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A B S T R A C T
The MIFs was applied to a data set of 40 N-phenylhomophthalimide derivatives of
APN inhibitors to generate the 3D-QSAR model at various 3D grid spacing. The
cross-validated correlation coefficient q2

LMO (0.6204) and r2
pred (0.9810) were

obtained at a 1.0 Å 3D grid spacing, indicating the statistical significance of this
class of compounds. The calculated inhibitive activities showed a high degree of
agreement with experimented values. Then, the 6 nsec MD simulation of protein-
ligand complex and binding free energy analysis were carried out. The stable
binding mode of the most active compound 21 was determined.
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INTRODUCTION

APN, a zinc-containing proteolytic ectoenzyme, is called
neutral aminopeptidase, based on the pH at which its maximal
activity is observed. The most favorable substrates of APN are
peptides having an alanine residue at the amino-terminal end
(Lalu et al., 1986). The APN, also been named gluzincins, has
the  typical  zinc-binding  active  site with the consensus
amino acid sequence of Hisl-Glu2-Xaa3-Xaa4-His5-18
residues-Glu24, which is similar to that of metalloproteinases
such as thermolysin. The His1 (the first His of the consensus
amino acid sequence of the zinc-binding active site), His5 and
Glu24 are the Zn2+ coordinating residues, while Glu2 is
involved in catalysis. The functions of the enzyme depend on
its location. In the synaptic membranes, the enzyme inactivates
neuropeptides (enkephalins and endorphins) (Hooper, 1994).
In intestinal brush border, APN degrades small peptides from
the N-terminal end (Riemann et al., 1999). Recently, APN has
been shown to be the major receptor for the enteropathogenic
coronavirus TGEV (Delmas et al., 1992) and for human
coronavirus 229E (Yeager et al., 1992) and has also been
shown to be involved in invasion and metastasis of a variety
of tumor cells (Menrad et al., 1993). The APN is expressed in
malignant melanoma cells, but is absent from normal
melanocytes. The enzyme is also expressed in macrophages

and fibroblasts that exhibit high mobility in solid tissues
(Matrisian, 1990). In fact, APN inhibitors have been reported
to inhibit significantly the invasion of murine and human
metastatic tumor cells into reconstituted basement membranes
(Talmadge et al., 1986; Fujii et al., 1996). These findings
suggest that neutral APN plays a crucial role in matrix
degradation and invasion by tumor cells and that APN
inhibitors  may be useful for preventing the spread of
malignant cells (Carl-McGrath et al., 2004; Hashida et al.,
2002; Ishii et al., 2001).

The Quantitative Structure Activity Relationships (QSAR)
are now modern media for drug design. The QSAR are the
most important applications of chemometrics giving useful
information for the design of new compounds acting on a
specific target. The QSAR attempts to find a consistent
relationship between biological activity and molecular
properties (He and Jurs, 2005). Three-dimensional
Quantitative Structure Activity Relationships (3D-QSAR)
analysis is now the most widely used and improved technique
(Kubinyi, 1993). Thus, QSAR models can be used to predict
the activity of new compounds. Molecular docking and
Molecular Dynamics (MD) simulation are used to study how
a ligand is interacting with its biological target and to support
the conclusions of QSAR studies (Kirkpatrick, 2004). The
strength  of  a  biomolecular  interaction  such  as  involved in
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recognition or catalysis can be quantified in terms of its
binding free energy and a range of computational approaches
can be used to estimate binding free energies. The MM-PBSA
approach has grown to be one of the most widely used
methods to compute interaction energies and is often
employed to study biomolecular complexes (Homeyer and
Gohlke, 2012).

In this study, 3D-QSAR models for N-
phenylhomophthalimide  derivatives  of  APN  inhibitors is
introduced. In addition, the binding mode of the most activity
compound 21 in APN binding site, obtained through docking,
MD simulation experiments and binding free energies
calculation, is discussed.

MATERIALS AND METHODS

Experimental data: All the compounds (Fig. 1) and
associated activity data used in this study were obtained from
literature (Shimazawa et al., 1999). The inhibitory activity data
was reported as IC50. The IC50 was converted to pIC50 by taking
log(1/IC50), the pIC50 values were used as dependent variable
in 3D-QSAR study. Especially many experimented pIC50

values in our dataset were set to 3.2 because the IC50 values
had been assessed to be greater than 100 µg mLG1. According
to research methodology, 3D-QSAR model was carried out
through Molecular Interaction Fields (MIFs) analysis by
dividing  the  dataset  of  40  molecules  into  training  set of
33 molecules (82.5%) and test set of 7 molecules (17.5%) in
a random manner. The structure and inhibitory activity of
these compounds were given in Table 1 (the testing set is
marked by *).

