

International Journal of Botany

ISSN: 1811-9700

Variation of Some Nutritional Constituents and Fatty Acid Profiles of Chlorella vulgaris Beijerinck Grown under Auto and Heterotrophic Conditions

¹Mostafa M. El-Sheekh and ²Alaa A. Fathy ¹Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt ²Department of Botany, Faculty of Science, Alexandria University, Alexandria, Egypt

Abstract: This study is an attempt to evaluate the nutritional value of *Chlorella vulgaris* Beijerinck grown under autotrophic and heterotrophic conditions concerning their content of carotenoids, protein, proline, total free amino acids and fatty acids. Chlorophyll a (Chl.a) content of autotrophic cells of *C. vulgaris* was double that estimated in heterotrophic cells, while chlorophyll b (Chl.b) content of autotrophic cells was nearly half the value recorded for heterotrophic cells. Carotenoids (Car.) content of heterotrophic cultures decreased by 30.82% compared to that value of autotrophic cells. There was a slight decrease in the protein content of *C. vulgaris* under heterotrophic conditions. When the composition of total free amino acids and proline of *C. vulgaris* grown under autotrophic conditions is compared to that grown heterotrophically, it was observed that a significant increase in total free amino acids and proline in heterotrophic cultures. The percentage of most fatty acids of heterotrophic cells was relatively higher than autotrophic ones. There was no qualitative difference between autotrophic and heterotrophic cultures, except for the fatty acid 16:02 which was absent under autotrophic conditions. Present results showed that *C. vulgaris* has quite a simple qualitative fatty acids composition compared to other chlorophycean species, considering production of natural food supplements and/or natural pharmaceutical products, it is strongly recommended using autotrophic cells of *Chlorella* rather than using those of heterotrophic cells for such purpose.

Key words: Chlorella vulgaris, nutritional value of algae, green algae, light

INTRODUCTION

Natural products play an important role in the drug production (Cragg *et al.*, 1997). Thus, the investigation of new algal chemical compounds, as natural source of natural products, has proved to be a promising area of pharmaceutical study (Blunt *et al.*, 2005; Singh *et al.*, 2005; Cardozo *et al.*, 2007).

Carotenoids are natural pigments exercising important biological functions in algae, plants and animals (Polivka and Sundström, 2004; Cardozo *et al.*, 2007). For human nutritional purposes, some carotenoids offer provitamin A activity (Mayne, 1996). They are directly providing photoprotection against UV light photooxidation in the skin beside their key role factor in reducing the incidence of many diseases (Cantrell *et al.*, 2003; Astley *et al.*, 2004; Sies and Stahl, 2004; Aust *et al.*, 2005).

Polyunsaturated fatty acids (PUFAs), especially the essential omega-6 and omega-3 fatty acids, play key roles in nearly all cellular metabolic process in human body because there is no synthetic mechanism for their production inside the body (Funk, 2001; Sayanova

and Napier, 2004). Thus an external source is needed to provide the human body with its need of such essential fatty acids. Most of fatty acids production processes investigated to date have been based on photoautotrophic growth (Sánchez *et al.*, 2002; Molina *et al.*, 2003).

It is well known that algae are at the bottom of the aquatic food chain. The primary determinant in establishing the food quality transferred through successive levels of the food web appears to be the biochemical composition of the algae (fatty acids, amino acids, protein and other pharmaceutical products) (Droop, 1974; Brown and Miller, 1992; Morimoto *et al.*, 1995; Shibata *et al.*, 2003; Cardozo *et al.*, 2007).

Algae are considered as the main natural source for both carotenoids and essential fatty acids beside other valuable nutritional value. The green alga *Chlorella* has attracted considerable interest for commercial production of functional food such as polyunsaturated fatty acids by *C. sorokiniana* (Chen and John, 1991) and luetin by *C. protothecoides* (Shi et al., 2002). *Chlorella zofingiensis* has been proposed as a promising producer

of the high-value carotenoids (Orosa *et al.*, 2000; Ip and Chen, 2005). The correlations between cultivation conditions and percentage of carotenoids, protein and fatty acids contents were subjects of many studies (Piorreck *et al.*, 1984; Vladimirova *et al.*, 2000; Petkov and Garcia, 2007).

