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Abstract
Background and Objective: UDP-glucuronosyltransferases 1A8 (UGT1A8) is an important enzyme responsible for glucuronidation of
numerous xenobiotic/drugs. The objective of  this study was to establish a substrate selectivity model through pharmacophore approach.
Methodology: Thirty-six substrates of UGT1A8 collected from the literature were divided into training (n = 24) and test sets (n = 12). The
Discovery Studio 2.5 (DS) software was utilized to establish the pharmacophore model. The HypoGen algorithm that  was  available  in
3D QSAR  Pharmacophore Generation protocol was applied to construct pharmacophore hypotheses. Correlation analyses were
performed between the predicted activity and the experimental activity of the training and test sets. Results: The established
pharmacophore  model  consisted  of  2  hydrogen-bonding  acceptors  and  one  aromatic  ring.  The  best  pharmacophore  model
(hypothesis 1) was statistically significant with high value of correlation coefficient and low value of difference between the null cost and
the total cost. Besides, the predicted catalysis activities were within one log residual of experimental value for substrates in the test set.
Conclusion: Pharmacophore model for UGT1A8 was successfully constructed for the first time in this study. The established model
contributed  to  an  improved  understanding  of  the  UGT1A8’s substrate selectivity. Besides, this model would be an efficient tool for
high-throughput prediction of UGT1A8 metabolism.
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INTRODUCTION

Glucuronidation is a major pathway for xenobiotic/drugs
metabolism and excretion in humans and other mammalian
species1. This reaction occurs via transferring a glucuronic acid
from cofactor UDP-glucuronic acid (UDPGA) to a compound
which usually contains hydroxyl, carboxyl or nitrogen group2.
Glucuronidation can enhance hydrophilicity of a compound,
resulting in enhanced excretion rate of xenobiotic/drugs from
the body1. In most instances, the glucuronidated metabolites
are  inactive3.  However,  glucuronidation  can  generate
pharmacologic  or  toxicologic  activity  in  some  instances3.
For example,  morphine-6-glucuronide  is  a  more  potent
opioid  agonist than morphine4. On the basis of amino acid
sequence  identity, UDP-glucuronosyltransferases  (UGTs),
which specifically catalyze the reaction of glucuronidation, are
divided into four families: UGT1, UGT2, UGT3 and UGT85. The
most  important  drug-conjugating  UGTs  are  UGT1A  and
UGT2B family1. Of note, UGT 1A8 expressed in the small
intestine and colon plays a key role in clearance of many
compounds such as isoflavones, gingerols and curcumin ana
logs6-8.

Pharmacophore model is a collectivity of electronic and
steric  features  which  is  essential  for  the  optimal
supramolecular interaction with a specific biologic target to
initiate (or block) its biologic response9. There are 2 kinds of
pharmacophore   model,   namely,   ligand-based   and
structure-based  pharmacophore  model10.  Ligand-based
pharmacophore model is constructed by overlying a group of
active compounds and extracting common chemical features
which are necessary for their bioactivity. On the contrary,
structure-based pharmacophore model can only be utilized
when a three dimensional (3D) structure of a biological target
is available. Besides, pharmacophore techniques have been
widely used as a 3D-QSAR (3D-Quantitative structure-activity
relationship)  method  to  predict  ADME  (Absorption,
Distribution, Metabolism and Excretion) properties in recent
years11. The substrate selectivity of many UGTs (e.g., UGT1A1,
UGT1A3, UGT1A7) and cytochrome P450 enzymes involved in
the oxidation of much xenobiotic/drugs (e.g., CYP 1A2, 2B6,
2C9 and 3A4) have been well understood and predicted using
pharmacophore approach11,12.

