la Frontera Sur, ECOSUR).

## RESULTS AND DISCUSSION

To date, we have 186 accessions belonging to six genera (Aechmea, Bromelia, Catopsis, Tillandsia, Pitcairnia and Werauhia) and 29 species (plus 1 forma of $P$. heterophylla, giving a total of 30 taxa, Table 1). The cultivated genus Ananas was not taken into account. This number of species represents only a $22.8 \%$ of the maximum number of bromeliads reported for Chiapas; nevertheless, if this region were a state it would occupy the 9th place out of the 33 states in Mexico in terms of the number of genera, the 12 th place in number of species and the 4th place in density of species (3.113 species $/ 1000 \mathrm{~km}^{2}$ ), comparing our data with those of Espejo-Serna and López-Ferrari (1998).

In the ethnobotanical study, local people identified all their bromeliads as natives, which was corroborated by the literature. Most species had no particular use and were even considered parasites of cultivated plants such as coffee and cocoa; however, some were mentioned as ornamentals, for example T. guatemalensis and T. usneoides, which are sold at local markets during

Table 1: Current list of bromeliads native to the Soconusco, Chiapas,
Mexico

| Species |
| :--- |
| Aechmea mexicana Baker |
| Bromelia pinguin Linnaeus* |
| Coptosis hahnii Baker |
| Catopsis morreniana Mez |
| Catopsis nutans (Swartz) Grisebach |
| Catopsis sessiliflora (Ruiz and Pavon) Mez |
| Pitcairnia heterophylla (Lindley) Beer |
| Pitcairnia heterophylla (Lindley) Beer var. heterophylla forma albiflora |
| Standley and Smith |
| Pitcairnia imbricata (Brongniart) Regel* 1 |
| Tillondsia brachycaulos Schlechtendal |
| Tillondsia bulbosa Hooker |
| Tillondsia butzii Mez |
| Tillondsia caput-medusae E. Morren |
| Tillondsia fasciculata Swartz var. tricolor |
| Tillondsia flabellata Baker |
| Tillondsia fuchsï W. Till |
| Tillandsia guatemalensis L. B. Smith |
| Tillondsia juncea (Ruiz and Pavon) Poiret |
| Tillondsia makoyana Baker |
| Tillondsia multicaulis Steudel |
| Tillondsia recurvata Linnaeus |
| Tillondsia schiedeana Steudel |
| Tillandsia tricolor Schlechtendal and Chamisso var. melanocrater |
| (L.B. Smith) L.B. Smith |
| Tillondsia usneoides Linnaeus |
| Tillondsia variabilis Schlechtendal |
| Tillondsia vicentina Standley |
| Tillondsia axerographica Rohweder** |
| Tillondsia yunckeri L. B. Smith |
| Werauhia gladioliflora (Wendland) J. R. Grant |
| Werauhia werckleana (Mez) J. R. Grant |
| *Terrestrial species.**Species referenced in situ, but not collected because |
| of limited population. ${ }^{1}$ Specimens growing in the Botanical Garden "El |
| Soconusco" (ECOSUR) |

December. In some areas, T. usneoides is exploited annually in large numbers for Nativity displays at Christmas. This is similar to the reports by Breedlove and Laughlin (1993) for other regions of Chiapas. Was also mentioned that $B$. pinguin is used to make "pineapple flavored", fresh beverages, roasting the center of suckers as food and for edging garden and agricultural plots. These uses were also mentioned for the coast of Chiapas and by Orellana et al. (2004) for the coast of Guatemala.

Table 2: Comparison between bromeliads of the Soconusco collected in 2004-2005 and those reported by Matuda (1952) and for the Department of San Marcos, Guatemala, C. A.

| Species T | This study | Matuda (1952) | Department of San <br> Marcos, Guatemala* |
| :---: | :---: | :---: | :---: |
| A. magdalenae | - | + | - |
| A. matudai | - | + | - |
| A. mexicana | + | - | + |
| B. karatas | - | + | + |
| B. pinguin | + | + | + |
| C. hahnii | + | - | + |
| C. morreniana | + | - | - |
| C. nutons | + | + | + |
| C. sessiliflora | + | - | - |
| C. triticea | - | + | - |
| Lindmania micrantha | a | + | - |
| P. densiflora | - | + | - |
| P. hemsleyana | - | + | + |
| P. heterophylla | + | + | - |
| P. imbricata | + | - | - |
| P. lymanii | - | + | - |
| P. tabulaeformis | - | + | - |
| T. acostae | - | - | + |
| T. argentea | - | + | + |
| T. brachycaulos | + | - | + |
| T. bulbosa | + | - | - |
| T. butzii | + | + | + |
| T. capitata | - | + | + |
| T. caput-medusae | + | + | - |
| T. deflexa | - | - | + |
| T. dasyliriiflora | - | + | - |
| T. fasciculata | + | + | - |
| T. flabellata | + | + | + |
| T. fuchsii | + | - | + |
| T. grandis | - | - | + |
| T. guatemalensis | + | + | + |
| T. juncea | + | + | - |
| T. makoyana | + | - | - |
| T. multicaulis | + | - | + |
| T. polystachya | - | + | - |
| T. ponderosa | - | + | - |
| T. punctulata | - | - | + |
| T. recurvata | + | + | - |
| T. schiedeana | + | + | - |
| T. tricolor | + | - | + |
| T. usneoides | + | + | + |
| T. variabilis | + | - | - |
| T. vicentina | + | - | + |
| T. xerographica | + | - | - |
| T. yunckeri | + | - | + |
| W. gladioliflora | + | + | - |
| W. werckleana | + | - | - |
| Total species: 46 | 29 | 27 | 22 |