Fatty acids yield and productivity in photoautotrophic systems are low, because the insufficiency of light caused by mutual shading of cells (Barclay et al., 1994; Chen et al., 1996). For enhancement of fatty acid production by microalgae, the development of a heterotrophic growth is desirable (Wen, 2001). The concept that autotrophic microorganisms can utilize only inorganic carbon dioxide as a carbon source has been modified over years (Shugarman and Appleman, 1966; Bennett and Hobbie, 1972; Cho et al., 1981; Feng et al., 2005).

In this study, an attempt was made to evaluate the nutritional value of *Chlorella vulgaris* grown under autotrophic and heterotrophic conditions concerning their content of carotenoids, protein, proline, total free amino acids and fatty acids. It was an attempt too, to answer the question: Does heterotrophy enhance fatty acids production? Also, validity of fatty acids composition as stable taxonomic feature for the genus *Chlorella* was briefly discussed as aside issue.

MATERIALS AND METHODS

Culture conditions: The modified basal medium (Chen et al., 1996; Wu and Shi, 2007) containing $1250 \text{ mg L}^{-1} \text{ KH}_2 \text{PO}_4, 1000 \text{ mg L}^{-1} \text{ MgSO}_4, 500 \text{ mg L}^{-1}$ EDTA, $114.2 \, \text{mg} \, \text{L}^{-1} \, \text{H}_3 \text{BO}_3$, $111 \, \text{mg} \, \text{L}^{-1} \text{CaCl}_2$, $49.8 \, \text{mg} \, \text{L}^{-1}$ $FeSO_4$, 88.2 mg L^{-1} ZnSO₄, 14.2 mg L^{-1} MnCl₂, 7.1 mg L^{-1} MoO_3 , 15.7 mg L⁻¹ CuSO₄ and 4.9 mg L⁻¹ Co(NO₃)₂ and supplemented with 10 g L-1 glucose (as the carbon source) was used for heterotrophic cultivations of Chlorella vulgaris. Cultivation of axenic C. vulgaris was carried out in 250 mL flasks (each containing 100 mL of medium) (all experiments conducted from 2006 to 2008). All media in the flasks were sterilized in autoclave at 121°C for 20 min. The cultures were incubated at 30°C with orbital shaking at 130 rpm under darkness. Autotrophic cultures were continuously illuminated with 40 W fluorescent lamps (70 µmol/m²/sec). Experiment for each trial was carried out in triplicates. Each culture was tested occasionally for contamination by bacteria or fungi by incubating an aliquot with peptonic agar at 30°C for at least 2 days in the dark. Cultures used for chemical analysis were harvested after 9 days during the exponential phase.

Estimation of pigments: Algal cells were homogenized at 1,000 rpm for 1 min, using 100% acetone (50 mL for each g sample). The homogenate was filtered through two layer cheese cloths and was centrifuged at 2,500 rpm for 10 min. The supernatant was separated and the absorbance was read at 662, 645 and 470 nm for Chl.a, Chl.b and Carotenoids (Car.), according to the method described by Dere *et al.* (1998). The amount of these pigments was calculated according to the formulas of Lichtenthaler and Wellburn (1985):

Chl.a = 11.75
$$A_{662}$$
-2.350 A_{645}

Chl.b =
$$18.61 A_{645} - 3.960 A_{662}$$

Car. =
$$[1000 A_{470} - 2.270 Chl.a - 81.4 Chl.b]/227$$

Estimation of total free amino acids: Total free amino acids were estimated according to the method of Yemm and Cocking (1955). One milliliter aliquot of the acidified extract was mixed with 2 mL sodium acetate buffer (pH 6.5) and 1 mL freshly prepared ninhydrin reagent. The resulting color was then read at 570 nm with Perkin Elmer spectrophotometer. Leucine was used as a standard.

Estimation of free proline: Free proline estimation was carried out using the acid ninhydrin method of Bates *et al.* (1973). The absorbance was read at 520 nm using Perkin Elmer spectrophotometer and the proline concentration was calculated from a proline standard curve.

Estimation of protein: The protein was estimated according to Folin-Ciocalteu method described by Hartree (1972) and the resulting color was measured at 650 nm using Perkin Elmer spectrophotometer, related to a standard curve of bovine serum albumin.