Alignment: The  molecules were superimposed using the
phar-based  alignment  b  y   the   open3DALIGN  tools
(Tosco et al., 2011). The compound 21 was selected as the
template to construct other compounds because of its high
biological activity and representative chemical structure and
the alignment  was  completed  by open3DALIGN
workstation. Except for some special notes, default values
were chosen.

Fig. 1: N-phenylhomophthalimide derivatives of APN
inhibitors

Generating MIFs: The MIFs are the interaction energies
between a probe atom (or a molecule) and a set of aligned
molecules, which are used to establish the 3D-QSAR
equations. To generate the MIFs, a probe atom is
systematically moved from one point to another for each
aligned molecule within a defined 3D grid (Liton et al., 2013).
At each grid point, the interaction energy is calculated between
the probe and the target molecule. In this study, the 40 aligned
molecules were placed in various 3D cubic lattice spacing. The
steric (van der waals) and electrostatic (coulombic) interaction
energies were calculated for each molecule at each grid point
using an alkyl carbon probe (default) with automatically
assigned charges using OpenBabel utilities. Energies lower
than -40.0 kcal molG1 and greater than 40.0 kcal molG1 were
cutoff, because a few high values in the dataset may severely
bias the model.

The MIFs analysis described here was performed on
open3DQSAR tools (Tosco and Balle, 2011) using Partial
Least Square (PLS) (Stahle and Wold, 1987) technique
through the NIPALS algorithm methodology (Wold et al.,
2001). To obtain the 3D-QSAR models, PLS analysis was
performed using steric and electrostatic field alone and also
combination. The models were further improved by using
Smart Region Definition (SRD) and Iterative Variable
Elimination PLS (IVE-PLS) methods. Cross-validation in PLS
was carried out using the Leave Many Mut method (LMO)
(Clark, 2003) to check the predictive ability of the models and
to determine the optimal number of components to be used in
the final 3D-QSAR models. We carried out 20 LMO-cross-
validation runs leaving at each run 1 of 5 randomly-composed
groups of compounds out of the model (i.e., 20%) and
predicted their activities via the reduced model. LMO-cross-
validation is much more robust than LOO-cross-validation
(Golbraikh and Tropsha, 2002). The quality of a model is
expressed as the cross-validated correlation coefficient q2. The
optimal number of components is the largest value of q2.