+ Present, - Absent, *Data from: Smith (1958) and revision of the Herbarium of UVG (Guatemala, C. A.)**W. gladioliflora was reported by Matuda as Vriesia gladioliflora

The main references used in this study are Matuda's list and the records for the Department of San Marcos, Guatemala, which is adjacent to Soconusco region and for that reason a comparison of the three lists is provided (Table 2). We have only 13 of the 27 species collected by Matuda in Soconusco before 1950, probably because some species are now locally extinct or their populations are reduced. Since the first half of the twentieth century, there have been many changes to the landscape of Soconusco as a result of changes in land use due to urbanization, and changes in preferred crops and agricultural practices, which along with other complex factors could have contributed to local extinctions of some bromeliads as have been suggested for Soconuscan orchids (Ovando et al., 2005). Records from the Department of San Marcos Guatemala are scarce and only 14 species in common with Soconusco region are mentioned, probably as a result of an under exploration of the Bromeliaceae in that Department, despite the fact that, in general, Guatemalan Bromeliads has been well studied (e.g., Smith, 1958). However, if we sum the bromeliads in the three references, the Soconusco region could have 46 species.

In the Fig. 1 the distribution of sites on a regional map is shown. Most of records are in middle altitudes (500-1500 m.a.s.L.), corresponding to vegetation types of tropical rain forest, montane rain forest and shaded coffee agroecosystems.

In this manner, a current list of bromeliads native to the region of the Soconusco, Southeast Mexico was elaborated, complementing the inventory of vascular epiphytes native to Chiapas.

## ACKNOWLEDGMENTS

We thank the Fondo Mixto de Fomento a la Investigación Científica y Tecnológica CONACYT/ Gobierno del Estado de Chiapas, Project CHIS-2002-C016517, for the financial support and for the scholarship to the first author.

We are grateful to Dr. Michael Dix and his group at University of the Valley of Guatemala for advice concerning the identification of some specimens. Eng. Gamliel Velázquez Ovalle was a great collaborator in field explorations.

We thank Dr. Anne Damon for permitting us to revise bromeliads at the Regional Botanical Garden "El Soconusco" and for her interesting comments about the manuscript.

## REFERENCES

Breedlove, D.E., 1981. Flora of Chiapas. Part I. Introduction to the flora of Chiapas. The California Academy of Sciences Press, San Francisco, Ca. USA., pp: 34.
Breedlove, D.E., 1986. Listados florísticos de México IV. Flora de Chiapas. Instituto de Biología. Universidad Nacional Autónoma de México. México, DF., pp: 246.
Breedlove, D.E. and R.M. Laughlin, 1993. The Flora. In: Breedlove, D.E. and R.M. Laughlin (Eds.). the Flowering of Man. A Tzotzil Botany of Zinacantán. Vol. I. Smithsonian Contributions to Anthropology, 35. Washington, DC., pp: 115-200.

Butcher, D., 2000. Key to the genera of Bromeliaceae. J. Bromeliad Soc., 50: 105-112.
Espejo, A., A. López-Ferrari, I. Ramírez-Morillo, B.K. Holst, H.E. Luther and W. Till, 2004. Checklist of Mexican Bromeliaceae with notes on species distribution and levels of endemism. Selbyana, 25: 33-86.
Espejo-Serna, A. and A.R. López-Ferrari, 1998. Current floristic and phytogeographic knowledge of Mexican Bromeliaceae. Revista de Biología Tropical, 46: 493-513.
Luther, H.E. and E. Sieff, 1998. An alphabetical list of bromeliad binomials. 6th Edn., The Bromeliad Society Inc. Oregon, USA., pp: 92.
Matuda, E., 1952. Las bromeliáceas de Chiapas. Anales Inst. Biol. UNAM., 23: 85-153.
Mazariegos, G.Y., G. Velázquez, M. Álvarez and I. Ovando-Medina, 2004. Plan de manejo para el aprovechamiento de bromelias nativas en agroecosistemas de cafetal en Centroamérica. Mesoamericana, 8: 83.
Miranda, F., 1942. Estudios de la vegetación de México. II. Observaciones preliminares sobre la vegetación de la región de Tapachula, Chiapas. Anales Inst. Biol. UNAM., 13: 53-70.
Miranda, F., 1957. La vegetación de la vertiente del Pacífico de la Sierra Madre de Chiapas (México) y sus relaciones florísticas. Proceedings 8th Pac. Sci. Congr., 4: 438-453.
Orellana, A., R. Guerra and J.A. Dávila, 2004. Sondeo agrosocioeconómico y recolección de cultivares de muta (Bromelia sp.) en el oriente de Guatemala. Universidad de San Carlos. Guatemala, CA., pp: 11-23.

Ovando, I., A. Damon, D. Ambrosio, V. Albores, R. Bello, L. Adriano and M. Salvador, 2005. Isolation of endophytic fungi and their mycorrhizal potential for the tropical epiphytic orchids Cattleya skinneri, C. aurantiaca and Brassavola nodosa. Asian J. Plant Sci., 4: 309-315.
Smith, L.B., 1958. Bromeliacae. In: Standley, P.C. and J.A. Steyemark (Eds.). Flora of Guatemala. Fieldiana Botany 24: 380-476.

Utley, J.F., 1994. Bromeliaceae. In: Davidse, G., M. Sousa and A. Chater (Eds.). Flora Mesoamericana, 6: 89-156. Universidad Nacional Autónoma de México. The Natural History Museum (London). Missouri Botanical Garden. Mexico, DF.