High rate of drug attritions usually caused by the poor
properties of ADME13. Hence, it is necessary to deal  with
ADME  issues  earlier  in  the  drug  discovery  cycle  using
effective computational tools. However, QSAR models are still
unavailable  for  UGT1A8  enzyme.  Therefore,  a  predictive
QSAR model for UGT1A8 is of great value in an attempt to
predict the glucuronidation  of  drug  candidates.  In  this
study, we  have  evaluated  the  potential  of  pharmacophore

approach in quantifying the substrate selectivity of UGT1A8. 
Discovery Studio 2.5 was used to build the pharmacophore
model. Thirty-six UGT1A8's substrates collated from the
literature  were  divided  into  two  sets,  namely,  training  set
(n = 24) and test set (n = 12). The predictive power of the
established pharmacophore model was validated via cost
analysis, Fisher's randomization test and test set verification.
It was demonstrated for the first time that the pharmacophore
model possessed predictive capability was successfully
constructed  for  UGT1A8,  contributing  an  improved
understanding of the UGT1A8’s substrate selectivity and a
more  comprehensive  prediction  of  UGT-mediated
metabolism.

MATERIALS AND METHODS

Data preparation: For the pharmacophore modeling study,
(Fig. 1) a series of thirty-six diverse substrates of UGT1A8 were
collected from the literature at Jinan University in 2016. The
intrinsic clearance value (CLint) that derived from kinetic
determination was regarded as glucuronidation activity. The
CLint values and references for all substrates were listed at
Table 1 and 2. Based on the principles of wide coverage of the
activity (four orders of magnitude) and chemical structural
diversity,  all  substrates were  randomly  divided  into  training
(n = 24) and test sets (n = 12). The training set was applied to

Table 1: Experimental UGT1A8 activities [(CLint or log(CLint)] for the training set
compounds

CLint

Compound µL mgG1 minG1 Log (CLint) Reference
YM-542845 5.03 0.70 Shiraga et al.14

$ Lapachone 143 2.15 Cheng et al.15

$ Estradiol 2.45 0.39 Manevski et al.16

Naphthol 27.3 1.44 Manevski et al.16

4-MU 8.95 0.96 Manevski et al.16

Piceatannol 58.2 1.76 Miksits et al.17

Jaceosidin 59.5 1.77 Song et al.18

Psoralidin 170.0 2.23 Sun et al.19

6-gingerol 28.5 1.45 Wu et al.8

10-gingerol 94.3 1.97 Wu et al.8

RAO-8 138 2.14 Lu et al.6

RAO-9 1.08 0.03 Lu et al.6

Genistein 1810 3.26 Tang et al.7

Prunetin 420 2.62 Tang et al.7

CBN 11.1 1.05 Mazur et al.20

Morphine 0.72 -0.15 Ohno et al.21

Tilianin 14.7 1.67 Dai et al.22

Acacetin 469 2.67 Dai et al.22

Hesperetin 203 2.31 Brand et al.23

T-5224 34.0 1.53 Uchihashi et al.24

8-OH-warfarin 222 2.35 Zielinska et al.25

Bavachinin 414 2.62 Lv et al.26

Thyroxine 6.60 0.82 Yamanaka et al.27

DRF-6574 74.0 1.87 Muzeeb et al.28
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Fig. 1(a-b): Chemical structures of the thirty-six UGT1A8 substrates collated from literature. CLint values were included in
parentheses. The unit of CLint values is L mgG1 minG1. References are provided in Supplementary materials, (a) Panel
24 UGT1A8 substrates in the training set, (b) Panel 12 UGT1A8 substrates in the test set

Table 2: Experimental UGT 1A8 activities [(CLint or log (CLint)] for the test set
compounds

CLint

Compound µL mgG1 minG1 Log (CLint) References
Leonurine 8.20 0.91 Tan et al.29

Entacapone 16.4 1.22 Manevski et al.16

Darexaban 51.5 1.72 Shiraga et al.30

Macelignan 340 2.53 Liu et al.31

8-gingerol 94.3 1.97 Wu et al.8

Capsaicin 14.2 1.15 Sun et al.32

RAO-19 36.8 1.57 Lu et al.6

OTS167 72 1.86 Ramirez et al.33

Jatrorrhizine 0.77 -0.11 Zhou et al.34

Eupatilin 482 2.68 Lee et al.35

MEHP 4.07 0.61 Hanioka et al.36

Raloxiffen 111 2.05 Kemp et al.37

construct the pharmacophore model, while the test set was
served to evaluate the external predictive ability of the
established model. The three  dimensional (3D) structures of
all compounds were  prepared  by  Discovery  Studio  2.5  (DS)
(Accelrys,  US).  Gasteiger-Marsili  method  was  used  to
determine partial atomic charges.