Molecular docking and MD simulations: Elucidation of
ligand binding mechanisms is the necessary step to obtain
more selective and potent drugs. So we made a molecular
docking and molecular dynamics study of the most activity
compound 21 with APN (PDBid: 4FYR) and further identified
the critical amino acid residues for ligand binding. Docking
was performed with AutoDock4.2 software package, which
combines a rapid energy evaluation through precalculated
grids of af nity potentials with a variety of search algorithms
to nd suitable binding positions for a ligand on a given protein
(Morris et al., 1998). When docking, APN was kept rigid, but
all the torsional bonds in compound 21 were set free to
perform exible docking. Polar hydrogens were added by using
the hydrogens module in AutoDock Tools (ADT) for APN;
after that, kollman united atom partial charges were assigned
(La Motta et al., 2007). Docking of compound 21 to APN  was
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Table 1: Structure and APN inhibitory activity of N-phenylhomophthalimide derivatives
Compounds X R1 R2 pIC50 (Exp) pIC50 (Cal) Residues
1 CH CH H H 3.4030 3.3408 -0.0622
2 CH CH 2'-Me H 3.7816 3.7678 -0.0138
3 CH CH 2'-Et H 4.1728 4.2295 0.0567
4 CH CH 3'-Et H 4.3551 4.3284 -0.0267
5 CH CH 4'-Et H 3.2000 3.1961 -0.0039
6 CH CH 2'-iPr H 3.7108 3.6140 -0.0968
7 CH CH 4'-iPr H 3.2000 3.1176 -0.0824
8 CH CH 2'-OMe H 4.6341 4.6869 0.0528
9 CH CH 3'-OMe H 4.4488 4.4842 0.0354
10 CH CH 4'-OMe H 4.5344 4.5293 -0.0051
11 CH CH 2'-SMe H 5.4975 5.3790 -0.1185
12* CH CH 3'-SMe H 4.5487 4.7028 0.1541
13 CH CH 4'-SMe H 4.6594 4.6484 -0.011
14* CH CH 3'-CH2OH H 3.9641 3.9296 -0.0345
15 CH CH 2'-Me 6'-Me 4.4837 4.5774 0.0937
16* CH CH 2'-Me 5'-Me 4.3588 4.7051 0.3463
17 CH CH 2'-Me 4'-Me 4.2031 4.2080 0.0049
18 CH CH 2'-Me 3'-Me 3.9461 4.1069 0.1608
19* CH CH 3'-Me 4'-Me 4.0653 4.3983 0.333
20 CH CH 3'-Me 5'-Me 5.2472 5.3465 0.0993
21 CH CH 2'-Et 6'-Et 6.3877 6.3369 -0.0508
22* CH CH 2'-Et 5'-Et 4.8334 5.1737 0.3403
23 CH CH 2'-Et 4'-Et 4.1768 4.2045 0.0277
24 CH CH 2'-iPr 6'-iPr 4.9624 4.9792 0.0168
25 CH CH 2'-Me 6'-Et 5.8121 5.9008 0.0887
26* CH CH 2'-Me 6'-iPr 5.5748 5.2872 -0.2876
27 CH CH 2'-tBu 5'-tBu 3.2000 3.1860 -0.014
28 CH CH 3'-tBu 5'-tBu 4.6795 4.6648 -0.0147
29 CH CH 2'-OMe 5'-OMe 4.9676 5.0973 0.1297
30 CH CH 2'-OMe 4'-OMe 4.7826 4.5577 -0.2249
31 CH CH 3'-OMe 4'-OMe 3.2000 3.3374 0.1374
32 CH CH 3'-OMe 5'-OMe 4.7485 4.5015 -0.247
33 CH CH 3',4',5'-tri-OMe 3.2000 3.3613 0.1613
34 CH CH 2'-Cl 6'-Cl 3.8413 3.8662 0.0249
35 CH CH 2'-F 6'-F 3.2000 3.2804 0.0804
36 CH CH 2',3'-fused-Ph 5.2274 5.1358 -0.0916
37* N N 3'-OMe 5'-OMe 3.2000 2.7669 -0.4331
38 CH N 3'-Me 5'-Me 4.8686 4.9159 0.0473
39 N N 3'-Me 5'-Me 3.2000 3.0773 -0.1227
40 N N 3'-Me 5'-OMe 4.3987 4.3672 -0.0315
Exp: Experimental, Cal: Calculated, *Testing set

carried out using the empirical free energy function and the
lamarckian genetic algorithm with a standard protocol. Fifty
independent docking runs were carried out. Results were
clustered according to the 1.0 Å Root Mean Square Deviation
(RMSD) criterion. All torsion angles for compound 21were
considered exible. The grid maps representing the proteins in
the actual docking process were calculated with AutoGrid. The
grids (one for each atom type in the ligand plus one for
electrostatic interactions) were chosen to be suf ciently large
to include not only the active site but also signi cant portions
of the surrounding surface. The dimensions of the grids were
thus 60×60×60 Å, with a spacing of 0.375 Å between the grid
points.

Based on the docking results, MD simulation was carried
out with the gromacs 4.6.5 (Van Der Spoel et al., 2005) suite
of programs using the amber99SB force field (Hornak et al.,
2006). The APN-21 complex was placed in the center of
octahedron box and solvated by TIP3P water model

(Jorgensen et al., 1983). The Na+ counterions were added to
satisfy the electroneutrality condition. Using the leapfrog
algorithm in the NPT ensemble, each component, compound
21, APN, H2O and Na+, was separately coupled. The v-rescale
temperature coupling and parrinello-rahman pressure coupling
(the coupling constants were both set to 0.1) were used to keep
the system in a stable environment (300 K, 1 bar). Distance
restraints were to applied to maintain the Zn-ion in the correct
ligation state. The nominal charge of +2 was used for Zn-ion.
The Zn-chelating  histidine  residues  were  protonated at the
δ-nitrogen (Manzetti et al., 2003). The APN-21 complex was
rst energy minimized with the steepest descent method; then
a 100 psec position restraining simulation was carried out
restraining the APN by a 1000 kJ  molG1 Å2 harmonic
constraint to relieve close contacts before the actual
simulation; nally, a 6 nsec MD simulation was performed.
During these steps, the Particle Mesh Ewald (PME) method
for long-range electrostatics, a 14 Å cutoff for van der waals
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interactions, a 9Å cutoff for coulomb interaction and the
LINCS algorithm for bond constraints were used (Hess et al.,
1997). Periodic boundary conditions were applied to avoid
edge effects.