Determinations of lipids and fatty acid composition: Fatty acids were analyzed by Gas Liquid Chromatography (GLC) (Schimadzu GC4-CM). The relative peak areas on the chromatogram were estimated after tracing them on sectional paper and thus the content (%) of different fatty acids was estimated. The conditions for GLC analysis were: column size: 3×3 mm id; carrier gas: nitrogen; fuel: hydrogen-air mixture; hydrogen flow rate: 1 mL min⁻¹; air flow rate: 0.5 mL min⁻¹; detector: FID; detector temperature: 270°C; column temperature: 180°C. Extraction and methanolysis were performed according to the method described by Chalvardjian (1964) and Moneam and Ghoneim (1986).

Experimental design and statistical analysis: All experiments were prepared in triplicate and each experiment was repeated 2 times. Pigment, protein, total

free amino acids, proline and fatty acid contents were analyzed in triplicate. The mean of all repetitions was calculated and analyzed by one-way analysis of variance (ANOVA) and correlation coefficients analysis, using the COSTAT 2.00 statistical analysis software manufactured by Cohort Software Company.

RESULTS AND DISCUSSION

Chlorophyll a (Chl.a) content of autotrophic cells was double that estimated in heterotrophic cells (4.481 and 2.672 mg g⁻¹ DW, respectively). On contrary, chlorophyll b (Chl.b) content of autotrophic grown cells was nearly half the value recorded for heterotrophic cells (0.563 and 1.071 mg g⁻¹ DW, respectively). The heterotrophic ratio of Chl.a to Chl.b lost about 68.65% of its value in autotrophic grown cells. Carotenoids (Car.) content of heterotrophic cultures decreased by 30.82% compared to its value for autotrophic cultures. The results in Table 1 showed that the significantly enhancement effect of light on Chl.a and Car., biosynthesis seemed remarkably under photoautotrophic conditions. However, under heterotrophic conditions, Chl.b content was significantly increased on the expense of the production of other pigments. These results suggest that there is an organic carbon source like glucose in the culture medium and in absence of light, C. vulgaris favor the formation of Chl.b. This agree with the study of Misonou and Pachlavuni (1986), who suggested that under heterotrophic conditions the synthesis pathways of Chl.a and carotenoids are blocked or at least slow down, while the synthesis pathway of Chl.b was greatly promoted. Another possible explanation was driven by Vladimirova (1976), who found ultra structural alterations in the photosynthetic apparatus of Chlorella sp. grown heterotrophically. It is possible that present result of the variation in pigment contents under different culture conditions, in this study, is related to such suggestion.

On comparing protein content of *C. vulgaris* cells grown under autotrophic and heterotrophic conditions, there was a slight decrease (6.05%) in the protein content (Table 2). When the composition of total free amino acids and proline of *Chlorella* grown autotrophically is compared to that grown heterotrophically, it was found that a significant increase in total free amino acids and proline (65.86 and 42.86%, respectively) (Table 2). It seemed that heterotrophy negatively affect the protein synthesis, while positively affect and promoted synthesis of total free amino acids and proline. That is may be due to the heterotrophic cells did not need to use the available amino acids to build up protein molecules or due to degradation of protein molecules. At the same time, the

Table 1: Contents (mg g⁻¹ DW) and correlation coefficients of chlorophyll a, chlorophyll b and carotenoids of *Chlorella vulgaris* grown under autotrophic and heterotrophic conditions for 9 days

Pigment	Autotrophic	Heterotrophic	Degree of significance	
Chl.a	4.481 ± 0.7	2.672 ± 0.3	-	
Chl.b	0.563 ± 0.2	1.071 ± 0.2	-	
Chl.a/chl.b ratio	7.959 ± 0.7	2.495 ± 0.5	-	
Carotenoids	6.064 ± 0.8	4.195 ± 0.4	-	
Variables				
Chl.a				
Chl.b			**	
Chl.a /chl.b			***	
Carto.			***	
Chl.b				
Chl.a/chl.b			**	
Carto.			*	
Chl.a/chl.b				
Carto.			***	

Data expressed as Mean±SD (n = 3). *Mean values significant at $p \le 0.05$; **Mean values significant at $p \le 0.01$, ***Mean values highly significant at $p \le 0.001$