Pharmacophore model generation: The generation of
pharmacophore model was performed using Discover Studio
2.5 (DS) (Accelrys, US). Firstly, the Generate Conformation
protocol  was used to generate conformations for substrates
in the training set. During the generation of diverse
conformations     for     each     molecule,     a     maximum     of
255 conformations within an energy range of 20 kcal molG1

was set. “Best” method was implemented for the
conformation fitting and generation. All other parameters
were kept as their default values. Secondly, the HypoGen
algorithm available in 3D QSAR Pharmacophore Generation
protocol was utilized to build pharmacophore hypotheses. A
set of eleven chemical features including Hydrogen-Bond
Acceptor Lipid (HBAL), Hydrogen-Bond Acceptor (HBA),
Hydrogen-Bond Donor Lipid (HBDL),   Hydrogen-Bond   Donor 
(HBD),    aromatic ring    (RA), hydrophobic (HY), Hydrophobic
Aromatic (HYAr), Hydrophobic Aliphatic (HYAI), positively (PC)
and negatively (NC) charged, positively (PI) and negatively (NI)
ionisable were available in the HypoGen. Taking into account
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of  the  chemical  structure  of  molecules  in  the  training  set,
4 pharmacophore features were served as the hypothesis
generation: The default HBA, HBD, RA and HY features. A
minimum   of   1   and   a  maximum  of  5  features  in  above
4    pharmacophore    features    were    chosen    to    generate
10 statistically significant model.

Pharmacophore  model  validation:  In  this  study,  the
generated model was validated by three methods: Cost
analysis, Fisher’s randomization test and the test set
prediction38. First, the quality of a pharmacophore model can
be assessed in terms of null cost, total cost and fixed cost. As
a fine pharmacophore model, the difference between the null
cost and the total cost values should be small. Besides, the
fixed cost should be close to the total cost. Then, the Fisher’s
randomization test was applied to assess the statistical
relevance to the model. In this test, the activity values of
substrates in the training set were randomly reassigned before
hypotheses generation. The confidence level was set to 95%,
where 19 random hypotheses were yielded. Finally, the test
set prediction was used as an external model validation
method. The substrates in the test were mapped to the best
pharmacophore model to obtain their predicted CLint values
using the Ligand  Pharmacophore  Mapping protocol39.

Statistical analysis: Correlation analyses were performed
between the predicted and experimental activities of the
training and test sets. Correlation analyses were performed by
GraphPad Prism V5 software.

RESULTS

Construction of the pharmacophore model: Twenty-four
UGT1A8 substrates included in the training set (Fig. 1a) were

used to construct the pharmacophore model. The activities
(CLint) for these compounds spanned 4 orders of magnitude
(Fig. 1). Ten pharmacophore hypotheses were generated by
the HypoGen algorithm. It was interesting to find that all
hypotheses included 2 Hydrogen-Bond Acceptors (HBA) and
one aromatic ring (RA), suggesting that these chemical
features  play  an  important  role  in  the  UGT1A8  activity
(Table 3). On the basic of cost and correlation analysis,
hypothesis 1was regarded as the best model (Table 3). The
structural features and geometry of hypothesis 1 were
presented in Fig. 2a. The aromatic ring was 5.2 Å away from
one hydrogen-bond acceptor and 4.5 Å away from the other
one. The most active substrate genistein (CLint = 1810 µL mgG1

minG1) was well mapped to the model features (Fig. 2b). By
contrary, the least active substrate morphine (CLint = 0.71 µL
mgG1 minG1) was poorly fitted to all features (Fig. 2c). This
suggested that the established pharmacophore model could
distinguish good UGT1A8 substrates from poor ones.

Validation of the pharmacophore model: Firstly, cost analysis
was applied to model validation. The cost values for all
hypotheses were listed at Table 3. The total cost (113.79) was
close to the fixed cost (104.65) for hypothesis 1. Besides, the
difference  between  the  null  cost  and  the  total  cost  was
43.73, indicating that there was a high chance (75-90%) that
the model represented a good correlation of the information.
This was  agreed  well  with  the  fact  that  this  model  showed
an excellent correlation coefficient (r = 0.8334) between
predicted  and  experimental  activities  for  substrates  in
training set (Fig. 3). Furthermore, the configuration cost
(10.431) was not greater than 17, suggesting that a standard
HypoGen algorithm was performed40.