Binding free energy calculations: For APN-21 complex
system,  free    energy   calculations   were   performed  for
200 snapshots extracted from the last 2 nsec stable MD
trajectory using g_mmpbsa (Kumari et al., 2014). The van der
waals radius of the catalytic Zn-ion was set to 1.77 (Batsanov,
2001). For each snapshot, the free energy was calculated for
each molecular species (complex, protein and ligand) and the
binding free energy is computed by Eq. 1. ΔGMM, the
molecular mechanics energy, was calculated by the
electrostatic and van der waals interactions. ΔGsol, the
solvation  free  energy,  was   composed   of   the  polar and
the  nonpolar  contributions.  Polar  solvation free energy
could  be  obtained  by solving the poisson-boltzmann
equation for MM/PBSA method, whereas nonpolar solvation
free  energy  was  determined using Solvent Accessible
Surface Area (SASA) model. TΔS represented the entropy
term:

ΔGbind = ΔGMM+ΔGsol-TΔS (1)

RESULT AND DISCUSSION

3D-QSAR study: To develop an effective 3D-QSAR model,
some parameters such as the cross-validated correlation
coefficient (q2), non-cross-validated correlation coefficient (r2),
Standard Deviation of the Error of Predictions (SDEP) and
Standard Deviation on SDEP (SD on SDEP) have been taken
under consideration. The LMO-cross-validation was carried
out for 3D-QSAR model. Then the number of components
identified in the LMO-cross-validation process was used in the
final non-cross-validated PLS run. The optimal number of
components was determined by selecting the highest q2 value.
The statistical results of MIFs studies were summarized in
Table 2. The correlation between the calculated activities and
the experimented activities was depicted in Fig. 2 and Table 1.

The MIFs-based PLS calculation resulted in several
models and among them, the final model selection is an
important issue. To obtain the 3D-QSAR models, PLS analysis
was performed using each of the steric and electrostatic MIFs
alone and also in combination varying on 3D grid spacing. Six
types of model were produced on varying the grid spacing. All
the models comparatively showed good statistical results
except the model 2 and model 3 (Table 2). The external
predictive ability of the MIFs model is extremely important in
terms of the applicability of the MIFs model. Therefore, it was
decided to use the r2

pred as a criterion for final selection of the
best model. As reflected by the Table 3, all the models showed
comparatively  good  r2

pred  values  except  model 3.  Therefore

Fig. 2: Graph of experimented versus calculated pIC50 value

model 1,  which  uses  both  steric  and  electrostatic  fields  on
1.0Å grid spacing, was chosen as the working MIFs model,
whose validity and predictability were assessed by the r2 value
of 0.9465 and q2

LMO value of 0.6204 with 8 components and a
SD on SDEP of 0.0434. The steric and electrostatic
contributions were 37.7 and 63.3%, respectively, meanwhile
model 1 has the highest r2

pred value of 0.9810 and hence the
lowest SDEP value of 0.0953 for the test set.

A graphical inspection of the experimented with
calculated pIC50 values indicated that the overall fit of the
molecule was satisfactory for model 1 (Fig. 2). The results of
the analyses showed that the best model is model 1; that is to
say, the combined fields (steric and electrostatic) at a 1.0 Å
gave the best statistical results. Therefore, model 1 was
selected as the best MIFs model. Compared with the QSAR
results of literature, our 3D-QSAR modeling have good
predictive ability (Zhu et al., 2008; Xu et al., 2012).