Table 2: Contents and correlation coefficients of protein, proline and Total Free Amino Acids (TFAA) of *Chlorella vulgaris* grown under autotrophic and heterotrophic conditions for 9 days

	•		Total free	•
Growth	Protein	Proline	amino acids	Degree of
condition	$(\text{mg g}^{-1} \text{ DW})$	$(\text{mg g}^{-1} \text{ DW})$	$(\text{mg g}^{-1} \text{ DW})$	significance
Autotrophic	388.95±21.3	301.97±16.1	6.438 ± 0.9	
Heterotrophic	365.40±11.5	7040.59±23.4	9.776 ± 2.2	
Variables				
Protein				
Proline				ole ole ole
TFFA				ole ole ole
Proline				
TFAA				***

Data expressed as Mean±SD (n = 3). ***Mean values highly significant at $p \le 0.01$

increase of amino acids and proline was expected, due its known accumulation behavior in plants subjected to different environmental stresses as light availability (Hashimoto *et al.*, 1982; Borowitzka, 1988; Sansawa and Endo, 2004).

The composition of fatty acids of C. vulgaris is shown in Fig. 1 and 2. The percentage of most fatty acids of heterotrophy cells was relatively higher than autotrophic cells (Fig. 2). Only, three fatty acids (12:0, 14:0 and 20:0) showed different trend, where they increased under autotrophic conditions rather than heterotrophic conditions. However, except for the fatty acid 16:02 which was absent under autotrophic conditions, there was no qualitative difference between autotrophic and heterotrophic cultures, (Fig. 1, 2). Such quantitative differences could be accepted as temporary physiological response to variation in culture conditions (Shinichi et al., 1983; Zhukova and Aizdaicher, 1995; Rosa et al., 2005). The biological importance of the utilization mechanism of glucose by Chlorella is not completely understood, but whatever, the natural circumstances which make autotroph grown Chlorella switch to heterotrophy, a

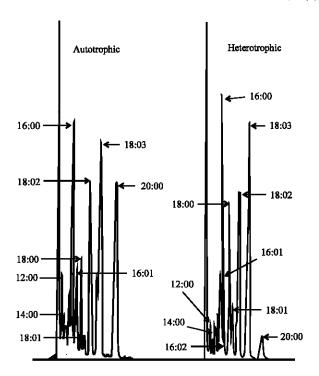


Fig. 1: GLC chromatogram of fatty acids extracted from Chlorella vulgaris grown under autotrophic and heterotrophic conditions for 9 days

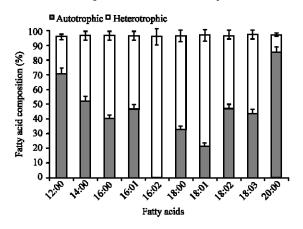


Fig. 2: Difference in percentage composition of individual fatty acids extracted from *Chlorella vulgaris* grown under autotrophic and heterotrophic conditions for 9 days

supply of exogenous carbon source might be provided (White, 1974; Cho et al., 1981; Hashimoto et al., 1982; Ip and Chen, 2005). In the presence of exogenous carbon like glucose, the growth and fatty acids production were enhanced (Cho et al., 1981; Feng et al., 2005).

However, the most important significant question is how one explains the qualitative variations in fatty acids

Table 3: Correlations coefficients for fatty acids extracted from *Chlorella*vulgaris grown under autotrophic and heterotrophic conditions for 9 days

	Variables								
Fatty									
acids	20:00	18:03	18:02	18:01	18:00	16:02	16:01	16:00	14:00
12:00	oje oje oje	***	NS	***	***	**	*	****	*
14:00	96 96	**	NS	**	***	***	sje	***	
16:00	oje oje oje	***	NS	***	944 944 944	***	sje		
16:01	*	*	NS	*	*	*			
16:02	oje oje oje	***	NS	360 Me 360	oje ojeoje				
18:00	oje oje oje	***	NS	***					
18:01	oje oje oje	***	NS						
18:02	NS	NS							
18:03	***								