The  pharmacophore  model  was  then  assessed  by
cross-validation    using    Fischer’s     randomization     method.

Fig. 2(a-c): Best  pharmacophore  model  for  UGT1A8.,  (a)  Panel  Three  dimensional  (3D)  diagram  of  the  model  (Green 
sphere, HBA, Orange sphere, RA). (b) Panel Mapping of the most active substrate genistein to the model. (c) Panel
Mapping of the least active substrate morphine to the model
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Table 3: Statistical information of the top ten hypotheses as a result of pharmacophore model generation
Cost Values
------------------------------------------------------------------------

Hypothesis No. Error Weight Totala RMSc Correlationb Featuresc

1 102.19 1.167 113.79 1.337 0.8334 RA, 2HBA
2 106.67 1.244 118.34 1.471 0.8128 RA, 2HBA
3 107.09 1.241 118.77 1.482 0.7887 RA, 2HBA
4 108.91 1.236 120.57 1.532 0.7765 RA, 2HBA
5 114.03 1.237 125.69 1.665 0.7368 RA, 2HBA
6 115.65 1.257 127.34 1.705 0.7127 RA, 2HBA
7 117.04 1.437 128.91 1.737 0.7002 RA, 2HBA
8 117.81 1.531 129.77 1.758 0.6874 RA, 2HBA
9 118.13 1.255 129.82 1.765 0.6667 RA, 2HBA
10 117.99 1.407 129.83 1.762 0.6665 RA, 2HBA
aTotal cost: Configuration cost+error cost+weight cost, where the configuration cost  = 10.431, the fixed cost = 104.65 and the null cost = 157.52, bCorrelation coefficient
(R) between the predicted activity and the experimental activity of the training set, cAbbreviations used: RMS-Root mean square deviation, HBA-Hydrogen-bond
acceptor, RA-Ring aromatic

Table 4: Experimental and predicted UGT1A8 activities (CLint or log(CLint) values) by pharmacophore model for the substrates in the test set
Name CLint (µL mgG1 minG1) Experimental Log (CLint) Predicted Log (CLint) Fit value
Eupatilin 482.01 2.68 2.87 7.65
Hesperetin 36.99 1.57 2.38 5.47
RAO-19 36.80 1.57 2.08 6.12
Macelignan 340.01 2.53 3.27 5.1
Capsaicin 14.20 1.15 1.21 8.27
Jatrorrhizine 0.77 -0.11 0.13 7.08
8-gingerol 94.33 1.97 2.07 8.78
Leonurine 8.20 0.91 1.37 6.47
Entacapone 16.41 1.22 1.95 5.76
Darexaban 51.51 1.71 1.80 8.18
OST167 73.65 1.87 1.57 7.46
MEHP 4.07 0.61 0.28 7.38

Fig. 3: Correlation   analysis   between   predicted   and
experimental activities for the training set

Nineteen-hypotheses were generated randomly (Fig. 4).
Clearly,   all   19   generated  hypotheses  after  randomization
showed   higher   total   cost   value  compared  to  the  original

hypothesis (Fig. 4). This result demonstrated that the original
hypothesis was not generated randomly.

Finally, the correlation coefficient between predicted and
experimental values for the test set substrates (Fig. 1b) was
used to evaluate reliability of the hypothesis 1.Predicted and
experimental values for the test set were listed at Table 4. A
good  correlation  coefficient  (r2  =  0.823)  was  obtained  for
the model. Besides, the predicted CLint values were  close to
the experimental values for all substrates, deviating by no
more than one log unit  (Fig. 5). In fact, predicted value within
one log residual of experimental value was considered
satisfactory in drug metabolism field41,42.