The 3D-QSAR contour maps were generated to visualize
the field distribution of the generated model and provide
information  to  direct  the development of novel selective
APN inhibitors. Figure 3a presents the steric contour map
around  superposed   compounds.  In  the   PLS  analysis,
steric  unfavorable   regions  are   depicted   in  yellow,
whereas  favorable  regions  are   in   green.  Nonsubstituted
N-phenylhomophthalimide (compound 1) was almost inactive.
The steric effect of substituents at the 2’- and 6’-positions is
extremely important for potent activity. The 2’, 6’-
diethylphenyl derivative (compound 21) showed the most
potent APN-inhibitory activity. The effect of the two ethyl
groups introduced at the 2’- and 6’-positions seems to be
specific, because the corresponding regioisomers (2’, 5’-
isomer: 22 and 2’, 4’-isomer: 23), as well as the 2’, 6’-
dimethyl (compound 15) and 2’,6’-diisopropyl (compound 24)
analogs all have much weaker APN-inhibitory activity than
compound 21. The potency of  APN-inhibitory  activity
decreased  in  the order of 2’-ethyl (compound 3) >> 2’-methyl
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 (a) (b) 

Table 2: Statistical analysis of training set through MIFs studies
Contribution
----------------------------------

Model No. 3D-Grid spacing Compounds Components q2
LMO r2 SD on SDEP Steric Electrostatic

1 1.0 40 8 0.6204 0.9465 0.0434 36.7% 63.3%
2 1.0 40 8 0.4207 0.9721 0.0540 100.0 0.0
3 1.0 40 8 0.1621 0.9042 0.0545 0.0 100.0
4 1.5 40 8 0.6207 0.9902 0.0365 36.4% 63.6%
5 2.0 40 8 0.6211 0.9786 0.0472 36.3% 63.7%
6 2.5 40 8 0.6293 0.9820 0.0355 35.3% 64.7%
SD: Standard deviation, SDEP: Standard deviation of the error of predictions

Table 3: Statistical analysis of test set through MIFs studies
Contribution
----------------------------------------------------

Model No 3D-Grid spacing r2
pred SDEP Steric Electrostatic

1 1.0 0.9810 0.0953 36.7% 63.3%
2 1.0 0.8952 0.2237 100.0 0.0
3 1.0 0.3158 0.5716 0.0 100.0
4 1.5 0.9408 0.1681 36.4% 63.6%
5 2.0 0.8986 0.2201 36.3% 63.7%
6 2.5 0.8412 0.2753 35.3% 64.7%
SEP: Standard deviation of the error of predictions

Fig. 3(a-b): Illustration of the PLS pseudocoefficient contour maps of the 3D-QSAR model with the superposed compounds from
both training and test sets (level: ±0.0002)

(compound 2) >2’-isopropyl (compound 6) analogs for
monosubstituted N-phenylhomophthalimides. The
corresponding   4’-alkylated regioisomers (compound 6 and 7)
did not show APN-inhibitory activity.

The PLS electrostatic contour map (Fig. 3b) includes main
red region and blue regions. A great attention should be paid
to the big red region which indicates that the presence of
negatively charged group would increase the bioactivity
remarkably. For monosubstituted N-phenylhomophthalimides,
introduction of electron-withdrawing group increased the
activity.  For  example, the activity increased in the order of
2’-methylthio (compound 11), 3’-methylthio (compound 12),
4’-methylthio (compound 13) >2’-methoxyl (compound 8), 3’-
methoxyl (compound 9), 4’-methoxyl (compound 10) >2’-
ethyl (compound 3), 3’-ethyl (compound 4), 4’-ethyl

(compound 5) respectively. Compound 29, 30 show higher
activity  than  compound 16, 17, mainly for introduction of
electron-withdrawing dimethoxyl at 2’,5’-position and 2’,4’-
position respectively. In addition, introduction of electron-
withdrawing F, Cl did not increase the bioactivity remarkably.
This observation is consistent with the experimental activity in
literature (Shimazawa et al., 1999). Compared with the MD
simulation results, the 3D-QSAR modeling was performed to
give further validation of the binding mode and provide a
structural framework for understanding the structure-activity
relationship of the inhibitors.

Molecular docking and MD simulation: It is difficult to
explain the molecular mechanism of inhibitor binding to APN
on  the  basis  of  the  docking  data  alone, because the protein
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molecule remains rigid during the docking. To investigate the
binding features of the inhibitors, we performed 6 nsec MD
simulation of the APN-21 complexes which was the result of
molecular docking.