NS: Not significant; *Mean values significant at $p \le 0.05$; **Mean values significant at $p \le 0.01$; ***Mean values highly significant at $p \le 0.001$

of different species/phenotypes of the genus Chlorella? Present results showed that C. vulgaris has quite a simple qualitative fatty acids composition compared to other chlorophycean species. The qualitative composition of fatty acids varied not only at species level, but also varied in different phenotypes of the same species of Chlorella (Nichols, 1965; De Mort et al., 1972; Antonyan et al., 1986; Vladimirova et al., 2000; Petkov and Garcia, 2007). Petkov and Garcia (2007) stated that there is no difference in qualitative composition of fatty acids of the genus Chlorella. Although, they believed in the stability of qualitative fatty acids composition as a characteristic feature of the genus Chlorella, they drove a lot of evidences that showed a great variability in qualitative fatty acid composition in different species of Chlorella. Meanwhile, they accept the idea of using qualitative fatty acids composition as a taxonomic feature of particular species of Chlorella, they presented many explanations of the variability in qualitative fatty acids composition (Table 3). For example, they revealed the presence of the fatty acids 15:0, 17:0 and 17:1 as results of culture contamination with bacteria, in agreement with others (De Mort et al., 1972; Wacker et al., 2002). Also, they explained the presence of the fatty acids 20:0, 20:1 and 20:2 on the basis of the presence of impurities with similar retention time in GLC which agreed with the results obtained by Antonyan et al. (1986) and Homova et al. (1986).

Due to the obvious variability in both qualitative and quantitative fatty acid compositions of *Chlorella* in this study compared to other recent reports, one should pay a lot of attention to come into acceptable conclusion for such issue. Thus, it is better to perform much detailed investigations on qualitative fatty acids composition for different *Chlorella* species using more sophisticated and precise techniques to come into acceptable conclusion.

Finally, considering production of natural food supplements or/and natural pharmaceutical products, it's strongly recommended using autotrophic cells of *Chlorella* rather than using those of heterotrophic cells for such purpose. This is because the richness in carotenoids, protein and fatty acids contents of autotrophic *Chlorella*.

ACKNOWLEDGMENT

The authors are much grateful to Dr. Mohamed Shiboob (Faculty of Agriculture, University of Alexandria) for his help in essential oil analysis.

REFERENCES

- Antonyan, A.A., G.I. Meleshko, Y.V. Pepelyaev, V.P. Naidina and N.I. Sukhova, 1986. Comparative characterization of fatty acid of lipids from various algae. Prikl. Biokim. Mikrobiol., 22: 570-576.
- Astley, S.B., D.A. Hughes, A.J.A. Wright, R.M. Elliott and S. Southon, 2004. DNA damage and susceptibility to oxidative damage in lymphocytes: effect of carotenoids in vitro and in vivo. Br. J. Nutr., 91: 53-61.
- Aust, O., W. Stahl, H. Sies, H. Tronnier and U. Heinrich, 2005. Supplementation with tomato-based products increases lycopene, phytofluene and phytoene levels in human serum and protects against UV-lightinduced erythema. Int. J. Vitamin Nutr. Res., 75: 54-60.
- Barclay, W.R., K.M. Meager and J.R. Abril, 1994. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J. Applied Phycol., 6: 123-129.
- Bates, L.S., R.P. Walderren and I.D. Teare, 1973. Rapid determination of free proline for water-studies. Plant Soil, 39: 205-207.
- Bennett, M.E. and J.E. Hobbie, 1972. The uptake of glucose by *Chlamydomonas* sp. J. Phycol., 8: 389-392.
- Blunt, J.W., B.R. Copp, M.H.G. Munro, P.T. Northcote and M.R. Prinsep, 2005. Marine natural products. Nat. Prod. Rep., 22: 16-61.
- Borowitzka, M.A., 1988. Vitamins and Fine Chemicals from Microalgae. In: Micro-Algal Biotechnology, Borowitzka, M.A. and L.J. Borowitzka (Eds.). Cambridge Univ. Press, Cambridge, pp. 153-196.
- Brown, M.R. and K.A. Miller, 1992. The ascorbic acid content of eleven species of microalgae used in marine culture. J. Applied Phycol., 4: 205-215.