DISCUSSION

In this study, a 3D QSAR model for UGT 1A8 was
successfully established by pharmacophore approach for the
first  time.  The  pharmacophore  model  consisted  of  two
HBA  and  one  RA  chemical  features,  demonstrating  that
HBA and RA  served an important role in the catalyzing
capability  of  UGT  1A8  (Fig.  2).  Therefore,  this  study
highlighted  an  overlay  of  chemical  characteristics  related
to   UGT1A8  substrates.  Furthermore,  this  model  possessed

5



Int. J. Pharmacol., 2017

4

3

2

1

0

-1

P
re

di
ct

ed
 l

og
 (

C
L

)
in

t

-1
Experimental log (CL )int

0 1 2 3 4

Fig. 4: Comparison of randomly generated hypotheses and original hypotheses. The confidence level was set as 95%

Fig. 5: Correlation  analysis  between  predicted  and
experimental activities for the test set

strong capacity to  predict   substrate   activity  for  UGT 1A8
(Fig. 4). Accordingly, the  established  model  would  be  an 
efficient   tool   for high-through put  prediction  of  UGT1A8 
metabolism. UGT1A8 was a major UGT enzyme contributing
to drug metabolism in the gastro intestinal tract3. However,
the computational models were still unavailable for UGT 1A8.
Hence,  construction  of  the  pharmacophore  model  for
UGT1A8 in this study would be helpful for the prediction of
UGT-mediated metabolism in the gastrointestinal tract.

Many  drug  attritions  caused  by  undesirable  ADME
properties have led to the need to identify ADME problems in
the drug discovery process as early as possible43. In fact, there
2 kind approaches (i.e., in  silico  and in  vitro)  could beutilized

to optimize the selection of the most suitable drug candidates
for development42. In silico approaches were effective to deal
with  ADME  problems still earlier in the drug discovery
process and helpful to select better drug candidates from
many compounds to move forward44. On the contrary, in  vitro
approaches for ADME issues were time and economy
consuming process. Of note, the pharmacophore technique
was a powerful computational tool for ADME properties'
prediction,  which  has  successfully  quantified  substrate
selectivity for various CYP and UGT enzymes11.

Because the full crystal structure for UGT 1A8 was
unavailable, the ligand-based pharmacophore method was
used to build the quantitative pharmacophore model. In order
to ensure meaningful performing of the HypoGen algorithm,
24 structurally diverse substrates of UGT 1A8 covering a range
of more than 4  log units were selected for model building
(Fig. 1). Therefore, it was reasonable that ten pharmacophore
models  were  statistically  significant  with  high  values  of
correlation coefficients and low values of total cost (Table 3).
Besides, the hypothesis 1 (the best pharmacophore model)
correctly predicted the activities of substrates in the test set
(deviations of less than one log unit), suggestive of a good
external predicted ability of the model (Fig. 5).

The   pharmacophore   model   suggested   that
hydrogen-bonding acceptor played a significant role in the
molecules  glucuronidation  by  UGT1A8.  Hydrogen-bond
acceptor was regarded as a hydrophilic group. Accordingly,
this  result  was  also  supported  the  fact  that  hydrophilic
region was an important contributor to substrate catalysis.
Besides, pharmacophore analysis was firstly demonstrated
that ring aromatic was an essential determinant for
glucuronidation activity by UGT enzyme. Ring aromatic
provided    strong    hydrophobic    properties    in    molecules.
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Noteworthily, hydrophobicity has been found to be an
important factor for the binding of substrates to UGT enzymes
such as UGT1A1, UGT1A4 and UGT1A1012. Because catalysis
efficiency was closely related to substrate binding to the
enzyme, it was reasonable to find that aromatic ring was
important for molecule’s glucuronidation by UGT 1A8.

CONCLUSION

It is concluded, a quantitative model for UGT 1A8 was
firstly constructed using pharmacophore approach in the
present study. The pharmacophore model was composed of
two hydrogen-bonding acceptors and one aromatic ring. The
best pharmacophore model (hypothesis 1) was statistically
significant with high values of correlation coefficients and low
values of difference between the null cost and the total cost.
Besides, the established model was able to accurately
predicted catalysis activity within one log residual of
laboratorial value for substrates in the test set, highlighting
the predictability of the model. Application of the established
model to predict UGT1A8 metabolism, hence, is fully expected
in drug development problems. Our model could also
contribute to an improved understanding of the substrate
selectivity of UGT1A8.
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