The Root Mean Square Deviation (RMSD) of the atomic
positions with respect to the starting structure was calculated.
The obtained RMSD values for backbone atoms of the APN
are about 2.0 Å and relatively stable after 2 nsec, indicating
that the molecular systems were well behaved thereafter. The
RMSD values of compound 21 atoms are about 0.5 Å and then
leveled off after that. This indicates that, after an initial
increase in the magnitude of APN and ligand atoms
fluctuation, the system reached an equilibrium state
characterized by the RMSD profile (Fig. 4).

There are two hydrophobic domains beside the catalytic
activity center of APN, called pockets S1 and S1’, respectively
(Mou et al., 2010). The compound 21 could interact with the
active  binding  site  which  is  consistent   with   highly  potent

drug Bestatin (Bauvois and Dauzonne, 2006). The binding
mode of compound 21 with APN is shown in Fig. 5. It can be
seen  that  compound 21 is anchored into the active binding
site  via  a   network   of   hydrogen   bonds   and  hydrophobic

Fig. 4: RMSD of APN backbone atoms and heavy atoms in
compound 21

Fig. 5: Diagram of the hydrogen bonds and hydrophobic interactions of the compound 21 with active-site residues in APN

925www.ansinet.com | Volume 11 | Issue 8 | 2015 |
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Fig. 6: Energy of each residue contribution to the binding of compounds 21 with APN active site

interactions. The carbonyl oxygen of compound 21
coordinates with the catalytic Zn-ion with the distance of 1.91
and another carbonyl oxygen forms a hydrogen bond with
polar H atom of Ala353. At the same time, hydrophobic
interactions were formed. In addition the catalytic Zn-ion
coordinates with His388, His392, Glu389 and Glu411, which
is the same with the crystal structure of 4FYR.

Interaction  mechanism  based  on  the  binding  free
energy  analysis:  The  predicted   binding   free   energy  is
-149.95 kJ molG1,  composed   of    van    der    waal   energy
-165.76  kJ  molG1,  electrostatic energy -130.58 kJ molG1;
polar  solvation  energy   160.07  kJ  molG1 and  SASA  energy
-13.68 kJ molG1. The individual energy term nonpolar
interactions, including van der Waals energy and nonpolar
solvation energy, is of vital importance to the binding process.
On the contrary, the sum of the electrostatic interactions,
which consists of the electrostatic energy and the polar
solvation energy, is unfavorable to the binding. The favorable
coulomb interactions are counteracted by the unfavorable
electrostatics of desolvation. It is found that the sum of the
electrostatic interactions is 29.49 kJ molG1, whereas nonpolar
interactions is -179.54 kJ molG1. So the intermolecular van der
waals contribution is most significant. The observation is
consistent with the large hydrophobic binding surface between
compound  21  and  APN  as  well  as   Bestatin   and  APN
(Ito et al., 2006; Chen et al., 2012). In order to gain further
insight into ligand-protein interaction, binding free energy was
decomposed to ligand-residue pairs (Fig. 6). The energy
decomposition  analysis  shows  that the main contributions
are   -3.73,   -3.43,   -8.57,   -4.43,   -3.58,  -4.07,   -4.25  and
-5.02 kJ molG1 from residues Met354, Glu380, His388,
His392, Glu411, Asp439, Phe472 and Tyr477, respectively.
Especially   the   contribution    of    the   catalytic  Zn-ion is
-3.30 kJ molG1. It is shown that Glu355, Arg363, Glu389 and
Glu418 are in disfavor with the binding for compound 21.
Compared with the 3D-QSAR, MD simulation and binding
free energy analysis better explained the binding mechanism
with the residues and chemical group interactions of the
inhibitors.

CONCLUSION

In   this    study,    carried    out   MIFs   studies   for  40
N-phenylhomophthalimide derivatives against experimented
biological activities. The phar-based alignment with varying
the 3D grid spacing method was used to provide the model for
MIFs analysis. Our present studies have established that the
model derived through MIFs studies is quite reliable and
significant. We have investigated that the PLS analysis at 1.0Å
3D grid spacing by Open3DQSAR tools has presented an quite
statistical results in terms of q2

LMO and r2
pred values and showed

a high degree of agreement with the experimented inhibitory
activities. In addition, the molecular interaction mechanism of
inhibitor binding to APN active binding site was explained on
the basis of MD simulation and binding free energy analysis.
Our results suggested that inhibitor can exactly bind to the
active binding site of APN to display inhibitory activity and
the van der waals interactions could be driving force for the
binding of inhibitor with APN.
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