- Cantrell, A., D.J. McGarvey, T.G. Truscott, F. Rancan and F. Böhm, 2003. Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys., 412: 47-54.
- Cardozo, K.H.M., T. Guaratini, M.P. Barros, V.R. Falcão and A.P. Tonon *et al.*, 2007. Metabolites from algae with economical impact. Comparative Biochem. Physiol., 146: 60-78.
- Chalvardjian, A.M., 1964. Fatty acids of brown and yellow fat in rats. Biochem. J., 90: 518-521.
- Chen, F. and M.R. John, 1991. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic *Chlorella sorokiniana*. J. Applied Phycol., 3: 203-209.
- Chen, F., Y. Zhang and S.Y. Guo, 1996. Growth and phycocyanin formation of *Spirulina plantensis* in photoheterotrophic cultures. Biotechnol. Lett., 18: 603-608.
- Cho, B., N. Sauer, E. Komor and W. Tanner, 1981. Glucose induces two amino acid transport systems in *Chlorella*. Proc. Natl. Acad. Sci., 78: 3591-3594.
- Cragg, G.M., D.J. Newman and K.M. Snader, 1997. Natural products in drug discovery and development. J. Nat. Prod., 60: 52-60.
- De Mort, C.L., R. Lowry, I. Tinsley and H.K. Phinney, 1972. The biochemical analysis of some estuarine phytoplankton species. I. Fatty acid composition. J. Phycol., 8: 211-216.
- Dere, A., T. Güneş and R. Sivaci, 1998. Spectrophotometric determination of Chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Trk. J. Bot., 22: 13-17.
- Droop, M.R., 1974. Heterotrophy of Carbon. In: Algal Physiology and Biochemistry, Stewart, W.D.P. (Ed.). Blackwell Scientific Press, Oxford.
- Feng, F., W. Yang, G. Jiang, T. Xu and T. Kuang, 2005. Enhancement of fatty acid production of *Chlorella* sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochem., 40: 1315-1318.
- Funk, C.D., 2001. Prostaglandins and leukotrienes: Advances in eicosanoids biology. Science, 294: 1871-1875.
- Hartree, E.F., 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem., 48: 422-427.
- Hashimoto, S., Y. Setoyama, T. Yokokura and M. Mutai, 1982. Effects of *Chlorella* phospholipid on the aortic collagen and elastin metabolism and the serum lipid content in rats with experimental atheriosclerosis. Exp. Mol. Pathol., 37: 150-155.

- Homova, T., S. Gussakova, A. Glushenkova and I. Travkina, 1986. Lipids of *Chlorella vulgaris* extracts. Khim. Prir. Soedin., 3: 284-288.
- Ip, PF. and F. Chen, 2005. Production of astaxanthin by the green microalga *Chlorella zofingiensis* in the dark. Process. Biochem., 40: 733-738.
- Lichtenthaler, H.K. and A.R. Wellburn, 1985. Determination of total carotenoids and chlorophyll a and b of leaf in different solvents. Biol. Soc. Trans., 11: 591-592.
- Mayne, S.T., 1996. β-Carotenoid, carotenoids and disease prevention in humans. FASEB. J., 10: 690-701.
- Misonou, T. and I.K. Pachlavuni, 1986. Photosynthetic pigments of *Chlorella* sp. K cultured under photoauto-, mixo- and chemohetero-trophic growth conditions. Jap. J. Phycol., 34: 163-170.
- Molina, G.E., E.H. Belarbi, F.F.G. Acién, M.A. Robles and Y. Chisti, 2003. Recovery of microalgal biomass and metabolites: Process options and economics. Biotechnol. Adv., 20: 491-515.
- Moneam, N.M.A. and T. Ghoneim, 1986. Gas chromatographic analysis of total fatty acids extracted from *Schinus terebenthifolius* berries. J. Chromatogr., 361: 391-395.
- Morimoto, T., A. Nagatsu, N. Murakami, J. Sakaibara, H. Tokuda, H. Nishino and A. Iwashima, 1995. Anti-tumor promoting glyceroglycolipids from green alga, *Chlorella vulgaris*. Phytochemistry, 40: 1433-1437.
- Nichols, B., 1965. Light-induced changes in the lipids of *Chlorella vulgaris*. Biochem. Biophys. Acta, 106: 274-279.
- Orosa, M., E. Torres, P. Fidalgo and J. Abalde, 2000. Production and analysis of secondary carotenoids in green algae. J. Applied Phycol., 12: 553-556.
- Petkov, G. and G. Garcia, 2007. Which are fatty acids of the green alga *Chlorella*? Biochem. Syst. Ecol., 35: 281-285.
- Piorreck, M., K.H. Baasch and P. Pohl, 1984. Biomass production, total protein, chlorophyll, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry, 23: 207-216.
- Polivka, T. and V. Sundström, 2004. Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem. Rev., 104: 2021-2071.
- Rosa, A., D. Deidda, A. Serra, M.A. Dessi and R. Pompei, 2005. Omega-3 fatty acid composition and biological activity of three microalgae species. J. Food Agric. Environ., 3: 381-389.

- Sansawa, H. and H. Endo, 2004. Production of intercellular phytochemicals in *Chlorella* under heterotrophic conditions. J. Biosci. Bioeng., 98: 437-444.
- Sánchez, M.A., G.M.C. Cerón, C.F. García, G.E. Molina and Y. Chisti, 2002. Growth and biochemical characterization of micoalgal biomass produced in bubble column and airlift photobioreactors: Studies in fed-batch culture. Enzyme Microbiol. Technol., 31: 1015-1023.
- Sayanova, O.V. and J.A. Napier, 2004. Eicosapentaenoic acid: Biosynthesis routes and the potential for synthesis in transgenic plants. Phytochemistry, 65: 147-158.
- Shi, X.M., Y. Jiang and F. Chen, 2002. High-yield production of lutein by the green microalga *Chlorella protothecoides* in heterotrophic fed-batch culture. Biochem. Prog., 18: 723-727.
- Shibata, S., K. Oda, N. Onodera-Masuoka, S. Matsubara and H. Kikuchi-Hayakawa et al., 2003. Hypocholestrolemic effect of indigestible fraction of *Chlorella vulgaris* in cholesterol-fed rats. J. Nutr. Sci. Vitaminol., 47: 373-377.
- Shinichi, T., Y. Shigehisa, A. Kanazawa and H. Hachiro, 1983. Effects of water temperature and salinity on eicosapentaenoic acid level of marine *Chlorella*. Bull. Jap. Soc. Sci. Fish., 49: 805-809.
- Shugarman, P.M. and D. Appleman, 1966. Chlorophyll synthesis in *Chlorella*. II. Effect of glucose and light intensity on the lag phase. Plant Physiol., 41: 1701-1708.
- Sies, H. and W. Stahl, 2004. Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr., 24: 173-200.
- Singh, S., B.N. Kate and U.C. Banerjee, 2005. Bioactive compounds from cyanobacteria and microalgae: An overview. Crit. Rev. Biotechnol., 25: 73-95.
- Vladimirova, M.G., 1976. Changes in ultrastructure of the cell of *Chlorella* sp. K. during its functional reorientations. Fiziologia Rastenii, 23: 1180-1187.
- Vladimirova, M.G., G.L. Klyachko-Gurvich, I.P. Maslova, I.A. Zholdakov and E.D. Bartsevich, 2000. A comprehensive study of *Chlorella* sp. IP-PAS C-48 and revision of its taxonomic position. Russ. J. Plant Physiol., 47: 644-654.
- Wacker, A., P. Becker and E.V. Elert, 2002. Food quality effects of unsaturated fatty acids on larvae of the Zebra mussel *Dreissena polymorpha*. Limnol. Oceanogr., 47: 1242-1248.
- Wen, Z.Y., 2001. A High Yield and Productivity Strategy for Eicosapentaenoic Acid Production by the Diatom *Nitzschia laevis* in Heterotrophic Culture. The University of Hong Kong, Hong Kong.

- White, A.W., 1974. Growth of two facultative heterotrophic marine centric diatoms. J. Phycol., 10: 292-300.
- Wu, Z. and X. Shi, 2007. Optimization for high-density cultivation of heterotrophic *Chlorella* based on a hybrid neural network model. Lett. Applied Microbiol., 44: 13-18.
- Yemm, E.W. and E.C. Cocking, 1955. The determination of amino acids with ninhydrin. Analystic, 80: 209-213.
- Zhukova, N. and N. Aizdaicher, 1995. Fatty acid composition of 15 species of marine microalgae. Phytochemistry, 39: 351-356.